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For a class of uncertain continuously networked Lurie control systems with both sensor-to-controller time-delay and controller-
to-actuator time-delay, the problem of codesigning its observer and fault-tolerant controller based on an event-triggered
mechanism under actuator failure is investigated. Firstly, considering that the state of the system cannot be measured directly, an
observer is constructed on the controller node. Secondly, to reduce the waste of network bandwidth resources and improve the
performance of the network control system, a network control system approach based on event-triggered mechanism is proposed.
By introducing the event-triggered mechanism and the actuator fault indication matrix, the Lurie networked control system is
modeled as a Lurie system with time-delay using the state augmentation technique to obtain a model of the closed-loop system.
Finally, based on Lyapunov stability theory, su�cient condition for the stability of the closed-loop system is obtained, and the
design method of the fault-tolerant controller and the observer is given.�e obtained results are given in the form of linear matrix
inequalities, which are easy to be solved by using the linearmatrix inequality toolbox. Finally, the feasibility and e�ectiveness of the
method are illustrated by a simulation example.

1. Introduction

With the rapid development and wide application of
computer, communication and control technologies, net-
worked control systems (NCSs), and control systems, in
which nodes (sensors, controllers, actuators, and controlled
objects) transmit data through a shared communication
network, have attracted much attention [1]. Compared with
the traditional point-to-point control system, the NCS has
the advantages of low installation cost, easy maintenance,
high �exibility, information resource sharing, and easy re-
mote operation. It has been widely used in intelligent
medical, intelligent transportation, and intelligent
manufacturing �elds [2–5]. However, due to the problems of
time-delay, packet loss, and wasted communication re-
sources derived from the application of NCS, the actual

production process will be a�ected by many uncertain
factors, such as equipment wear and tear and production
line aging, and the system will inevitably fail [6]. Once the
system fails, it may cause catastrophic losses or even damage
to personal safety, so it is of great economic and social
signi�cance to improve the reliability and stability of NCS
operation with the help of fault-tolerant control.

Fault-tolerant control is the most common and e�ective
control method [7, 8], which has received a lot of attention
from academics and has achieved some results. �e existing
research literature on fault-tolerant control of NCS with
time-delay can be divided into two categories. �e �rst
category of literature focuses on fault-tolerant control of
NCS with time-delay between the sensor and the controller.
In Ref. [9], a fault-tolerant controller design method based
on observer estimation is proposed for the time-delay
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between the sensor and the controller, and a closed-loop
NCS is made asymptotically stable and satisfies the given
control performance by combining Lyapunov stability
theory and the linear matrix inequality method. *e liter-
ature [10] models the time-delay from the sensor to the
controller as a Markov chain with incomplete transfer
probability and uses the state augmentation technique to
transform the closed-loop system into a Markov jump
system, gives sufficient conditions to guarantee the stability
of the NCS, and designs fault-tolerant controllers. *e
second type of literature focuses on fault-tolerant control of
NCS with time-delay between both sensors to controllers
and controllers to actuators. *e literature [11] combined
the time-delay in the sensor-to-controller network and the
time-delay in the controller-to-actuator network into a total
time-delay, established a robust fault-tolerant control
method for discrete NCS with time-delay, and combined
Lyapunov stability theory and switching system theory, for
the design of fault-tolerant controllers. *e literature [12]
describes the sum of the time-delay from the sensor to the
controller and from the controller to the actuator in terms of
random variables conforming to the Bernoulli distribution.
A stability criterion for systems with stochastic time-varying
time-delay is proposed to ensure that the designed fault-
tolerant controller can satisfy the asymptotic stability con-
ditions and operability requirements when the state tra-
jectory enters the slip surface.

With the development and integration of control science
and computer technology, the demand for data and infor-
mation transmission is also increasing. Due to the limitation
of network communication bandwidth, communication
resources are limited, and if the amount of data transmitted
by the system exceeds the threshold value that can be carried,
it will lead to network congestion or even system collapse. To
address this problem, some scholars have conducted re-
search. *e traditional time-triggered mechanism is simple
and easy to implement, but the selected sampling period is
small, and frequent data transmission and update will lead to
the waste of communication resources and easily cause
network congestion [13, 14]. In order to overcome the
shortcomings of the time-triggered mechanism, many
scholars have successively adopted the event-triggered
mechanism to save network resources. *e implementation
method is to let the sampled signal reach an event generator,
then the event generator decides whether the signal is
transmitted to the network according to the triggering
conditions. *is mechanism of transmitting only necessary
signals and reducing unnecessary signal transmission de-
termined by the triggering conditions effectively reduces the
occupation of limited communication resources and im-
proves the efficiency of information transmission [15–17].
With the continuous development of NCS, many innovative
results have been achieved for event-triggered mechanisms.
For example, the adaptive event-triggered mechanism
proposed in the literature [18, 19] has attracted much at-
tention. Compared with the traditional event-triggered
mechanism, its triggering threshold is a time-variable related
to the system state, so it can flexibly adjust the triggering
conditions according to the system state to further reduce

the data transmission and maintain a better system per-
formance, which is significant for NCS. Scholars have in-
troduced different kinds of event-triggered mechanisms into
NCS to replace the traditional time-based periodic trans-
mission method, which has become an important research
element in NCS.

