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 e improvements in computation facility and technology support the development and implementation of automatic
methods for medical data assessment.  is study tries to extend a framework for e�ciently classifying chest radiographs (X-
rays) into normal/COVID-19 class.  e proposed framework consists subsequent phases: (i) image resizing, (ii) deep features
extraction using a pretrained deep learning method (PDLM), (iii) handcrafted feature extraction, (iv) feature optimization with
Brownian May�y-Algorithm (BMA), (v) serial integration of optimized features, and (vi) binary classi�cation with 10-fold
cross validation. In addition, this work implements two methodologies: (i) performance evaluation of the existing PDLM in the
literature and (ii) improving the COVID-19 detection performance of chosen PDLM with this proposal.  e experimental
investigation of this study authenticates that the e�ort performed using pretrained VGG16 with SoftMax helped get a
classi�cation accuracy of >94%. Further, the research performed using the proposed framework with BMA selected features
(VGG16 + handcrafted features) helps achieve a classi�cation accuracy of 99.17% on the chosen X-ray image database.  is
outcome proves the scienti�c importance of the implemented framework, and in the future, this proposal can be adopted to
inspect the clinically collected X-rays.

1. Introduction

Due to di�erent grounds, the occurrence speed of diseases in
humankind is gradually rising, and timely screening and
treatment are necessary to reduce the infection/death rates.
In the current era, many advanced life-saving facilities are
available in healthcare centers to treat individuals su�ering
from infectious/acute diseases. However, even though
enough investigative and healing services are conveniently
accessible to the individuals, the occurrence rate of life-
threatening communicable infections is gradually rising,
which causes more medical burden worldwide [1–3].

 e contagious infections caused by viruses/bacteria
commonly infect a sizeable human group, and early recognition

and management is the solitary remedy to manage its increase.
Recently, contagious infection named COVID-19 infected
many individuals globally and are the prime reason for in-
creased death rates in the years 2020 and 2021. Due to its
severity and spreading speed, the World Health Organization
(WHO) con�rmed it as a pandemic in early 2020 [4, 5].
COVID-19 is caused by the SARS-CoV-2 virus, which creates
mild to harsh pneumonia in individuals based on their im-
munity intensity. Even though the patient is vaccinated and
following the COVID-19 protocol suggested by WHO, its in-
fection rapidity is still unmanageable due to the speedy alter-
ation in the virus.

Self/doctor can diagnose the symptom of COVID-19,
and the clinical level screening of this disease involves
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(i) collection of samples from individuals and execution of
the reverse transcription-polymerase chain reaction (RT-
PCR) using permitted clinical practice and (ii) radiological
image-based lung screening. First, radiology-supported lung
imaging is performed in a controlled environment, in which
the infection in the lung is diagnosed with chest X-ray or
computed tomography (CT) images. +en, the pulmonol-
ogist examines the collected X-ray/CT images to detect the
severity of the infection, decision making, and treatment
execution to cure the disease.

In hospitals, the usages of the X-ray/CT are prevalent to
examine lung infection and compared to the CT, the
implementation of the X-ray is simple and cost-effective.
Hence, most of the initial level lung screening considers
X-ray images. +e disease and its harshness can be easily
detected when the radiologist/pulmonologist examines it.
Several computerized screening procedures for X-ray images
are discussed in the literature, and these works confirm that
X-ray-supported lung infection screening helps achieve a
better diagnosis.

Several X-ray image examination methods are proposed
and implemented in the literature using the machine
learning (ML) schemes and deep learning (DL) methods.
+e existing works helped achieve better detection accuracy.
However, the integration of the ML and DL approaches is
minimal, and this scheme will help to achieve improved
detection accuracy when the clinical-grade X-ray image is
assessed. +is research aims to develop a DL framework for
automatic detection of COVID-19 in chest X-ray images. In
order to achieve a better disease detection, this framework
employs the following stages: (i) Collection and pre-
processing of X-ray images; (ii) evaluating the performance
of pretrained deep learning method (PDLM) and finding the
appropriate practice to screen the X-ray database; (iii)
mining of deep features from the X-ray; (iv) mining of
handcrafted features (HF) using chosen procedures; (v)
feature selection with Brownian Mayfly-Algorithm (BMA)
and serial feature integration; and (vi) classification and
validation of the performance of proposed COVID-19
screening framework.

