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In today’s liberalized electricity markets, modeling and forecasting electricity demand data are highly important for the e�ective
management of the power system. However, electricity demand forecasting is a challenging task due to the speci�c features it
exhibits. �ese features include the presence of extreme values, spikes or jumps, multiple periodicities, long trend, and bank
holiday e�ect. In addition, the forecasts are required for a complete day as electricity demand is decided a day before the physical
delivery. �erefore, this study aimed to investigate the forecasting performance of models based on functional data analysis, a
relatively less explored area in energy research. To this end, the demand time series is �rst treated for the extreme values. �e
�ltered series is then divided into deterministic and stochastic components. �e generalized additive modeling technique is used
to model the deterministic component, whereas functional autoregressive (FAR), FAR with exogenous variable (FARX), and
classical univariate AR models are used to model and forecast the stochastic component. Data from the Nord Pool electricity
market are used, and the one-day-ahead out-of-sample forecast obtained for a whole year is evaluated using di�erent forecasting
accuracy measures. �e results indicate that the functional modeling approach produces superior forecasting results, while FARX
outperforms FAR and classical AR models. More speci�cally, for the NP electricity demand, FARX produces a MAPE value of
2.74, whereas 6.27 and 9.73 values of MAPE are obtained for FAR and AR models, respectively.

1. Introduction

Electricity is one of the essential needs in today’s world. It is a
basic necessity for every person to complete day-to-day
activities. However, it poses a great challenge to every
country of ensuring the accessibility of a reliable and cost-
e�cient availability of electricity. Electricity demand fore-
casting is an important issue for di�erent percipients in
today’s liberalized electricity market. E�cient and reliable
demand forecasting plays a crucial role in electricity gen-
eration capacity, transmission planning, and pricing. Gen-
erally, electricity forecasting is required from three di�erent
forecasting perspectives. Long-term electricity demand
forecasting is needed for capacity planning that is generally
based on economic or demographic variables. Medium-term
forecasts are necessary for scheduling, maintenance, and
acquiring resources to ensure an e�cient electricity demand.
On the other hand, a short-term electricity forecast, which is

required for a day-ahead market, is helpful in day-to-day
market activity management, risk assessment, optimizing
bidding strategies, and increasing the pro�t margins. In the
literature, short-term electricity demand forecasting re-
ceived greater attention as maximum electricity is traded in
this market [1].

�e liberalization brings many bene�ts to the end user;
however, the electricity demand forecasting became chal-
lenging due to the speci�c features that the demand series
exhibit. In general, the electricity demand time series con-
tains a long trend, multiple periodicities, the bank holiday
e�ect, and the presence of extreme values. Over time,
electricity demand increases, introducing a long trend in the
demand time series. �e yearly periodicity refers to the
cyclical demand behavior from one year to another that is
evident in the demand time series. �e yearly seasonality is
evident from the graph as the electricity demand pattern
over a year is similar to the adjacent year. �e demand is
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higher in winter compared with other seasons. -e load
profile on working days shows different behaviors than the
nonworking days resulting in weekly periodicity. Moreover,
the demand series shows high volatility and unpredicted
spikes/jumps caused by sudden shutdowns of power plants,
unpredictable weather fluctuations, etc. In the presence of
these specific features, forecasting electricity demand is a
challenging task, and continuous efforts are made to predict
it accurately [2–4].

Many statistical, econometric, machine learning, and
hybrid models are extensively used in the literature for
electricity demand forecasting. -ese methods generally
vary in methodology, complexity, and performance [5–9].
-e most common methods used for forecasting electricity
demand are based on linear time-series models such as
autoregressive (AR) models, AR moving average (ARMA),
AR integrated MA (ARIMA), seasonal ARIMA (SARIMA),
and their different extensions [10–12]. Nonlinear time-series
models, for example, nonparametric AR (NPAR), AR
conditional heteroscedasticity (ARCH), generalized ARCH
(GARCH), and various extensions of GARCH, are widely
used for forecasting electricity demand and prices [13, 14].
In addition, exponential smoothing models, i.e., simple,
double, and triple Holt-Winters models, are easy to im-
plement and can accommodate multiple periodicities. -ese
types of models are widely used in different fields of study,
including energy markets. For example, using data from
Pakistan, Rehman et al. [15] used three forecasting models,
namely ARIMA, Holt-Winters, and long-range energy al-
ternative planning (LEAP) methods to model and forecast
the energy consumption of five fuels, i.e., electricity, oil, coal,
natural gas, and liquefied petroleum gas (LPG) in six dif-
ferent fields including domestic, industrial, commercial,
transportation, agriculture, and other governmental sectors.
Data from 1992 to 2014 are used in the study, and the energy
consumption forecasts are made for the coming 21 years.
-e study results suggested that the ARIMA model was the
most appropriate model to predict the energy demand
compared with the rest. Bin [16] used the ARIMAmodel for
the short-term prediction of monthly load data in Dayton.
-e results indicated that ARIMA produced better results
than other models used in the study. -e exponential
smoothing method for medium-term and long-term de-
mand forecasting is used by Lv et al. [17], which is suitable
for large areas with relatively little uncertainty, and some
seasonal factors can also be included in the model. -e
results indicated that their proposed model produces better
results compared with other predictive models. On the other
hand, parametric and nonparametric regression-type
models, including multiple regression, local polynomial
regression, kernel regression, smoothing splines, and
quantile regression models, are also used for electricity
demand and price forecasting [18–20].