In recent years, some results have been achieved in the
research about fault-tolerant control of NCS with time-
delay under the event-triggered mechanism. For example,
an event-triggered mechanism with the fault-tolerant
control strategy is proposed for continuous uncertain NCS
with time-delay from the sensor to thecontroller, which
enables the system to remain stable in case of actuator
failure [20]. *e literature [21] investigated the asyn-
chronous H∞ fault-tolerant control of discrete Markov
jump systems with actuator failure and time-delay, pro-
posed a pattern-dependent event-triggered mechanism
method based on the pattern-dependent Lyapunov–Kra-
sovskii function, and obtained the performance of the
closed-loop system with stochastic mean-square stability
under actuator failure and the joint design method of the
asynchronous fault-tolerant controller and event-triggered
mechanism. However, all the above-mentioned literatures
are studies done based on state feedback in the case of
measurable system states. For the case where the system
state is not measurable, literature [22] proposes a delay-
based event-triggered fault estimation observer for a class
of continuous NCSs with time-delay and faults, gives a
fault-tolerant control method based on fault estimation to
compensate the effects generated by system faults, and
designs fault-tolerant controller gains and event-triggered
parameters to ensure the required performance of the
faulty system and to reduce the communication resources
wastage. However, only the time-delay in the sensor-to-
controller network is considered in the paper. In the lit-
erature [23], a fault-tolerant control model for linear NCS
with time-delay under the dynamic event-triggered
mechanism is developed, an observer design method for
simultaneously estimating the state vector and unknown
actuator faults is proposed, and an observer-based fault-
tolerant controller is designed, but the time-delay from
sensor-to-controller and controller-to-actuator is com-
bined in the paper to deal with them.

Lurie systems are a class of nonlinear systems with
typical structural features that can be more accurately
modeled to reflect objective reality, and they represent many
essential features of nonlinear systems.*e absolute stability
of Lurie systems has received much attention. However, few
literature have been devoted to the problem of fault-tolerant
control under actuator failure as an object of study.

It is well known that time-delay is themain cause of system
instability in NCS. Most of the existing techniques have only
studied the controller-to-actuator time-delay or have com-
bined the sensor-to-controller and controller-to-actuator
time-delay into one treatment. Based on the above discussion,
the following questions naturally arise: Is it possible to build a
unified model of NCS with bilateral delays based on event-
triggered mechanisms? How can the joint design of event-
triggered mechanism, observer, and fault-tolerant controller
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under this unified model make the closed-loop system with
time-delay, uncertainty, and actuator failure stable?

In this paper, we address the codesign of its event-
triggered mechanism and fault-tolerant controller under
actuator failure for a continuously networked Lurie control
system with time-delay and uncertainties, with the following
main contributions:

(1) *e influence of the time-delay from the sensor to
the controller and from the controller to the actuator
on the control system is taken into account, which is
more interpretable and mechanistic

(2) Also considering the time-delay, uncertainty of
system parameters, and actuator failure, an observer
is constructed on the controller node to establish the
Lurie NCS model under the event-triggered mech-
anism, which enables the impact of time-delay,
uncertainty, event-triggered mechanism, and actu-
ator failure on system performance to be analyzed in
the same framework

(3) According to Lyapunov stability theory, the stability
conditions of the closed-loop system are obtained,
and the design methods for solving the event-trig-
gered weight matrix, robust fault-tolerant controller,
and observer are given

*e remainder of this paper is organized as follows. *e
modeling of a continuous Lurie NCS with actuator failures
under an event-triggered mechanism is shown in Section 2.
In Section 3, the system stability analysis and the codesign of
the observer, fault-tolerant controller, and event-triggered
mechanism are provided. Section 4 exhibits the construction
of the simulation model and the verification of the algo-
rithm. Section 5 summarizes the contents of the full paper.

Notations are as follows: Rn represents the n-dimen-
sional Euclidean space; ∗ represents the transpose of the
corresponding matrix block; if the matrix A is invertible,
A− 1 represents the inverse of A; AT and A+ represent the
transpose and Moore–Penrose inverse of the matrix, re-
spectively, and the real positive definite matrix X is rep-
resented as X> 0; I represents the unit matrix of appropriate
dimensions; and diag a, b . . .{ } represents the diagonal matrix
with a, b as the main diagonal.

2. Problem Description

Consider the following Lurie system with uncertainty and
actuator failure:

_x(t) � (A + ΔA)x(t) +(B + ΔB)Fu(t) +(D + Δ D)ω(t),

y(t) � Cx(t),

ω(t) � −ψ(y(t)).

⎧⎪⎪⎨

⎪⎪⎩

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rq are the system state
vector, input vector, and output vector, respectively;
A, B, C, D are real constant matrices of appropriate di-
mensions; ΔA,ΔB,Δ D are uncertainty matrices with
bounded parametrization and satisfy ΔA ΔB Δ D􏼂 􏼃 �

UΞ(t) H1 H2 H3􏼂 􏼃, where U, H1, H2, H3 are known ma-
trices with appropriate dimensions, and Ξ(t) is an unknown
matrix satisfying Ξ(t)TΞ(t)< I; F is the fault indication
matrix which we define under actuator failure and satisfies
F � diag f1, f2, . . . fm􏼈 􏼉,fj ∈ [0, 1], j � 1, 2, . . . m, where
fj � 0 means the jth actuator is completely failed, fj � 1
indicates normal operation of the j th actuator, and
fj ∈ (0, 1) indicates partial failure of the j th actuator.
ψ(·): Rq⟶ Rq is a memoryless nonlinear function, satis-
fying the local Lipschitz condition, ψ(0) � 0, and for any
y(t) ∈ Rq satisfies, the sector condition is

ψT
(y(t))[ψ(y(t)) −Θy(t)]≤ 0, (2)

where Θ is the real diagonal matrix. Such a nonlinear
function ψ(·) is usually said to belong to the sector [0,Θ],
denoted as ψ(·) ∈ ℓ[0,Θ].