+is research primarily executes PDL scheme-supported
X-ray evaluation and identifies the infection screening
performance based on the attained metrics. +e initial study
confirms that the COVID-19 detection accuracy achieved by
VGG16 is better (>95%) than other PDL schemes. Hence,
the VGG16 supported framework is considered, and then its
performance is enhanced by serially integrating the HF, such
as local binary pattern (LBP) and PHOG. In order to avoid
the overfitting problem, these features are then optimized by
the BMA. +en, the necessary hybrid feature vector
(Deep +HF) is generated, and it is then considered to train
and validate the binary classifiers with 10-fold cross-vali-
dation. +is study considers 4800 (2400 normal and 2400
COVID-19) X-ray images for the evaluation, in which 90%
images are considered for training and 10% are considered
for the validation. +e experimental outcome of this study
confirms that the proposed technique helps get a classifi-
cation accuracy of 99.17% with the K-nearest neighbor
(KNN) classifier.

+e novelty and the merits of this research include

(i) Implementation of Brownian Mayfly-Algorithm
(BMA) based deep and handcrafted feature opti-
mization on improving the detection accuracy
without the overfitting

(ii) Precise COVID-19 detection in X-ray images using
hybrid features with 10-fold cross-validation

+e upcoming sections of this work are demonstrated as
follows: Section 2 shows the literature review; Section 3
presents the methodology; and Sections 4 and 5 demonstrate
achieved results and conclusion of the presented work,
respectively.

2. Related Research

Chest X-ray supported lung infection detection is a clinically
accepted methodology in which the combined report of the
radiologist and pulmonologist are considered to evaluate the
disease in the lung to plan and implement the necessary
treatment to cure the patient. +e computer algorithm-sup-
ported X-ray examination is one of the widely accepted pro-
cedures. Hence, several PDL schemes have been implemented
to examine the harshness of COVID-19 infection in patients.
+e employed PDL schemes help categorize the available X-ray
images into normal and disease classes with better accuracy.
+is procedure is an essential process when a mass screening
procedure is implemented, and this considerably reduces the
COVID-19 detection burden when more patients are to be
screened. Table 1 depicts some chosen deep-learning assisted
COVID-19 infection procedures found in the recent literature.

+e earlier works in the literature authenticate that the
combination of deep and HF assists to acquire better disease
detection accuracy [19]. +e above table confirms that the
maximum detection accuracy presented in the earlier work is
99.02% [13]. +is work considered the hybrid feature-based
X-ray classification to improve the detection accuracy.Hence, in
this work, the classification of X-rays into normal/COVID-19 is
implemented using the BMF algorithm optimized VGG16’s
features and the optimally selected LBP and PHOG features.
+e experimental outcome of this research confirms that the
presented work helps to get better detection accuracy than the
works considered in Table 1.

3. Methodology

+is section represents the developed structure to examine
the selected X-ray database. Also, it outlines the different
procedures implemented to distinguish normal/COVID-19
class X-rays.

3.1. Framework. Figure 1 depicts the proposed framework
developed to sense the COVID-19 in chosen test X-ray pictures.
In this effort, the necessary images are primarily collected and
resized into 224 × 224 × 1 pixels, and these imagery are af-
terward considered to extract the deep features (DF) and HF.
+e DF mining is initially achieved using the pretraining
schemes, and every scheme helps to get a one-dimensional (1D)
feature vector of size 1 × 1 × 1000. +is feature vector is
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adopted to confirm the SoftMax (SM) classifier’s merit on the
chosen test images. +e initial experiment proves that the
COVID-19 detection accuracy of VGG16 with SM classifier is
better than AlexNet, VGG19, ResNet18, ResNet50, and
ResNet101 schemes. Furthermore, the initial study confirmed
that the VGG16 provides better results on the chosen data than
other methods.

Later, the HF, such as LBP and PHOG, is extorted from the
test imagery. +e collected DF and HF are then reduced by the
BMF algorithm, the selected features are then serially integrated,
and the classification study is repeated. +is experimental
outcome authenticates that the proposed framework helped to
accomplish a categorization accuracy of 99.17% for the chosen
X-ray database. +e various stages of this framework are clearly
depicted in Figure 1, and the outcome of the framework is more
significant compared to other results presented in Table 1.