Recently, the artificial intelligence models are also used
to predict day-ahead electricity demand [21, 22]. For in-
stance, using monthly data from Canada, Bouktif et al. [23]
forecasted the short- and medium-term electric load using
the long short-termmemory (LSTM)-based recurrent neural
networks (LSTM-RNNs). -e results of the proposed

models are compared with other machine learning models,
including linear regression (LR), ridge, regression K-nearest
neighbors (KNN), random forest (RF), gradient boosting
(GB), ANN, and extra trees regressors. Besides the electricity
demand time series, other predictors such as temperature,
humidity, wind speed, and schedule-related variables
(month number, weekends, and weekdays) are also used in
their study. -e forecasting performance of different models
is evaluated using different descriptive statistic measures.
-e results suggested the superior performance of their
proposal compared with the rest. To forecast electricity
demand or prices, various researchers combined the char-
acteristics of two or more models resulting in a hybrid model
[24–26]. In general, every model has its own functional and
structural form, and the forecasting performance varies from
market to market.

-e main aim of this research was to propose forecasting
models for electricity demand based on the functional data
analysis, a relatively less explored field of statistics in the
energy sector. To this end, the main contribution of this
study is the use of functional models within the approach
based on component estimation. -e functional model is
capable of selecting the lags and dimensions automatically.
-e forecasting results are obtained for a complete year to
assess the performance of the proposed approach. Fur-
thermore, different descriptive measures are used to com-
pare the forecasting performance of the proposed approach
with those reported in the literature.

-e rest of the article is structured as follows. Intro-
duction to functional data analysis (FDA) and literature review
related to FDA is provided in Section 2. Section 3 presents the
general modeling framework, including a detailed description
of extreme value treatment and different component estima-
tion procedures. In Section 4, an analysis of the Nord Pool
electricity market is provided, whereas empirical results for
different models used in this study are discussed in Section 5.
Finally, the conclusion is provided in Section 6.

2. Functional Data Analysis

Modern technological developments have simplified and
decreased the cost of the data collection and storage process,
which allows us to get an increasingly common sketch of
several real-life phenomena. -is novel idea has made data
scientists to confront big data sets with complicated
structures. Analyzing big data gives both benefits and
challenges in different research areas, including engineering,
medicine, public health, environmental science, and finance.
Big data provide substantial facts for statistical inference,
while on the other hand, complicated frameworks, large
sample sizes, and high dimensions make the analysis of such
data a challenging task. Functional data analysis (FDA) has
established itself as an important and dynamic area of
statistics to deal with such complex data and has received
greater attention in recent years. It also provides new tools
and has simulated new methodological and theoretical
developments. -e FDA generally arises in situations to
exploit the information recorded over a continuum, such as
time or space. -erefore, this area has become very broad,
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with multiple specialized directions of investigation. -e
monographs by Ramsay and Silverman [27, 28]; Locantore
et al. [29]; Ferraty and Vieu [30]; and Ferraty and Romain
[31] provide a comprehensive sketch of the methodological
and theoretical improvements. Functional principal com-
ponent analysis (FPCA) plays a crucial job in the devel-
opment of the FDA that is widely used in functional
forecasting [32].

In the FDA, the observed time series is considered
discrete observations of a continuous function. With a real
and parsimonious functional representation, the large-di-
mensional data are transformed into a sequence of func-
tional trajectories that can be evaluated with enhanced
efficiency and accuracy. Functional time series (FTS) usually
consists of stochastic functions observed at regular time
intervals. FTS also arises when the observations in a period
are considered definite realizations of an underlying con-
tinuous function. While there are a variety of methods
dealing with discrete time series, there are fewer contribu-
tions paying attention to the FTS [33, 34].-e FTS analysis is
so far a fast-developing area of research. Reference [35]
derived a functional Yule–Walker estimator for the serially
dependent functional data that are likely the most popular
pioneering study that plays a prominent role in FTS. Ref-
erence [36] studied the theoretical structure to explore the
serial dependence in FTSmodeling. Reference [37] proposed
a dimension reduction technique to model the functional
ARMA (FARMA) model with an application to traffic data.
Among the existing literature, the FTS models have been
employed to forecast intraday trajectories; see, for example,
Shang [38, 39] and Horváth et al. [40].

Due to the popularity of the FDA for high-dimensional
data, the FTS methods are also used in energy markets
[41–44].Within the framework of the FTS, several approaches
have been proposed. For instance, Goia et al. [45] studied the
functional linear model for the peak load demand forecast.
Antoniadis et al. [46] developed a nonparametric functional
method based on the functional kernel regression estimator
for forecasting half-hourly electricity consumption in France.
-e research of Antoch et al. [47] used a parametric functional
model to forecast electricity consumption curves, whereas
Cho et al. [48] studied a hybridmethod that was applied to the
French demand data. Chen and Li [49] suggested an adaptive
functional AR (AFAR) prediction model to predict electricity
price trajectories. Li et al. [50] suggested FAR fractionally
integrated moving average (FARFIMA). Using monthly sea
surface temperature data, Li et al. [51] study stationary
functional time series with long-range dependence and es-
timate the memory parameter involved. Forecasting elec-
tricity price time series for the Italian electricity market, Jan
et al. [52] used the functional autoregressive model and
compared it with classical and naive models. -e results
suggested that the functional model produces significantly
better results than the competing models.

3. Methods

-e general framework for modeling and forecasting elec-
tricity demand is provided in this section. As described in

Section 1, electricity demand exhibits specific features such
as extreme values, long trend, multiple periodicities, and the
bank holiday effect. Incorporating these features into the
model greatly improves forecasting accuracy. -us, the se-
ries is preprocessed for extreme values before modeling the
demand series.

3.1. Moving Filter on Demand. -e presence of outliers may
significantly affect the estimation and the forecasting. -e
outliers are mostly present in the time-series data, making
the estimation and forecasting of the time-series model more
challenging. In time-series analysis, outliers’ detection and
replacement with normal values are the essential step of the
data cleaning process that, generally, improves the estima-
tion of parameters and the accuracy of forecastingmodels. In
electricity demand or price data, outliers (also known as
extreme values) are generally present due to many factors,
including unexpected increased demand, power plant
shutdown, and extreme weather conditions. -e box plot of
hourly electricity demand is plotted in Figure 1. One can see
that there are some extreme values (outliers) present in the
demand series, especially at midnight hours. In general,
these extreme values are identified and replaced by many
methods [53]. In this research work, they are treated by the
moving filter on-demand method suggested by Borovkova
and Permana [54].