Remark 1. For the more general case ψ(·) ∈ ℓ[Θ1,Θ2], it can
always be transformed into the case of ψ(·) ∈ ℓ[0,Θ] by loop
transformation, so only the case of ψ(·) ∈ ℓ[0,Θ] is con-
sidered in this paper.

*eNCS structure diagram shown in Figure 1 consists of
an actuator, a controlled object, a sensor, a sampler, a zero-
order retainer, an observer, an event generator, and a
controller. *e sampler acquires the output signal of the
system with a fixed period h. *e signal collected by the
sampler is directly transmitted to the event generator
connected to it. *en, whether the event generator can send
the sampled data y(tkh + jh) to the controller needs to be
determined according to the following conditions:

y tkh + jh( 􏼁 − y tkh( 􏼁􏼂 􏼃
T
V y tkh + jh( 􏼁 − y tkh( 􏼁􏼂 􏼃

> σy
T

tkh + jh( 􏼁Vy tkh + jh( 􏼁,
(3)

where V is a positive definite matrix and j ∈ Z+,σ ∈ [0, 1].

Remark 2. Only the output sampled data y(tkh + jh) sat-
isfying equation (3) will be transmitted, and obviously this
event-triggered mechanism will reduce the communication
load in the network and reduce the computation of the
controller.*ere is a special case that if σ � 0 in Eq. (3) holds
for all sampled output data y(tkh + jh), then the event-
triggered mechanism will degrade to a time-triggered
mechanism. In addition, the triggering instant of the event-
triggered mechanism used in this paper is based on the
system sampling period h, which can be triggered only at the
sampling instant, ensuring that the minimum event interval
time is positive and avoiding Zeno behavior.

After the event generator has released the current sample
signal, the sample signal is transmitted directly to the zero-
order keeper via the network and then to the actuator via the
observer. In this process, the time-delay from the sensor to
the controller is denoted by τsc

ik
, and the time-delay from the

controller to the actuator is denoted by τca
ik
.

To facilitate the following analysis, the following hy-
potheses are proposed:

(a) *e matrix C is a row-full rank matrix
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(b) *e sensor is time-driven, the controller and actu-
ator are event-driven, and the data is single packet
transmission

(c) Time-delay τsc
ik

and τca
ik

are both bounded for any
t≥ 0, 0< τsc

m ≤ τsc
ik
≤ τsc

M, 0< τca
m ≤ τca

ik
≤ τca

M

*e instants when the event generator sends data are
noted as i0h, i1h, i2h, . . . , where i0h � 0 is the initial trig-
gering instant. Due to the network time-delay, the instants
when those released signals reach the observer are
i0h + τsc

i0
, i1h + τsc

i1
, i2h + τsc

i2
, . . .. In addition, the period of the

event generator sending data can be expressed as
ƛkh � ik+1h − ikh.

Based on the above analysis of the system output re-
ceived at the observer side, we get

􏽥y(t) � y ikh( 􏼁, t ∈ ikh + τsc
ik

, ik+1h + τsc
ik+1

􏽨 􏼑. (4)

For t ∈ [ikh + τsc
ik

, ik+1h + τsc
ik+1

) and ƛkh � ik+1h − ikh, two
cases are discussed:

(a) If ƛkh≤ h + τsc
M − τsc

ik+1
, we define

ρ(t) � t − ikh, t ∈ ikh + τsc
ik

, ik+1h + τsc
ik+1

􏽨 􏼑. (5)

We can obtain

τsc
ik
≤ ρ(t)≤ ik+1h − ikh + τsc

ik+1
≤ h + τsc

M. (6)

Accordingly, define an error vector as

ϑk(t) � 0. (7)

(b) If ƛkh> h + τsc
M − τsc

ik+1
, since 0≤ τsc

ik
≤ τsc

M, it is easy to
prove the existence of a positive integer ε≥ 1 such
that

εh + τsc
M − τsc

ik+1
< ƛkh≤ (ε + 1)h + τsc

M − τsc
ik+1

. (8)

To simplify the expression, let

[0 � ikh + τsc
ik

, ikh + h + τsc
M􏽨 􏼑,

[δ � ikh + δh + τsc
M, ikh +(δ + 1)h + τsc

M􏼂 􏼁,

[n � ikh + εh + τsc
M, ik+1h + τsc

ik+1
􏽨 􏼑.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

*en the interval [ikh + τsc
ik

, ik+1h + τsc
ik+1

) can be divided
into the following ε + 1 subintervals

ikh + τsc
ik

, ik+1h + τsc
ik+1

􏽨 􏼑 � [0 ∪ ∪
ε−1
δ�1[δ􏽮 􏽯∪[n. (10)

Define the segmentation function as

ρ(t) �

t − ikh, t ∈ [0,

t − ikh − δh, t ∈ [δ, δ � 1, 2, . . . , ε − 1

t − ikh − εh, t ∈ [n.

⎧⎪⎪⎨

⎪⎪⎩
, (11)

From (9) and (11), we can obtain

τsc
m ≤ ρ(t)≤ h + τsc

M. (12)

At this point, define the error vector

ϑk(t) �

0, t ∈ [0,

y ikh( 􏼁 − y ikh + δh( 􏼁, t ∈ [δ,

y ikh( 􏼁 − y ikh + εh( 􏼁, t ∈ [n.