3.2. X-Ray Database. +e merit of the planned COVID-19
detection framework is then tested and validated with bench-
mark X-ray images found in the literature. In this scheme, the
necessary test images for this study are collected from the
following locations [20, 21]. During this study, 4800 test images
were considered for the assessment. Table 2 presents the in-
formation about the images (total, training, and validation), and
Figure 2 presents the sample test images of the chosen database.
Finally, all the considered PDLM are tested with the considered
database and the results are analyzed.

3.3. Deep-Features Mining. +e concert of the planned
framework relies mainly on the deep features obtained
from the chosen PDLM [22]. In this work, the well-
known PDLM, such as AlexNet, VGG16, VGG19,
ResNet18, ResNet50, and ResNet101, are considered for
the evaluation. During this task, the following parameter
setting is implemented on all the chosen PDLM: initial-
weights � imageNet features, total epochs � 100, opti-
mizer �Adam, pooling �max/average (AVG), activation
for hidden-layer �ReLu, classifier-activation � sigmoid,
training images � 2160, validation images � 240, and
classifier validation � 10-fold.

Before employing the chosen PDLM to assess the images,
an image augmentation is employed to increase the number
of images for training the PDLM scheme. +e augmentation
of images is achieved with horizontal flip, vertical flip,
rotation� 25o, zoom� 0.4, width shift� 0.4, height
shift� 0.4, and shear range� 0.3, and this method assists the
PDLM in distinguishing the image information correctly.

+is scheme helps to extract 1 × 1 × 1000 deep features
from every PDLM, and this value is mathematically depicted
in the following formula:

Deep − feature (1×1×1000)

� Deep(1,1),Deep(1,2), . . . ,Deep(1,1000).
(1)

Table 1: Summary of chosen methodologies employed to detect COVID-19 from X-ray images.

Reference Methodology employed
Performance metrics (%)

Accuracy Sensitivity: Specificity:

Narin et al. [6] +e performance of pretrained deep-learning scheme supported COVID-19
detection is demonstrated using X-ray images 98.00 — —

Apostolopoulos and
Mpesiana [7]

Convolutional-neural-network (CNN) with transfer learning is employed to
examine X-ray to detect COVID-19 93.48 92.85 98.75

Chouhan et al. [8] Transfer learning based deep-learning scheme is employed to recognize
pneumonia in X-rays 96.39 — —

Stephen et al. [9] Automatic detection of pneumonia in X-ray is performed using transfer
learning 95.00 — —

Liang and Zheng [10] Classification of paediatric pneumonia in X-ray is achieved using pretrained
CNN 90.00 — —

Nour et al. [11] Detection of COVID-19 in X-ray is discussed with deep features and
Bayesian optimization 98.97 89.39 99.75

Brunese et al. [12] Implementation of explainable deep-learning scheme to detect pulmonary
abnormality and COVID-19 is presented with X-ray 96.00 96.00 98.00

Ardakani et al. [13] A detailed analysis of ten widely adopted deep learning methods is discussed
and their performance in detection the COVID-19 is demonstrated 99.02 98.04 100

Jaiswal et al. [14] DenseNet201 supported detection of COVID-19 in X-ray is demonstrated
with transfer learning technique 96.25 96.29 96.21

Ucar and Korkmaz [15] +is work proposed deep Bayes-SqueezeNet to detect COVID-19 in X-rays 98.26 99.13 —
Saiz and Barandiaran
[16] +is work presented pretrained VGG16 based COVID-19 in X-rays 94.92 94.92 92.00

Panwar et al. [17] +is work demonstrated nCOVnet based identification of COVID-19 in X-
rays 88.10 97.62 78.57

Waheed et al. [18] +is work developed a novel deep-learning scheme CovidGAN to detect
COVID-19 in X-ray pictures 95.00 90.00 97.00

Kannan et al. [19]

+is work demonstrated a study with various pretrained scheme supported
COVID-19 classification, and the result of this study confirms that the

VGG16 along with K-nearest neighbor (KNN) helped to get better accuracy
with Deep +HF

96.48 95.56 95.37

Mathematical Problems in Engineering 3



3.4. Handcrafted-Feature Mining. In this work, the HF is
mined using the LBP [23, 24] with varied weights and the
PHOG [24, 25] with various bins, and the discussion about
these procedures can be found in earlier research works. +e
essential HF is then mined using local binary patterns (LBP)
with different weights (W� 1 to 4) and PHOG with various
bins (Bin� 1 to 3). +e outcome attained with LBP is
depicted in Figure 3, in which Figures 3(a)–3(d) present the
outcomes with various values of weights (W� 1 to 4) on a
chosen test X-ray.