-e moving filter on-demand (MFD) is a generalization
of the standard deviation filter on-demand (SFD) technique.
-e SFD works on the whole time series, whereas the MFD
operates on a rolling window of constant width. At the step,
the original time series is divided into w � (q/r) parts, where
r represents the width of the window and q is the total
number of observations in the series. -en, MFD is applied
to the first window of the original time series. -e demand
values whose absolute deviation from the estimated mean 􏽢μ
is greater than a multiple of estimated standard deviation
(SD) are identified as extreme values.-e subset of spikes Xo

t

detected with the use of the MFD filter is obtained as follows:

Y
o
t � Yt: Yt − 􏽢μ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 1.64 · S D(Y)􏽮 􏽯. (1)

-e window then moves r observations forward, and the
filtering method is repeated in the next window to determine
the extreme values. -e procedure is repeated until this
method treats all w parts. Once the extreme values are
identified, they are replaced by the median value of the
corresponding window to obtain extreme value free demand
series.

3.2. General Model. After possible outliers’ identification
and replacement with the normal values to obtain the de-
mand series free of outliers, the next step is to model and
forecast electricity demand. To this end, the component
estimation procedure is used to capture different features of
the demand series [55]. Suppose the logarithmic electricity
demand series is log (Yt,j), where t ∈N and j � 1, . . . , 24.
-e demand series is decomposed into a deterministic
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component denoted by Dt,j and a stochastic component
denoted by Xt,j as follows:

log Yt,j􏼐 􏼑 � Dt,j + Xt,j. (2)

Here, the deterministic component in (2) is comprised of
the complex structure of the seasonal component, such as
annual seasonality (st,j), weekly seasonality (wt,j), bank
holiday effect (bt,j), and long-trend component (ct,j).
Mathematically, it can be written as follows:

Dt,j � ct,j + st,j + wt,j + bt,j. (3)

-e deterministic component Dt,j in (3) is estimated
through a generalized additive model (GAM). In the case of
stochastic component Xt,j, three different models, namely
the FAR (p), FARX (p), and AR (p), are used. Once both the
components are modeled and forecasted, the one-day-ahead
out-of-sample forecast is obtained as follows:

􏽢Yt+1,j � exp 􏽢Dt+1,j + 􏽢Xt+1,j􏼐 􏼑. (4)

3.3.Modeling theDeterministic Component. -is section will
explain the modeling and forecasting of the deterministic
component. -e generalized additive modeling technique is
used to model the long-term trend (ct,j), annual (st,j),
weekly (wt,j) periodicities, and bank holiday effect (bt,j).
More specifically, the long-run (trend) component ct,j,
which is a function of time t, is estimated through the or-
dinary least-squares (OLS) technique. In case of the yearly
seasonality, the series (1, 2, . . . , 365, 1, 2, . . . , 365, . . . , 1, 2,

. . . , 365) is used and is estimated using the OLS. On the
other hand, for weekly periodicities and for the bank hol-
idays, dummy variables are used; i.e., wt,j � 􏽐

7
i�1 φict,j with

ct,j � 1 if t refers to the ith day of the week and zero oth-
erwise and bt,j � 􏽐

2
i�1 ωct,j with ct,j � 1 if t refers to a bank

holiday and zero otherwise. -e coefficients φi and ωi are
again estimated with the OLS approach. Once the deter-
ministic components are estimated, the one-day-ahead
forecast for 􏽢ct+1,j � 􏽢ct,j and 􏽢st+1,j � 􏽢st,j, as both of these

components represent long-term dynamics for our forecast
horizon, whereas the forecast of wt and bt is straightforward
as both of these are deterministic functions of time or the
calendar conditions. Hence, one-day-ahead forecast for the
deterministic component can be obtained as follows:

􏽢Dt+1,j � 􏽢ct,j + 􏽢st,j + 􏽢wt+1,j + 􏽢bt+1,j. (5)

To obtain the stochastic component, we subtract the
deterministic component from log(Yt,j) as follows:

􏽢Xt,j � log Yt,j􏼐 􏼑 − 􏽢Dt,j

� log Yt,j􏼐 􏼑 − 􏽢ct,j + 􏽢st,j + 􏽢wt,j + 􏽢bt,j􏼐 􏼑.
(6)

-e modeling procedure of the stochastic component is
discussed in the next section in detail.

3.4. Modeling the Stochastic Component. -is section de-
scribes the estimation of the residual component Xt,j, which
is modeled using the functional autoregressive, FAR (p),
functional autoregressive with exogenous variables, FARX
(p), and the classical univariate autoregressive, AR (p),
models. -e classical AR (p) is a well-known model; how-
ever, before explaining the functional models, some pre-
liminaries are required, which are stated in the next section.

3.4.1. Basics of Functional Data Analysis. -is section
provides some preliminaries that are essential for building
the functional models. -e stochastic component Xt,j in (2)
is transformed into functional data using some known basis
functions. Using suitable basis functions, the functional
object corresponding to the daily demand profile for the day
t is represented as follows:

Xt(τ) � 􏽘
K

k�1
akct,k(τ)τ ∈ J, (7)

where ak is the constant parameters and ct,k(τ) is the Fourier
basis functions. An example of functional time-series
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Figure 1: Nord Pool electricity demand: hourly box plots for demand data range from January 1, 2015, to December 31, 2019.
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trajectories for 1826 days is given in Figure 2 where each
functional trajectory represents a daily demand profile.