⎧⎪⎪⎨

⎪⎪⎩
(13)

From the definition of ϑk(t), the following equation
holds for t ∈ [ikh + τsc

ik
, ik+1h + τsc

ik+1
)

Controller

Actuator Controlled
Object Sensor

Event
Generator

ZOH

Network ikik
τca τsc

Sampler

y (t)

y (tkh)

y (ikh)

Observer

û (t)

û (t)

x̂ (t)

u (t)

Figure 1: Structure of observer-based NCS under the event-triggered mechanism.
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y ikh( 􏼁 � ϑk(t) + y(t − ρ(t)), (14)

ϑT
k (t)Vϑk(t)≤ σy

T
(t − ρ(t))Vy(t − ρ(t)). (15)

Construct an observer of the following form on the
controller side as

_􏽢x(t) � A􏽢x(t) + B􏽢u(t) + L y(t − ρ(t)) + ϑk(t) − 􏽢y(t − ρ(t))􏼂 􏼃,

􏽢y(t) � C􏽢x(t),

⎧⎨

⎩ (16)

where 􏽢x(t) represents the state of the observer, 􏽢y(t) rep-
resents the output of the observer, and L is the gain matrix of
the observer to be designed.

*e following observer-based feedback control law is
used as

􏽢u(t) � K􏽢x(t), (17)

where K is the controller gain matrix.

Remark 3. Due to the time-delay τca
ik

in the controller-to-
actuator network, the input of the control object is different

from the input of the observer, and the following equation
holds true:

u(t) � 􏽢u t − τca
ik

􏼐 􏼑 � K􏽢x t − τca
ik

􏼐 􏼑. (18)

Define e(t) � x(t) − 􏽢x(t), the augmentation vector
z(t) � xT(t) eT(t)􏼂 􏼃

T, h1 � τsc
m, h2 � τsc

M + h, and h3 � τca
m ,

h4 � τca
M. Based on the above analysis, the closed-loop net-

work control system can be written in the following form:

_z(t) � A1 + UΞ(t)H1 + B1K1( 􏼁z(t) − B2 + UΞ(t)H2( 􏼁FK1z t − τca
ik

􏼐 􏼑 + L1C1z(t − ρ(t)) + D1 + UΞ(t)H3( 􏼁ω(t) + L1ϑk(t),

z(t) � ϕ(t), ∀t ∈ t0 − max h4, h3, h2, h1( 􏼁, t0 − h1􏼂 􏼁.

⎧⎨

⎩

(19)

where

A1 �
A 0

0 A
􏼢 􏼣, B1 �

0

B
􏼢 􏼣, B2 �

B

B
􏼢 􏼣, C1 � 0 C􏼂 􏼃, D1 �

D

D
􏼢 􏼣, K1 � −K K􏼂 􏼃, L1 �

0

−L
􏼢 􏼣, U �

U 0

0 U
􏼢 􏼣,

Ξ(t) �
Ξ(t) 0

0 Ξ(t)
􏼢 􏼣, H1 �

H1 0

H1 0
􏼢 􏼣, H2 �

H2

H2
􏼢 􏼣, H3 �

H3

H3
􏼢 􏼣.

(20)

At this point, condition (2) becomes

ωT
(t)ω(t) + ωT

(t)Θz(t)≤ 0, (21)

where Θ � ΘC I 0􏼂 􏼃.

Remark 4. In a real industrial system, the actuator failure
indication matrix F � diag 0, 0{ } means the actuator is
completely failed and the controller will not be able to realize
the control of the controlled object. *erefore, this paper
only considers the case of partial actuator failure, and the

actuator can still work normally within a certain range even
though it has failed.

3. Main Results

3.1. System Stability Analysis. *e following lemmas will be
used in the derivation of the expected result.

Lemma 1. (Jensen’s inequality) [24] For any constant matrix
Q∈Rn×n, Q � QT≥0, scalar 0≤d1≤d2, the vector-valued func-
tion _x: [−d2 − d1]⟶Rn, the following inequality holds true:

− d2 − d1( 􏼁 􏽚
t−d1

t−d2

_x
T
(α)Q _x(α)dα≤ −

x t − d1( 􏼁

x t − d2( 􏼁
􏼢 􏼣

T
Q −Q

∗ Q
􏼢 􏼣

x t − d1( 􏼁

x t − d2( 􏼁
􏼢 􏼣. (22)

Lemma 2. [25] Suppose that l1, l2, . . . lN: Rm⟶ R has
positive values in a subset of the open set D, D ∈ Rm, then the

mutually inverse convex combination of li in the set D

satisfies

Mathematical Problems in Engineering 5



min

ci|ci > 0,􏽐
i

ci�1􏼨 􏼩

􏽘
i

1
ci

li(t) � 􏽘
i

li(t) + max
fi,j(t)

􏽘
i≠ j

fi,j(t),
(23)

where

fi,j: R
m⟶R,fj,i(t) � fi,j(t),

li(t) fi,j(t)

fj,i(t) li(t)
⎡⎣ ⎤⎦≥0

⎧⎨

⎩

⎫⎬

⎭.