A similar practice is then implemented with the PHOG,
and the achieved features for bin1, bin2, and bin3 are
presented in Figure 4.

LBPw1 (1×1×59) � W1(1,1), W1(1,2), . . . , W1(1,59), (2)

LBPw2 (1×1×59) � W2(1,1), W2(1,2), . . . , W2(1,59), (3)

LBPw3 (1×1×59) � W3(1,1), W3(1,2), . . . , W3(1,59), (4)

LBPw4 (1×1×59) � W4(1,1), W4(1,2), . . . , W4(1,59), (5)

LBPtotal(1×1×236) � LBPw1(59) + LBPw2(59) + LBPw3(59)

+ LBPw4(59),

(6)

PHOGBIN1(1×1×85) � BIN1(1,1),BIN2(1,2), . . . ,BIN3(1,85),

(7)

PHOGBIN1(1×1×170) � BIN1(1,1),BIN2(1,2), . . . ,BIN3(1,170),

(8)

PHOGBIN1(1×1×255) � BIN1(1,1),BIN2(1,2), . . . ,BIN3(1,255),

(9)

PHOGtotal(1×1×510) � PHOGBIN1(85), +PHOGBIN2(1,170)

+ PHOGBIN3(1,255),

(10)

HF(1×1×746) � LBPtotal(1×1×236) + PHOGtotal(1×1×510). (11)

In this research, equation (11) is considered as the HF,
and the optimized HF is then combined with the deep-
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Figure 1: Developed framework to detect normal/COVID-19 X-ray using hybrid features.

Table 2: Dataset considered in this framework to test the per-
formance of proposed scheme.

Class Dimension Total
image

Training
image

Testing
image

Normal 224× 224× 3 2400 2160 240
COVID-19 224× 224× 3 2400 2160 240
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Figure 2: Sample test images of normal/COVID-19 class in the chosen database.
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Figure 3: Sample LBP pattern generated for COVID-19 image: (a) W� 1, (b) W� 2, (c) W� 3, and (d) W� 4.
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Figure 4: PHOG feature obtained for a sample COVID-19 image. +e features obtained with these methods are presented in
equations (2)–(11).
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feature to get the deep +HF, which helps to classify the X-ray
with better accuracy.

3.5. Feature Selection Using Brownian Mayfly-Algorithm.
Feature selection is a prime task in this work, and as
discussed in the earlier work, the deep and HF are op-
timized using the Mayfly Algorithm (MA) [26]. +e MA
is a nature-inspired algorithm invented by combining
Firefly, particle swarm, and genetic algorithm. A levy-
flight search operator guides the traditional MA, and in
this work, the proposed MA is driven by a Brownian
operator. +e search process found in Brownian Mayfly-
Algorithm (BMA) is smoothly compared to the tradi-
tional approach [27, 28]. Figure 5 depicts the working of
the proposed BMA, in which Figure 5(a) illustrates the
Brownian walk search process for a single Mayfly. +e
various stages (Stages 1 to 3) are depicted in
Figures 5(b)–5(d).

+e description of the MA is as follows.
Let, MA includes identical male (M) and female (F)

flies, which are randomly distributed in search space. Let
these flies are demoted as i � 1, 2, ..., N. During the ex-
amination task, each fly is authorized to fuse close to the
optimum location (Gbest). After reaching Gbest, male-fly
(M) is permitted to stay in Gbest. +is process is depicted in
Figure 5(b).

+is process is shown in equations (12) and (13).

P
t+1
i � P

t
i + V

t+1
i , (12)

V
t+1
i,j � V

t
i,j + C1 ∗ e

− βDp2 pbesti,j−Pt
i,j􏼐 􏼑

+ C2 ∗ e
− βDg2 Gbesti,j−Pt

i,j􏼐 􏼑
,

(13)

where Pt
i and Pt+1

i are initial and ending spots and Vt+1
i and

Vt+1
i,j are initial and ending velocities. C1 � 1 and C2 � 1.5

denote local and global learning constraints. Other pa-
rameters are assigned as follows. β � 2, Dp and Dg are the
Cartesian distance among flies.

During the relocation, every M will achieve Gbest and
executes a velocity update to attract female-fly (F) with the
help of nuptial-dance.