Assume that Xt(τ) given in (7) is an arbitrary functional
time series (FTS) defined on a common probability space
(Φ, 􏽐, P), where Φ, 􏽐, and P denote the sample space, σ −

algebra on Φ, and the probability measure on 􏽐, respec-
tively. In general, it is assumed that the functions Xτ are
elements of the semi-metric and Hilbert space. Furthermore,
it is assumed that functions are the elements of the square-
integrable functions X ∈L2([0, 1] residing in the Hilbert
space H satisfying ‖Xt‖

2 � 􏽒 X2(τ)dτ <∞ with an inner
product 〈x, y〉 � 􏽒 x(τ)y(τ)dτ, ∀x, y ∈L2[0, 1]. -e no-
tation X ∈Lυ

H(Φ, 􏽐, P) is used to indicate for some υ> 0,
E(‖X‖υ)<∞. Note that υ � 1 results in the populationmean
curve μ(τ) � E(X(τ)), and when υ � 2, then nonnegative
definite covariance operator is obtained as follows:

C(τ, δ) � Cov[X(τ), X(δ)],

C(τ, δ) � E[(X(τ) − μ(τ))((X(δ) − μ(δ)))].
(8)

-e covariance operator C(τ, δ) in (8) allows the co-
variance operator of X, denoted by G, which can be
expressed as follows:

G(α)(δ) � 􏽚
0

1
C(τ, δ)α(τ)dτ. (9)

Using Mercer’s lemma, there is an orthonormal se-
quence αk of continuous functions inL2([0, 1]) and a non-
increasing sequence βk of positive numbers, such that

C(τ, δ) � 􏽘
∞

k�1
βkαk(τ)αk(δ), (10)

where the αk(τ) denotes the kth functional principal com-
ponent (FPC) and βk denotes the kth eigenvalue in the
decreasing order [56]. By the separability of Hilbert spaces,
the Karhunen–Loève (KL) expansion of a random process
X(τ) can be expressed as follows:

Xt(τ) � μ(t) + 􏽘
∞

k�1
λk,tαk(τ), (11)

where λk,t denotes the kth principal component score (PCS)
defined as λk,t � 􏽒Y(τ)αk(τ)dτt. -e PCSs constitute an
uncorrelated sequence of random variables with zero mean
and variance βk.

-e expansion 3.7 facilitates dimension reduction as the
first d terms often provide a good approximation to the
infinite sums, and thus, the information contained in Xt(τ)

can be adequately summarized by the d-dimensional vector
(β1, . . . , βd). -e approximated processes can be defined as
follows:

Xt(τ) � 􏽘
d

k�1
λk,tαk(τ) + ε(τ), (12)

where d denotes the number of retained principal com-
ponents, and ε(τ) denotes the error function with a mean of
zero and a finite variance, containing the FPCs excluded
from the retained d components. For more details about the

FPC analysis and its practical demonstration, the interested
reader may consult Ramsay and Silverman [57]; Shang [58];
and Aue et al. [59].

In practice, the mean curve μ(τ), FPC’s α(τ), and PCS’s
λ can only be estimated through realizations of a random
process. Suppose X1(τ), . . . , XN(τ) are fully observed FTS,
and then, the standard estimators for the mean function μ(t)

and covariance operator C(τ, δ) are given by the following
sample averages:

􏽢μ(τ) �
1
N

􏽘

N

t�1
Xt(τ), (13)

􏽢C(τ, δ) � 􏽘
∞

k�1

􏽢βk􏽢αk(τ)􏽢αk(δ), (14)

where 􏽢β1 > 􏽢β2 > · · · ≥ 0 are the sample eigenvalues of 􏽢C(τ, δ),
and [􏽢α1(τ), 􏽢α2(τ), . . .] are the corresponding orthogonal
sample eigenfunctions. Hörmann and Kokoszka [36]
studied the aforementioned estimators and concluded that
they are consistent estimators for weekly dependent process.
-en, using the KL expansion, the realizations of the random
process X can be written as follows:

Xt(τ) � 􏽢μ(τ) + 􏽘
d

k�1

􏽢λk,t􏽢αk(τ) + e(τ), t � 1, 2 . . . ,N, (15)

where 􏽢λk,t is the kth estimated PCS for the tth observation.
Figure 3 provides the cumulative proportion of variation
explained by the first three PCs. Note that the first three PCs
explained more than 99% of the total variation. Figure 4
represents the first three functional principal components
with the amount of variation explained by each FPC. Note
that the 1st eigenfunction explains approximately 95.2% of
the total variation in the data.

-e next section provides details about FAR (p) and
FARX (p) models used to model and forecast Xt(τ).

3.4.2. Functional Autoregressive Model of Order p. -e
forecasting of the FTS is a complicated task for which several
techniques are discussed in the literature. Functional
autoregressive (FAR) models are one of the most popular
functional models used for FTS forecasting. Consider that
the functional trajectories Xt(τ) are available for
t � 1 . . . ,N. In the FAR modeling, Xt(τ) is linearly de-
pendent on its p lagged (past) values and an error term.
Mathematically, the FAR (p) model can be written as
follows:

Xt(τ) � μ(τ) + 􏽘

p

l�1
ΨiXt−l(τ) + ξt(τ), (16)

where ξt(τ) ∈N is independently and identically distrib-
uted sequence inL2

H with E(ξt) � 0 and Ψl􏼈 􏼉
p

l�1 is bounded
linear operator mapping L2

H⟶L2
H such that the above

recursive equation has a unique causal solution. To model
and forecast Xt(τ) in (16) using the FAR(p) model, (13)–(15)
are used for modeling and forecasting in the following three
steps.
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(i) -e dimension d is fixed and the estimated FPC
scores are obtained as 􏽢λk,t � 􏽒 􏽢Xt(τ)􏽢αk(τ)dτ for
each observation 􏽢Xt(τ), t � 1, . . . ,N, k � 1, . . . , d,
and the estimated k-variate FPC score vectors
􏽢λt � (􏽢λ1,t, . . . , 􏽢λd,t)′, t � 1, . . . ,N.