(24)

Lemma 3. [26] Given a symmetric matrix Λ1 and real
matrices of any proper dimensions Λ2 and Λ3, for all Δ ∈ Ω,
there is Λ1 + Λ2ΔΛ3 + ΛT

3ΔΛ
T
2 < 0, where Ω � Δ �{

diag Δ1, . . . ,Δk, p1I, . . . , plI􏼈 􏼉: ‖Δ‖≤ 1, Δi ∈ Rni×ni , i �

1, . . . , k, pj ∈ R, j � 1, . . . , g, k, g ∈ Z+}, when and only
when there exists Γ ∈ χ satisfying

Λ1 + ΛT
3 ΓΛ3 Λ2
∗ −Γ

⎡⎣ ⎤⎦< 0, (25)

where χ � diag s1I, . . . , skI, S1, . . . Sg􏽮 􏽯:􏽮 0< si ∈ R, 0<
Sj ∈ Rnj×nj , k, g ∈ Z+}, in particular, when k � 1, g � 0, and
this inequality Λ1 + Λ2Δ1Λ3 + ΛT

3Δ
T
1Λ

T
2 < 0 is equivalent to

Λ1 + s1ΛT
3Λ3 + s−1

1 Λ2Λ
T
2 < 0.

Definition 1. [27] If it is globally asymptotically stable for all
ψ(·) ∈ ℓ[0,Θ], then the Lurie system (18) is absolutely stable
within ℓ[0,Θ].

Theorem 1. Consider the system shown in Figure 1, for given
scalars h1, h2, h3, h4, σ, actuator failure indication matrix F,
and gain matrices K and L, if there exists matrices of proper
dimensions M, N and positive definite matrices
W> 0, V> 0,Si > 0, Pi > 0, where i � 1, 2, 3, 4, then we have

ℵ11 ℵ12
∗ ℵ22

􏼢 􏼣< 0,

P2 M

∗ P2
􏼢 􏼣> 0,

P4 N

∗ P4
􏼢 􏼣> 0,

(26)

where

ℵ11 �

ϕ11 P1 WL1C1 0 ϕ15 P3 0 WL1 ϕ19
∗ ϕ22 ϕ23 M 0 0 0 0 0

∗ ∗ ϕ33 ϕ34 0 0 0 0 0

∗ ∗ ∗ ϕ44 0 0 0 0 0

∗ ∗ ∗ ∗ ϕ55 ϕ56 ϕ57 0 0

∗ ∗ ∗ ∗ ∗ ϕ66 N 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ77 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −V 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ℵ12 � h1ζ
T
1 P1 h2 − h1( 􏼁ζT

1 P2h3ζ
T
1 P3 h4 − h3( 􏼁ζT

1 P4􏽨 􏽩,ℵ22 � diag −P1, −P2, −P3, −P4􏼈 􏼉,

ζ1 � A1 + UΞ(t)H1 + B1K1( 􏼁 0 L1C1 0 − B2 + UΞ(t)H2( 􏼁FK1 0 0 L1 D1 + UΞ(t)H3( 􏼁􏼂 􏼃,

ϕ11 � W A1 + UΞ(t)H1 + B1K1( 􏼁 + A1 + UΞ(t)H1 + B1K1( 􏼁
T
W + WB1K1 + K

T
1 B

T
1 W + S1 + S2 + S3 + S4 − P1 − P3,

ϕ15 � −W B2 + UΞ(t)H2( 􏼁FK1, ϕ19 � W D1 + UΞ(t)H3( 􏼁 − ΘT
, ϕ22 � −S1 − P1 − P2,ϕ23 � −M + P2, C � C 0􏼂 􏼃,

ϕ33 � −2P2 + M + M
T

+ σC
T
VC, ϕ34 � −M + P2, ϕ44 � −S2 − P2, ϕ55 � −2P4 + N + N

T
, ϕ56 � P

T
4 − N

T
,

ϕ57 � P4 − N, ϕ66 � −S3 − P3 − P4,ϕ77 � −S4 − P4.

(27)
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Hen the Lurie system (19) is robust and absolutely stable
within ℓ[0,Θ].

Proof. Construct a Lyapunov–Krasovskii function

V(t, z(t)) � V1(t, z(t)) + V2(t, z(t)) + V3(t, z(t)), (28)

where

V1(t, z(t)) � z
T
(t)Wz(t),

V2(t, z(t)) � 􏽚
t

t−h1

z
T
(α)S1z(α)dα + 􏽚

t

t−h2

z
T
(α)S2z(α)dα + 􏽚

t

t−h3

z
T
(α)S3z(α)dα + 􏽚

t

t−h4

z
T
(α)S4z(α)dα,

V3(t, z(t)) � h1 􏽚
0

−h1

􏽚
t

t+θ
_z
T
(α)P1 _z(α)dαdθ + h2 − h1( 􏼁 􏽚

−h1

−h2

􏽚
t

t+θ
_z
T
(α)P2 _z(α)dαdθ + h3 􏽚

0

−h3

􏽚
t

t+θ
_z
T
(α)P3 _z(α)dαdθ

+ h4 − h3( 􏼁 􏽚
−h3

−h4

􏽚
t

t+θ
_z
T
(α)P4 _z(α)dαdθ.