+e velocity update at this condition is shown in the
following equation:

V
t+1
i,j � V

t
i,j + d∗R, (14)

where nuptial-dance (d)� 5 and R� random numeral [−1,1].
When the search by M is finished, every F is permitted to

find M, which reached Gbest and this process is depicted in
Figure 5(c).

+e expression for female-fly update given in equations
(15) and (16).

P
′t+1
i � P

′t
i + V
′t+1
i , (15)

F
′t+1
i,j �

F
′t
i,j + C2e

− βD2
mf M

t
i,j − Y

t
i,j􏼐 􏼑 if Omax Fi( 􏼁>Omax Mi( 􏼁

F
′t
i,j + W∗ r if Omax Fi( 􏼁≤Omax Mi( 􏼁

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (16)

where Omax is the objective-value.
When the search process continues, each F will find the

finest, the offspring generation happens, and other infor-
mation onMA can be found in literature, and this procedure
is depicted in Figure 5(d).

Figure 6 presents the feature optimization process. During
the feature reduction process, the BMA is permitted to ex-
plore the deep/HF to reduce the value based on the Cartesian
distance (CD). +is process compares the features of the
normal/COVID-19 class images and helps to find the features
whose CD is large. +e features with lesser CD are discarded,
and this procedure is depicted graphically in Figure 4. +is
procedure helps to find the optimal features (deep-features�

1 × 1 × 417 and HF� 1 × 1 × 241) and the selected features
are then combined to get a hybrid feature vector (1 × 1 × 658),
which is considered to train and validate the classifiers.

3.6. Classification and Validation. In the proposed research,
initially, the SoftMax classifier is employed to recognize the
classifier performance with the selected PDLM, and after
achieving the results, the performance of other binary

classifiers, like decision tree (DT), random forest (RF), aı̈ve
Bayes (NB), K-nearest neighbor (KNN), and support vector
machine (SVM) with linear kernel is considered and the
attained results are measured. +e merit of planned practice
is measured using the essential measures, like true ositive
(TP), false negative (FN), true negative (TN), and false
positive (FP), accuracy (AC), precision (PR), sensitivity
(SE), specificity (SP), F1-score (F1S), and negative predictive
value (NPV) are obtained from these values.

+e mathematical expression for these measures is
presented in equations (17) to (22) [29–32].

AC �
TP + TN

TP + TN + FP + FN
, (17)

PR �
TP

TP + FP
, (18)

SE �
TP

TP + FN
, (19)
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SP �
TN

TN + FP
, (20)

F1S �
2TP

2TP + FN + FP
, (21)

NPV �
TN

TN + FN
. (22)

4. Results and Discussion

+is part of the work present the investigational results
obtained with an Intel i5 2.6GHz CPU, with 18GB RAM
and 4GB VRAM, and equipped with Python®. In this work,
4800 images (2400 normal and 2400 COVID-19) are con-
sidered for evaluating themerit of the PDLM on the assigned
task. In this work, the performance of the proposed scheme
is verified with max-pooling (MP) and average pooling (AP)
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Figure 5: Demonstration of the Brownian search and Mayfly algorithm: (a) Brownian walk, (b) Stage1, (c) Stage2, and (d) Stage3.
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approaches, and the merit of the scheme is confirmed based
on the achieved metrics.

Initially, the performance of the PDLM is tested on the
considered images with the SoftMax classifier, and the
achieved results are shown in Table 3. +is table proves that
the VGG16 scheme with AP helps to get superior categori-
zation accuracy (95.21%) contrast to other methods. Table 4
confirms that fold6 presents a better result compared to other
folds, and its graphical verification is presented in Figure 7.

+e experimental outcome shown in Table 3 proves that
the outcome achieved with VGG16 is superior contrast to
other PDLM of this study. Also, this study verifies that the
outcome of the average pooling is superior to max-pooling.
Hence, the VGG16 with average pooling is then considered
to verify the performance of the classifiers, such as DT, RF,
NB, KNN, and SVM, and the results are presented in Table 5.

After verifying the performance of the VGG16 with deep-
features, its performance is then confirmed using the BMA
optimized serially integrated deep and HF. During this task,
the BMF-based feature selection is then employed to find the
optimal deep (equation (1)) and HF (equation (11)) features.
+e BMF algorithm based feature selection helps to get a
deep-feature of size 1 × 1 × 417, HF of size 1 × 1 × 241, and
the integrated feature of size 1 × 1 × 658. +is hybrid features
are then used to verify the merit of VGG16 in detecting
normal/COVID-19 X-ray images using the different classi-
fiers using 10-fold validation, and the attained result is
depicted in Table 5. +is table validates that the KNN is better
(accuracy� 99.17%) compared to other methods.