(ii) For a fixed order p, the vector autoregressive model
(VAR(p)) Yt � 􏽐

p

l�1 ΨlYt−l + εt for eigenscore vec-
tors is constructed to produce forecasting
􏽢λN+1 � (􏽢λ1,N+1, . . . , 􏽢λd,N+1)′. Given the vectors
􏽢λ1, . . . , 􏽢λN, the Durbin–Levinson and innovations
algorithm can be readily applied here.

(iii) In the last step, the multivariate time series is re-
transformed to functional version using the KL
theorem
􏽢XN+1(τ) � 􏽢μ(τ) + 􏽢λ1,N+1􏽢α1(τ) + · · · + 􏽢λd,N+1􏽢αd(τ).
Based on the estimated FPC scores and sample
eigenfunctions, the resulting 􏽢XN+1(τ) is then used
as one-step-ahead forecast of XN+1(τ).

3.4.3. Forecasting with Exogenous Variables FARX (p). In
the FTS modeling, not only the lagged values of a response
variable but also other explanatory exogenous variables are
added to the model to increase the forecasting accuracy.
-ese exogenous variables may be scalars, vector-valued, or
functional. -e objective is then to obtain an empirical 􏽢XN+1
given observations of the trajectories (X1, . . . , XN) and the
number of exogenous variables X

(1)
f , . . . ,X

(v)
f . -e pre-

dictor variables need not be defined on the same space. For
example, X(1)

f could be vector, X(2)
f a scalar, X(3)

f (t) a
function, and X

(4)
f (t) could contain lagged values of X(3)

f .
-e FAR model having functional type of exogenous vari-
ables is generally denoted by FARX(p). -e functional
exogenous variables X

(1)
f (t), . . . ,X

(ρ)

f (t) are assumed to
be stationary, with time-invariant mean functions
μ(1)

f (t), . . . , μ(ρ)

f (t). Suppose Xt(τ), (t ∈N), and the ex-
ogenous variables X(ρ)

f (t), (f ∈ N), are available. -en, the
FARX(p) model can be defined as [60]follows:
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Xt(τ) − μ(t)� 􏽘

p

l�1
Ψl(τ) Xt−l(τ) − μ(τ)( 􏼁

+ 􏽘

ρ

m�1
ϕm(τ) X

(m)
f (τ) − μ(m)

f (t)􏼐 􏼑 + εt(τ),

(17)

where Ψl(τ) and ϕm(τ) are the functional operators of the
model and εt(τ) is the functional error term. It is worth
mentioning that the dynamics of the functional response can
be represented not only with the lagged functional exoge-
nous variables, but there may also be some causal depen-
dence with scalar exogenous variables. Suppose that ρ scalar
exogenous variables denoted byX(1)

f , . . . ,X
(ρ)

f having mean
μ(1)

f , . . . , μ(ρ)

f are available. -en, the FARX(p) model can be
written as follows:

Yt(τ) − μ(t) � 􏽘

p

l�1
Ψl(τ) Xt−l(τ) − μ(τ)( 􏼁

+ 􏽘

ρ

m�1
ϕm X

(m)
f − μ(m)

f􏼐 􏼑 + εt(τ).

(18)

Both FARX(p) models in (17) or (18) corresponding to
having functional or scalar exogenous variables, respectively,
are the generalization of the model discussed in (16) with
different numbers of functional or scalar exogenous

variables. -e estimation method discussed in Section 3.4.2
is modified and summarized as follows:

(1)

(a) -e dimension d is fixed for t � 1, . . . ,N and the
data X1, . . . , Xt are used to compute vectors 􏽢λt �

(􏽢λ1,t, . . . , 􏽢λd,t)′ that contain the first d estimated
FPC scores.

(b) In case of functional exogenous variables, the
value of ρ is fixed, and the data X1, . . . ,Xt (t �

1, . . . ,N) are used to compute the vector
􏽢φt � (􏽢φ1,t, . . . , 􏽢φv,t)′, which contain the first ρ
leading FPC scores. -e process for each func-
tional exogenous variable is repeated.

(c) In the next step, all the exogenous variable
vectors are combined into a single vector,
􏽢θN � (􏽢θ1,N, . . . , 􏽢θρ,N)′.

(2) 􏽢λ1, . . . , 􏽢λN and 􏽢θN are used to obtain one-step-ahead
forecast as follows:

􏽢λt+1 � 􏽢λ1,t+1, . . . , 􏽢λd,t+1􏼐 􏼑′. (19)

(3) -e KL expansion is used to obtain

􏽢Xt+1(τ) � 􏽢μ(τ) + 􏽢λ1,t+1􏽢α1(τ) + · · · + 􏽢λd,t+1􏽢αd(τ), (20)

as one-day-ahead forecast for Xt+1 using the KL
theorem.
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Figure 4: First three functional principal components with amount of variation explained by each FPC.
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3.4.4. Dimension and Order Selection of the Functional
Models. -e selection of dimension d and order p is an
important step for the FTS forecasting using FAR (p) and
FARX (p). In the literature, various methods are used to
select the order of FAR. For example, Kokoszka and
Reimherr [61] proposed a multistage testing hypothesis
method for the selection of the order of FAR. Salmerón and
Ruiz-Medina [62] studied the multispectral decomposition
to select the order of the FAR (p) model. One common
approach is choosing a minimum number of PCs so that the
proportion of variance explained by the FPCs exceeds a
certain threshold value. In this study, we used a completely
automatic method for choosing order p and dimension d for
both FAR (p) and FARX (p), which minimizes the mean
square error of forecasting studied [63], which is asymp-
totically equivalent to the functional final prediction error
(fFPE) given as follows:

fFPE(p, d) �
t + p∗ d
t − p∗ d

tr 􏽢ΔY􏼐 􏼑 + 􏽘
k>d

􏽢βk, (21)

where βk is the kth eigenvalue of C(τ, δ) and 􏽢ΔY in (21) is the
covariance matrix of the random vector (Y 1, . . . , Y d) and is
an unbiased estimator of ΔY . -e best d and p are the
minimizer of the fFPE function.