(29)

By taking derivation of V(t, z(t)) for t along the system
(19), it can be obtained that

_V(t, z(t)) � _V1(t, z(t)) + _V2(t, z(t)) + _V3(t, z(t)), (30)

where

_V1(t, z(t)) � _z
T

(t)Wz(t) + z
T
(t)W _z(t) � 2z

T
(t)W _z(t),

_V2(t, z(t)) � z
T

(t)S1z(t) − z
T

t − h1( 􏼁S1z t − h1( 􏼁 + z
T
(t)S2z(t) − z

T
t − h2( 􏼁S2z t − h2( 􏼁 + z

T
(t)S3z(t)

− z
T

t − h3( 􏼁S3z t − h3( 􏼁 + z
T
(t)S4z(t) − z

T
t − h4( 􏼁S4z t − h4( 􏼁,

_V3(t, z(t)) � h
2
1 _z

T
(t)P1 _z(t) − h1 􏽚

t

t−h1

_z
T
(α)P1 _z(α)dα + h2 − h1( 􏼁

2
_z
T

(t)P2 _z(t) − h2 − h1( 􏼁 􏽚
t−h1

t−h2

_z
T
(α)P2 _z(α)dα

+ h
2
3 _z

T
(t)P3 _z(t) − h3 􏽚

t

t−h3

_z
T
(α)P3 _z(α)dα + h4 − h3( 􏼁

2
_z
T
(t)P4 _z(t) − h4 − h3( 􏼁 􏽚

t−h3

t−h4

_z
T

(α)P4 _z(α)dα.

(31)

Applying Lemma 1 and Lemma 2 to the integral term in
(29), the following equations hold true:

−h1 􏽚
t

t−h1

_z
T
(α)P1 _z(α)dα≤ − φT

1 (t)Π1φ1(t), (32)

− h2 − h1( 􏼁 􏽚
t−h1

t−h2

_z
T

(α)P2 _z(α)dα � − h2 − h1( 􏼁 􏽚
t−h1

t−τ(t)

_z
T
(α)P2 _z(α)dα − h2 − h1( 􏼁 􏽚

t−τ(t)

t−h2

_z
T
(α)P2 _z(α)dα

≤ − φT
2 (t)Π2φ2(t),

(33)

−h3 􏽚
t

t−h3

_z
T
(α)P3 _z(α)dα≤ − φT

3 (t)Π3φ3(t), (34)

− h4 − h3( 􏼁 􏽚
t−h3

t−h4

_z
T

(α)P4 _z(α)dα � − h4 − h3( 􏼁 􏽚
t−h3

t−τ(t)

_z
T
(α)P4 _z(α)dα − h4 − h3( 􏼁 􏽚

t−τ(t)

t−h4

_z
T
(α)P4 _z(α)dα

≤ − φT
4 (t)Π4φ4(t),

(35)

where
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φT
1 (t) �

z(t)

z t − h1( 􏼁
􏼢 􏼣

T

,φT
2 �

z t − h1( 􏼁

z(t − ρ(t))

z t − h2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

T

,φT
3 (t) �

z(t)

z t − h3( 􏼁
􏼢 􏼣

T

,φT
4 �

z t − h3( 􏼁

z t − τca
ik

􏼐 􏼑

z t − h4( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,Π1 �
P1 −P1
∗ P1

􏼢 􏼣,

Π2 �

P2 M − P2 −M

∗ 2P2 − M − M
T

M − P2
∗ ∗ P2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,Π3 �

P3 −P3
∗ P3

􏼢 􏼣,Π4 �

P4 N − P4 −N

∗ 2P4 − N − N
T

N − P4
∗ ∗ P4

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(36)

Substituting (32), (33), (34), (35) into (29) and com-
bining (15) and (21), we can obtain

_V(t, z(t))≤ 2z
T
(t)W _z(t) + z

T
(t)S1z(t) − z

T
t − h1( 􏼁S1z t − h1( 􏼁 + z

T
(t)S2z(t) − z

T
t − h2( 􏼁S2z t − h2( 􏼁

+ z
T
(t)S3z(t) − z

T
t − h3( 􏼁S3z t − h3( 􏼁 + z

T
(t)S4z(t) − z

T
t − h4( 􏼁S4z t − h4( 􏼁

+ h
2
1 _z

T
(t)P1 _z(t) + h2 − h1( 􏼁

2
_z
T
(t)P2 _z(t) + h

2
3 _z

T
(t)P3 _z(t) + h4 − h3( 􏼁

2
_z
T
(t)P4 _z(t)

+ σy
T

(t − ρ(t))Vy(t − ρ(t)) − ϑT
k (t)Vϑk(t) − 2ωT

(t)ω(t) − 2ωT
(t)Θz(t)

≤ ηT
(t) ℵ11 − ℵ12ℵ

−1
22ℵ

T
12􏼐 􏼑η(t),

(37)

where ηT(t) � z
T
(t) z

T
(t − h1)z

T
(t −ρ(t))z

T
(t − h2)z

T
(t−􏽨

τca
ik

)z
T

(t− h3)z
T
(t − h4)ϑ

T
k (t)ωT

(t)].
From Schur’s complement lemma andDefinition 1, if (36) is

less than 0, it is known that the Lurie system (19) is globally
asymptotically stable for any ℓ[0,Θ] and therefore is absolutely
stable. □

3.2. Joint Design of the Observer and the Controller under the
Event-Triggering Mechanism

Theorem 2. Consider the system shown in Figure 1, for
given scalars h1, h2, h3, h4, σ, actuator fault indication

matrix F, and gain matrices K and L, if there exist matrices
of suitable dimensions M, N, Y1, Y2 and positive definite
matrices X> 0, V> 0, Y> 0,Si > 0, Pi > 0, i � 1, 2, 3, 4, then
we have

􏽥Λ11 􏽥Λ12
∗ 􏽥Λ22

⎡⎣ ⎤⎦< 0, (38)