+e various convolutional-layer (CL) outcome of the
VGG16 achieved for a sample test image is presented in
Figure 8. Figure 8(a) depicts the sample test image and

Table 3: Initial results achieved with pretrained deep learning methods.

Method Pooling TP FN TN FP AC PR SE SP F1S NPV

AlexNet MP 221 17 228 14 0.9354 0.9404 0.9286 0.9421 0.9345 0.9306
AP 223 12 230 15 0.9437 0.9370 0.9489 0.9388 0.9429 0.9504

VGG16 MP 223 16 231 10 0.9458 0.9571 0.9331 0.9585 0.9449 0.9352
AP 224 14 233 9 0.9521 0.9614 0.9412 0.9628 0.9512 0.9433

VGG19 MP 222 12 227 19 0.9354 0.9212 0.9487 0.9228 0.9347 0.9498
AP 228 19 219 14 0.9313 0.9421 0.9231 0.9399 0.9325 0.9202

ResNet18 MP 230 16 218 16 0.9333 0.9350 0.9350 0.9316 0.9350 0.9316
AP 231 13 222 14 0.9437 0.9429 0.9467 0.9407 0.9448 0.9447

ResNet50 MP 216 19 228 17 0.9250 0.9270 0.9191 0.9306 0.9231 0.9231
AP 227 16 219 18 0.9292 0.9265 0.9342 0.9241 0.9303 0.9319

ResNet101 MP 229 13 220 18 0.9354 0.9271 0.9463 0.9244 0.9366 0.9442
AP 219 15 230 16 0.9354 0.9319 0.9359 0.9350 0.9339 0.9388

Table 4: Experimental outcome of VGG16 with SoftMax classifier through 10-fold validation.

Cross validation TP FN TN FP AC PR SE SP F1S NPV
Fold1 217 23 223 17 0.9167 0.9274 0.9042 0.9292 0.9156 0.9065
Fold2 222 19 219 20 0.9187 0.9174 0.9212 0.9163 0.9193 0.9202
Fold3 228 18 219 15 0.9313 0.9383 0.9268 0.9359 0.9325 0.9241
Fold4 221 14 227 18 0.9333 0.9247 0.9404 0.9265 0.9325 0.9419
Fold5 231 11 221 17 0.9417 0.9315 0.9545 0.9286 0.9429 0.9526
Fold6 224 14 233 9 0.9521 0.9614 0.9412 0.9628 0.9512 0.9433
Fold7 226 15 221 18 0.9313 0.9262 0.9378 0.9247 0.9320 0.9364
Fold8 226 14 221 19 0.9313 0.9224 0.9417 0.9208 0.9320 0.9404
Fold9 228 19 216 17 0.9250 0.9306 0.9231 0.9270 0.9268 0.9191
Fold10 220 19 219 22 0.9146 0.9091 0.9205 0.9087 0.9148 0.9202

Image features

F1 F2 Fn

Fs1 Fs1 Fsn

F1 F2 Fn

Normal

BMA
with optimally assigned values

Selected features by
MFA

COVID19

Figure 6: Feature optimization with BMA.
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Table 5: Investigational outcome of VGG16 with deep and hybrid features.

Feature Classifier TP FN TN FP AC PR SE SP F1S NPV

Deep features

SoftMax 224 14 233 9 0.9521 0.9614 0.9412 0.9628 0.9512 0.9433
DT 227 8 231 14 0.9542 0.9419 0.9660 0.9429 0.9538 0.9665
RF 228 15 226 11 0.9458 0.9540 0.9383 0.9536 0.9461 0.9378
NB 230 11 224 15 0.9458 0.9388 0.9544 0.9372 0.9465 0.9532
KNN 229 7 225 19 0.9458 0.9234 0.9703 0.9221 0.9463 0.9698
SVM 226 10 232 12 0.9542 0.9496 0.9576 0.9508 0.9536 0.9587