3.4.5. Univariate Autoregressive Model. Autoregressive
models are the most commonly employed linear models in
univariate time-series forecasting problems. In the autore-
gressive model, the dependent variable is regressed on its p

lagged values. -e number of lag values required to forecast
the future value is the order of an AR model, which is
denoted by the value p. Mathematically, the autoregressive
model of order p, AR (p), can be written as follows:

Xt � ϕ + Ψ1Xt−1 + · · · + ΨpXt−p + εt, (22)

where ϕ is the constant (intercept), Ψl(l � 1, . . . , p) is the
parameters of AR (p) model, and εt is assumed to follow a
white noise process with mean zero and a constant variance.
In the literature for demand modeling, an AR (7) is often
used. -us, this study also considers the AR (7) model. -e
model parameters are estimated using the maximum-like-
lihood estimation (MLE) method.

A flowchart of the proposed modeling procedure is given
in Figure 5.

4. Analysis of Nord Pool Electricity Demand

-is section starts with a description of the Nordic power
market and provides details about the data used in this study.
Some of the features of the data set used are also given in this
section. In addition, different accuracy descriptive statistics
used in the study are also introduced in this section.

4.1.DeNordic PowerMarket. -e Nordic electricity market
includes Finland, Norway, Sweden, and Denmark, which
deregulated and integrated their respective electricity
markets during the 1990s. -e data set consists of hourly

electricity demand data obtained from the Nord Pool
electricity market (https://www.nordpoolgroup.com/). -e
electricity markets operate 24 hours a day, seven days a week.
-e performance of the proposedmodel is validated with the
electricity demand time series ranging from January 1, 2015,
to December 31, 2019, corresponding to 43,824 equidistant
time points (hourly load periods). For modeling and fore-
casting purposes, the data set is split into two parts:

(i) Model Estimation Period: from January 1, 2015, to
December 31, 2018 (35,064 observations, covering t

� 1461 days)
(ii) Out-of-Sample Forecast Period: from January 1,

2019, till December 31, 2019 (8760 observations,
covering t � 365 days

-e models are estimated based on expending window
technique, and the one-day-ahead out-of-sample forecast is
obtained for the whole year.

As described in Section 1, the yearly periodicity refers to
the cyclical demand behavior from one year to another that
is evident in the demand time series. For example, a discrete-
time series display of electricity demand is shown in Fig-
ure 6. -e yearly seasonality is evident from the graph as the
electricity demand pattern over a year is similar to the
adjacent year. -e demand is higher in winter compared
with other seasons. -e load profile on working days shows
different behaviors than the nonworking days resulting in
weekly periodicity.-e electricity demand daily profiles for a
week are plotted in Figure 7, showing demand variation on
working and nonworking days.

4.2. Forecast AccuracyMeasures. Different forecast accuracy
measures are computed to compare the models. To simplify
the comparison, we convert the forecasted trajectories into
hourly electricity demand data. -e forecast accuracy is

Observed price
time series

Outliers
treatment

Filtered price
time series

Deterministic
component

Stochastic
component

FAR FARX AR

Final forecast

Figure 5: Flowchart of the proposed modeling framework.
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assessed by the mean absolute error (MAE), mean absolute
percentage error (MAPE), and root-mean-square error
(RMSE).

4.2.1. Mean Absolute Error. -e MAE or mean absolute
deviation (MAD) is calculated by taking the average of
absolute difference between the estimated forecast and the
actual value at the same time so that the negative values do
not cancel the positive values. Mathematically, it can be
written as follows:

MAE � mean Yt,j − 􏽢Yt,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (23)

where Yt,j is the observed (the original observed series) and
􏽢Yt,j is the forecasted one-day-ahead electricity demand for
tth (t � 1, 2, . . . , 365) day and jth (j � 1, 2, . . . , 24) load
period.

4.2.2. Mean Absolute Percentage Error. -e MAPE is cal-
culated using the average of the absolute error in each period

divided by the observed values multiplied by 100.-eMAPE
is useful when the size or size of a prediction variable is
significant in evaluating the accuracy of forecasting [64].-e
MAPE is a relative error indicating how much error is
observed in forecast compared with the observed. Mathe-
matically, the MAPE can be expressed as follows:

MAPE � mean
Yt,j − 􏽢Yt,j

Yt,j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠ × 100. (24)

4.2.3. Root-Mean-Square Error. -e RMSE depends on the
scale of the dependent variable. It is used as a measure to
compare forecasts for the same series across different
models. -e RMSE is the square root of the average squared
differences between predicted and actual values. Mathe-
matically, it is defined as follows:

RMSE �

���������������

mean Yt,j − 􏽢Yt,j􏼐 􏼑
2

􏽲

. (25)
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Figure 6: Nord Pool electricity demand: a univariate time-series display of electricity demand for the period January 1, 2015, to December
31, 2019. -ere are 43,824 discrete time points each representing one load hour.
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5. Results and Discussion

-is section provides details about the out-of-sample
forecasting performance for various models described
above. In addition, the results from the empirical study are
discussed in this section.

-e main objective of the current research study is to
model and forecast electricity demand using functional
models assuming that the dynamics of electricity demand
can be decomposed into deterministic and stochastic
components. For this purpose, in the 1st step, the outliers are
detected and replaced with normal values by the method
discussed in Section 3.1. In the 2nd step, log transformation
(logarithms) is applied to the filtered demand series to
stabilize the variance of the series. -e filtered log demand
series is then divided into deterministic and stochastic
components. Both of these components are modeled and
forecasted as described in Sections 3.3 and 3.4, and one-day-
ahead forecasts are obtained for a whole year (365 days)
using the rolling window technique.