P2 M

∗ P2
􏼢 􏼣> 0,

P4 N

∗ P4
􏼢 􏼣> 0, (39)

where
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􏽥Λ11 �

􏽥ϕ11 P1 −I2Y2I2 0 􏽥ϕ15 P3 0 −I2Y2C
􏽥ϕ19

∗ 􏽥ϕ22 􏽥ϕ23 M 0 0 0 0 0

∗ ∗ 􏽥ϕ33 􏽥ϕ34 0 0 0 0 0

∗ ∗ ∗ 􏽥ϕ44 0 0 0 0 0

∗ ∗ ∗ ∗ 􏽥ϕ55 􏽥ϕ56 􏽥ϕ57 0 0

∗ ∗ ∗ ∗ ∗ 􏽥ϕ66 N 0 0

∗ ∗ ∗ ∗ ∗ ∗ 􏽥ϕ77 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −CYCT 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽥Λ12 � h1
􏽥ζ

T
h2 − h1( 􏼁􏽥ζ

T
h3

􏽥ζ
T

h4 − h3( 􏼁􏽥ζ
T􏽥ξ

T

1
􏽥ξ

T

2􏼔 􏼕, 􏽥Λ22 � diag P1 − 2X, P2 − 2X, P3 − 2X, P4 − 2X, −sI, −s
− 1

I􏽮 􏽯,

􏽥ζ � A1X + B1Y1I1 0 −I
T
2 Y2I2 0 −B2FY1I1 0 0 −I

T
2 Y2C

T
D1􏽨 􏽩, 􏽥ξ1 � U

T 0 0 0 0 0 0 0 0 U
T

U
T

U
T

U
T􏽨 􏽩,

􏽥ξ2 � XH1 0 0 0 −H2FY1I1 0 0 0 H3 0 0 0 0􏼂 􏼃, 􏽥ϕ11 � A1X + B1Y1I1 + XA
T
1 + I

T
1 Y

T

1 B
T
1 + S1 + S2 + S3 + S4

− P1 − P3,

􏽥ϕ15 � −B2FY1I1,
􏽥ϕ19 � D1 − XΘT

, 􏽥ϕ22 � −S1 − P1 − P2,
􏽥ϕ23 � −M + P2,

􏽥ϕ33 � −2P2 + M + M
T

+ σI
T
3 YI3,

􏽥ϕ34 � −M + P2,

􏽥ϕ44 � −S2 − P2,
􏽥ϕ55 � −2P4 + N + N

T
, 􏽥ϕ56 � P

T

4 − N
T
, 􏽥ϕ57 � P4 − N, 􏽥ϕ66 � −S3 − P3 − P4,

􏽥ϕ77 � −S4 − P4, I1 � −I I􏼂 􏼃,

I2 � 0 I􏼂 􏼃,

(40)

then the Lurie system (19) is robust and absolutely stable
within ℓ[0,Θ], controller gain matrix K, observer gain matrix
L, then the event-triggered weight matrix V can be obtained
from the following equation

K � Y1X
− 1

, L � Y2X
− 1

C
+
, V � C

+T
X

− 1YX− 1
C

+
. (41)

Proof. : From Schur’s complement lemma and Lemma 3,
ℵ11 − ℵ12ℵ−1

22ℵ
T
12 can be transformed into

ℵ11 − ℵ12ℵ
−1
22ℵ

T
12 ≤Λ11 − Λ12Λ

−1
22Λ

T
12, (42)

where
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Table 1: τsc
M or τca

M under different event-triggering thresholds σ.

σ 0.4 0.3 0.2 0.1 0.05
Given τsc

M � 0.1, the upper bound of τca
M 1.532 1.541 1.557 1.586 1.611

Given τca
M � 0.1, the upper bound of τsc

M 1.546 1.548 1.552 1.561 1.569
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Figure 2: Event-triggering time and intervals when the actuator is normal.
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Figure 3: System state when the actuator is normal x1(t) and its estimated value 􏽢x1(t).
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Figure 4: System state when the actuator is normal x2(t) and its estimated value 􏽢x2(t).
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Figure 5: Event-triggering time and intervals in case of F � diag 1, 0{ }.
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Figure 6: System state x1(t) and its estimated value 􏽢x1(t) in case of
F � diag 1, 0{ }.
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Figure 7: System state x2(t) and its estimated value 􏽢x2(t) in case of
F � diag 1, 0{ }.
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Figure 8: Event-triggering time and intervals in case of F � diag 0, 1{ }.
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Figure 9: System state x1(t) and its estimated value 􏽢x1(t) in case of F � diag 0, 1{ }.
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Figure 10: System state x2(t) and its estimated value 􏽢x2(t) in case of F � diag 0, 1{ }.
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Λ11 �

ϕ11 P1 WL1C1 0 ϕ15 P3 0 WL1 ϕ19
∗ ϕ22 ϕ23 M 0 0 0 0 0

∗ ∗ ϕ33 ϕ34 0 0 0 0 0

∗ ∗ ∗ ϕ44 0 0 0 0 0

∗ ∗ ∗ ∗ ϕ55 ϕ56 ϕ57 0 0

∗ ∗ ∗ ∗ ∗ ϕ66 n 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ77 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −V 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Λ12 � h1ζ
T
P1 h2 − h1( 􏼁ζ