Optimal Deep +HF

SoftMax 236 3 234 7 0.9792 0.9712 0.9874 0.9710 0.9793 0.9873
DT 238 4 232 6 0.9792 0.9754 0.9835 0.9748 0.9794 0.9831
RF 240 6 231 3 0.9812 0.9877 0.9756 0.9872 0.9816 0.9747
NB 239 5 232 4 0.9812 0.9835 0.9795 0.9831 0.9815 0.9789
KNN 244 0 232 4 0.9917 0.9839 1.0000 0.9831 0.9919 1.0000
SVM 238 6 231 5 0.9771 0.9794 0.9754 0.9788 0.9774 0.9747

0.955

0.95

0.945

0.94

0.935

0.93

0.925

0.92

0.915

0.91
Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10

Cross-validation

Ac
cu

ra
cy

Maximum accuracy

Figure 7: 10-fold cross validation outcome for VGG16 with SoftMax.
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Figure 8: Continued.
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Figures 8(b)–8(f) show the outcome of CL1 to 5, respec-
tively. +e overall performance of the binary classifiers is
verified using the metrics in Table 5, analyzed with a spider
plot, and is depicted in Figure 9. Figure 9(a) presents the plot
to confirm the merit of VGG16 with the traditional deep-
feature of dimension 1 × 1 × 1000 and Figure 9(b) shows the
result for deep +HF of size 1 × 1 × 658. +e spider plot,
which creates a major pattern, is considered to be superior,
and this plot confirms that the result of DT (with deep-
feature) and KNN (with hybrid features) is better. +e
achieved experimental results with VGG16 and KNN for
deep +HF are presented in Figure 10. Figures 10(a) and
10(b) demonstrate the validation/validation accuracy and
loss function for 100 epochs. Figures 10(c) and 10(d) show

the confusion matrix and ROC curves, respectively.
From this result, it can be verified that the outcome of
this experiment confirms that the proposed scheme helps
to achieve a better classification metric during the as-
sessment of the considered image database.

+e performance of this practice is further demon-
strated with the experimental outcome (classification
accuracy) of other methods discussed in Table 1, and its
value is graphically depicted in Figure 11. +is com-
parison validates that the accurateness realized with the
proposed scheme is improved compared to earlier works.
+is ensures that this proposal is clinically noteworthy,
and the proposed technique can be considered to inspect
the clinical-grade X-ray imagery, in future. In the future,
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F1S SEN
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DT
NB RF

KNN

SVM

(a)

ACC

NPV PRE

F1S SEN

SPE

SoftMax

DT
NB RF

KNN

SVM

(b)

Figure 9: Spider-plot to display the overall merit of VGG16 with various features with chosen classifiers: (a) spider-plot1 and (b) spider-
plot2.

(d) (e) (f )

Figure 8: Various convolutional-layer outcome for VGG16 scheme: (a) test image, (b) CL1, (c) CL2, (d) CL3, (e) CL4, and (f) CL5.
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Figure 11: Comparison of classification accuracy of proposed scheme with existing methods.
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Figure 10: Experimental outcome for VGG16 with hybrid features and KNN classifier: (a) accuracy; (b) loss; (c) confusion matrix; (d) RoC
curve.
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the proposed methodology’s performance can be en-
hanced by considering other handcrafted methods ac-
cessible in the literature.

5. Conclusion

COVID-19 is a pandemic disease that causes pneumonia in
humankind, and the unrecognized infection will lead to
death. X-ray-supported lung infection detection is an ex-
tensively implemented medical procedure, and radiologists
and pulmonologists typically assess the recorded X-ray to
recognize the disease. +is research developed a PDLM-
based COVID-19 recognition from X-ray, and this scheme
executes different features assisted detection of COVID-19.
+is research considers the serially combined features of
VGG16 and HF to classify the X-ray images into normal/
COVID-19. Furthermore, this work employed the BMA to
optimize the deep features and HF to reduce overfitting. +e
investigation is implemented using a binary classifier with
10-fold cross-validation. +is study confirms that the BMA
optimized Deep+HF helps get an improved accuracy
(99.17%) with the KNN classifier. +is accuracy is compared
with other results existing in the literature, and this study
confirms that the proposed scheme is better. +is scheme
can be considered to evaluate the clinically collected X-ray
images in the future.

Data Availability

+e Experimental data can be accessed from the following
links: (1) https://www.kaggle.com/tawsifurrahman/COVID-
19-radiography-database and (2) https://ieee-dataport.org/
open-access/covid-19-and-normal-chest-x-ray.
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