-e accuracy of the aforementioned models is measured
by theMAE,MAPE, and RMSE values. In Table 1, the overall
accuracy of the understudy models is listed. From this table,
it is evident that functional autoregressive models out-
performed the classical univariate autoregressive model.
Within functional models, it is noted that the accuracy of the
functional model is further improved by the inclusion of the
discrete exogenous (daily maximum and minimum de-
mand) variables in the FAR (p) model. -e FARX (p)
produces lower forecasting errors within the functional
models than FAR (p), suggesting that the exogenous variable
improves the forecasting. -e FARX (p) model obtains the
lowest MAPE value of 2.736, whereas FAR (P) and AR (P)
produce significantly higher MAPE values of 6.274 and
9.732, respectively. -e MAE and RMSE are also lower for
FARX (p) and comparatively higher for the other two
competitors. Overall, the MAPE values are small, which
suggests the usefulness of our proposed forecasting
methodology.

-e monthly forecasting errors for the models used in
this study are listed in Table 2. From this table, it is noted that
the errors are relatively higher in December, January, and
February compared with other months. As the electricity
demand increases in these months, it is natural to have
higher forecasting errors in these months compared with
other months. Again, the functional models perform rela-
tively well compared with the classical AR (p) model. -e
forecasting performance of the FARX (p) model is evident
from this table as it produces comparatively lower fore-
casting errors than the rest. -e lowest and highest MAPE
values obtained by the FARX (p) models are 2.189 and 3.51.
-ese MAPE values correspond to August and January,
respectively, indicating that lower demand can be more
accurately forecasted than higher demand.

Table 3 provides the weekly forecasting errors for the
models under study. -e weekly errors are generally higher
for Monday, Saturday, and Sunday compared with other
days of the week. -e FARX (p) produces the lowest MAPE
value of 2.36, which corresponds to -ursday, for which the

electricity demand is considered to be more stable than the
rest of the days. On the other hand, the higher MAPE value
of 3.017 is observed on Monday, the day after the weekend.
On Monday, the demand profile changes compared with the
weekend, and hence, forecasting accuracy lowers for this
day. As in previous tables, the functional model, especially
FARX (p), outperformed the univariate AR (p) model.

Finally, the hourly forecasting errors for FAR (p), FARX
(p), and AR (p) in terms of the MAE, MAPE, and RMSE are
listed in Table 4. Note that the errors vary throughout the day

Table 1: Out-of-sample forecasting: performance comparison
among FAR (p), FARX (p), and AR (7) in terms of MAE, MAPE,
and RMSE.

Model MAE MAPE RMSE
FAR (p) 1525.354 6.274 1918.528
FARX (p) 1129.834 2.736 1552.573
AR (7) 1640.414 9.732 2163.824

Table 2: Monthly forecasting errors for the electricity demand
using FAR (p), FARX (p), and AR (7) models.

Month Errors FAR (p) FARX (p) AR (7)

January
MAE 1976.277 1706.831 2143.758
MAPE 4.013 3.514 7.303
RMSE 2571.641 2382.379 2873.344

February
MAE 1654.44 1200.22 2055.76
MAPE 3.497 2.523 5.461
RMSE 1940.057 1474.227 2368.534

March
MAE 1455.708 1269.283 1717.423
MAPE 3.276 2.804 5.292
RMSE 1843.277 1694.025 2818.67

April
MAE 1675.477 1352.491 2081.115
MAPE 5.338 3.435 6.442
RMSE 1802.199 1223.685 2812.542

May
MAE 1485.393 1099.251 1715.463
MAPE 7.505 2.992 9.153
RMSE 1717.73 1513.166 2055.535

June
MAE 1492.786 996.807 1957.983
MAPE 8.069 2.764 11.124
RMSE 1462.905 1263.867 1795.036

July
MAE 1359.679 817.073 2292.06
MAPE 8.208 2.343 10.539
RMSE 1496.467 1074.037 1853.465

August
MAE 1430.913 752.507 1876.894
MAPE 7.646 2.189 11.899
RMSE 1322.593 959.575 2393.628

September
MAE 1305.892 821.495 1789.749
MAPE 6.912 2.481 10.713
RMSE 1584.888 1066.227 2709.673

October
MAE 1332.144 950.921 1833.398
MAPE 5.402 2.341 7.256
RMSE 1991.167 1215.694 2765.328

November
MAE 1374.963 1017.936 1874.082
MAPE 3.109 2.241 5.673
RMSE 1674.714 1291.18 1874.082

December
MAE 1848.797 1569.336 2081.957
MAPE 5.051 3.405 9.978
RMSE 2314.847 2133.82 2987.564
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as peak and low hour demand forecasting results can be
different. For example, the lowest MAPE value of 1.837 is
observed for the second load period, while a MAPE value of
3.82 is the highest value obtained from the FARX (p) model
for the seventeenth load period.-e superior performance of
the functional models is evident as their forecasting accuracy
is considerably higher than the classical AR (p) model.

6. Conclusions

Electricity demand forecasting in the deregulated electricity
market is a very important and challenging task. -e

Table 3: Weekly forecasting errors for the electricity demand using FAR (p), FARX (p), and AR (7) models.

Model Error
Days of a week

M T W T F S S
FAR (p)

MAE
1765.216 1447.986 1551.105 1356.951 1683.906 2489.725 2291.673

FARX (p) 1269.848 1164.755 1190.67 991.072 1239.634 1108.771 943.515
AR (7) 2793.445 2228.032 2102.74 2051.957 2688.774 3951.473 3394.153
FAR (p)

MAPE
5.691 5.649 5.710 5.217 5.273 7.664 7.657

FARX (p) 3.017 2.7215 2.7716 2.3629 2.9250 2.8874 2.4657
AR (7) 8.458 7.300 8.072 9.858 10.189 12.894 10.518
FAR (p)

RMSE
2389.49 2359.159 1987.379 2245.929 2134.562 1743.84 1978.482

FARX (p) 1742.863 1782.186 1640.126 1349.337 1628.851 1397.779 1235.803
AR (7) 4116.057 4081.343 3825.007 3535.03 4231.54 6420.928 5852.956

Table 4: Hourly forecasting errors for the electricity demand using
FAR (p), FARX (p), and AR (7) models.

Hour Errors FAR (p) FARX (p) AR (7)

1
MAE 959.445 703.908 1148.178
MAPE 4.622 1.962 6.883
RMSE 1298.152 896.126 1570.79

2
MAE 882.311 651.484 1096.252
MAPE 4.3078 1.837 8.107
RMSE 1157.836 856.842 1586.941

3
MAE 972.551 694.933 1079.363
MAPE 5.335 1.969 10.089
RMSE 1231.743 919.493 1563.431

4
MAE 1239.432 723.064 1813.955
MAPE 6.248 2.044 10.190
RMSE 1271.563 966.133 1912.950

5
MAE 1006.819 770.735 1518.308
MAPE 7.269 2.146 8.461
RMSE 1484.161 1122.134 1545.184

6
MAE 907.918 877.436 1068.968
MAPE 7.896 3.376 10.272
RMSE 1643.787 1162.124 1980.238

7
MAE 1432.725 1198.624 1972.094
MAPE 7.119 3.015 9.938
RMSE 1786.485 1630.914 2363.881

8
MAE 1693.734 1428.419 2078.932
MAPE 6.174 3.4 7.917
RMSE 2299.992 1677.427 2824.99

9
MAE 1870.895 1380.534 2068.726
MAPE 5.177 3.214 6.686
RMSE 1918.816 1317.062 2392.004

10
MAE 1727.977 1303.522 1995.832
MAPE 4.577 3.007 6.538
RMSE 2024.748 1791.135 2576.147

11
MAE 1641.929 1278.96 1937.907
MAPE 4.805 2.952 5.295
RMSE 1931.604 1332.259 2379.148

12
MAE 1712.408 1279.819 2070.237
MAPE 4.752 2.969 8.598
RMSE 1956.912 1699.01 2492.603

13
MAE 1504.971 1250.954 1835.173
MAPE 4.684 2.92 5.283
RMSE 1983.986 1642.144 2452.337

14
MAE 1689.184 1240.922 1910.258
MAPE 4.877 2.903 6.259
RMSE 2106.195 1657.013 2541.691

Table 4: Continued.

Hour Errors FAR (p) FARX (p) AR (7)

15
MAE 1369.619 1026.713 1574.099
MAPE 5.89 2.874 9.283
RMSE 1778.669 1373.866 2319.12

16
MAE 1445.284 1020.28 1737.731
MAPE 4.728 2.852 7.031
RMSE 1768.346 1650.832 2249.522

17
MAE 1340.768 922.193 1711.119
MAPE 5.731 3.82 5.927
RMSE 1621.013 1123.776 2061.409

18
MAE 1401.959 1204.152 1662.161
MAPE 6.144 2.758 6.775
RMSE 1812.923 1566.042 2338.134

19
MAE 1314.433 1151.899 1657.877
MAPE 5.952 2.62 6.732
RMSE 1790.024 1564.745 2149.795

20
MAE 1405.25 1227.078 1648.65
MAPE 3.955 2.753 5.77
RMSE 2213.671 1685.073 2643.688

21
MAE 1526.528 1292.226 1989.541
MAPE 4.273 2.952 7.782
RMSE 2273.498 1773.176 2931.271

22
MAE 1540.723 1316.039 1971.014
MAPE 4.432 3.09 7.624
RMSE 1954.12 1765.161 2354.609

23
MAE 1721.727 1280.923 2252.269
MAPE 4.829 3.124 6.978
RMSE 1851.848 1686.158 2360.295

24
MAE 1820.898 1391.192 2567.675
MAPE 7.79 3.102 10.543
RMSE 1781.021 1532.95 2145.987
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forecasting problem is not straightforward as the demand
time series contains many specific features, including high
frequency, long trend, multiple seasonalities, spikes or
jumps, and bank holiday effect. To accurately forecast
electricity demand, these features must be addressed by the
forecasting model. -erefore, this study revisited the
problem of one-day-ahead electricity demand forecasting
using functional modeling techniques. To this end, the
demand series is filtered first for the extreme values. -e
filtered series is then split into two components: deter-
ministic and stochastic. Each component is modeled and
forecasted separately, and the final forecasts are obtained by
adding them back. -e generalized additive modeling
technique is used to model the deterministic component that
contains the long trend, yearly and weekly seasonalities, and
bank holiday effect. For the stochastic component, func-
tional autoregressive (FAR), FAR with exogenous variable
(FARX), and classical univariate AR models are used. -e
exogenous variables include the lagged minimum and
maximum electricity demand. Data from the Nord Pool
electricity market is used, and the one-day-ahead out-of-
sample forecasts are obtained for a whole year. -e forecast
accuracy is evaluated using the mean absolute error (MAE),
mean absolute percentage error (MAPE), and root-mean-
square error (RMSE). -e results suggest that the functional
modeling approach produces significantly better results than
the classical approach. -e FARX model produces lower
forecasting errors compared with the FAR and AR.

As the inclusion of the exogenous variable significantly
improves the forecasting accuracy, the effect of other ex-
ogenous variables, such as daily temperature and season
effect, can be investigated in the future. Furthermore, as this
study only considers linear model comparison, nonlinear
models can also be compared with the proposed functional
models.
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