T
P2 h3ζ

T
P3 h4 − h3( 􏼁ζ

T
P4ξ

T
1 ξ

T
2􏼔 􏼕,Λ22 � diag −P1, −P2, −P3, −P4, −sI, −s

− 1
I􏽮 􏽯,

ξT
1 � (WU)T 0 0 0 0 0 0 0 0 P1U( 􏼁

T
P2U( 􏼁

T
R3U( 􏼁

T
P4U( 􏼁

T
􏽨 􏽩

T
,

ξT
2 � H1 0 0 0 −H2FK1 0 0 0 H3 0 0 0 0􏼂 􏼃

T
,

ζ � A1 + B1K1 0 L1C1 0 −B2FK1 0 0 L1 D1􏼂 􏼃, ϕ11 � WA1 + WB1K1 + A
T
1 W + K

T
1 B

T
1 W + S1 + S2 + S3

+ S4 − P1 − P3,

ϕ15 � −WB2FK1, ϕ19 � WD1 −ΘT
, ϕ22 � −S1 − P1 − P2, ϕ23 � −M + P2,ϕ33 � −2P2 + M + M

T
+ σC

T
VC, ϕ34 � −M + P2,

ϕ44 � −S2 − P2, ϕ55 � −2P4 + N + N
T
, ϕ56 � P

T
4 − N

T
,ϕ57 � P4 − N, ϕ66 � −S3 − P3 − P4,ϕ77 � −S4 − P4, C � C 0􏼂 􏼃.

(43)

Due to the presence of nonlinear terms in Λ11−
Λ12Λ−1

22Λ
T
12, it is inconvenient to solve the controller, so take

W � diag W, W􏼈 􏼉, and define X � W
− 1

, X � W− 1 � diag X,{

X}, Y1 � KX, Y2 � LCX, Y � XCTVCX,Y1 � Y1 −Y1􏼂 􏼃,

Y2 �
0 0
0 −Y2

􏼢 􏼣, M � XMX, N � XNX, Pi � XPiX, Si �

XSiX, i � 1, 2, 3, 4. Pre and postmultiply diag X, X, X,􏼈

X, X, X, X,CXCT, I, P−1
1 , P−1

2 , P−1
3 , P−1

4 , I, I} on both sides of

the matrix Λ11 Λ12∗ Λ22
􏼢 􏼣, noting that since P1 > 0, P2 > 0,

P3 > 0, P4 > 0, there must be

P1 − X( 􏼁P
−1
1 P1 − X( 􏼁≥ 0,

P2 − X( 􏼁P
−1
2 P2 − X( 􏼁≥ 0,

P3 − X( 􏼁P
−1
3 P3 − X( 􏼁≥ 0,

P4 − X( 􏼁P
−1
4 P4 − X( 􏼁≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Equation (43) is equivalent to

−XP
−1
1 X≤P1 − 2X,

−XP
−1
2 X≤P2 − 2X,

−XP
−1
3 X≤P3 − 2X,

−XP
−1
4 X≤P4 − 2X.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

*at is, we can get the linear matrix inequality (38), where
K � Y1X

− 1, L � Y2X
− 1C+ and V � C+TX− 1YX− 1C+. □

Remark 5. Since the matrix C is a row full rank matrix of
m × n, the matrix C+ of n × m exists such that CC+ � I, C+ is
called the right inverse of C, and the observer gain matrix
L � Y2X

− 1C+ is obtained from Y2 � LCX.

Remark 6. Since X> 0, V> 0,CX≠ 0,C is a row full rank
matrix, there must exist (CX)TV(CX)> 0; Y � XCTVCX is
a nonsingular matrix, which yields the event-triggered
weight matrix V � C+TX− 1YX− 1C+.

Remark 7. *e upper and lower bounds of time-delay are
introduced in the proof, which makes the conclusion less
conservative. In addition to the decision variables required
for constructing Lyapunov function, no other free-weight-
ing-matrix is introduced, which avoids the computational
burden caused by too many decision variables and the
possible conservatism caused by the optimization of too
many decision variables. A modified Jensen’s inequality is
used in the paper. *is inequality has a tighter integration
bound, which reduces the computational complexity while
reducing the conservatism of the conclusion.

4. Simulation Example

To verify the effectiveness and usability of the method,
consider the following Lurie system, where
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A �
0.1 0.1

0 −0.9
􏼢 􏼣, B �

1.2 0

0 0.1
􏼢 􏼣, C � 0.1 0.1􏼂 􏼃, D �

0.1

0.1
􏼢 􏼣, U �

0.2 0

0 0
􏼢 􏼣, H1 �

0 0.1

0 0
􏼢 􏼣, H2 �

0 0.1

0 0
􏼢 􏼣,

H3 �
0

0.1
􏼢 􏼣,Ξ(t) �

sin t 0

0 cos t
􏼢 􏼣,ψ(·) ∈ ℓ[0, 1].

(46)

Obviously this system is not stable.
According to *eorem 2, when the other parameters are

chosen constant, the upper bound of the allowed time-delay
of the system varies with the event-triggered threshold σ as
shown in Table 1.

As can be seen from Table 1, the smaller the event-
triggered threshold σ is, the larger the upper bound of the
allowed time-delay is. *erefore, in order to mitigate the
impact of time-delay of the system performance, the event
threshold σ can be appropriately decreased.

Assume that an event-triggering threshold is set as
σ � 0.1, a system sampling period is given as h � 0.01s, and
the upper and lower bounds of the time-delay are
h1 � 0.01, h2 � 0.11, h3 � 0.01, h4 � 0.11. *e nonlinear
function ψ(·) is taken as the saturation function sat(·), and
the initial state of the system x(0) � −0.8 0.8􏼂 􏼃

T
,

􏽢x(0) � −0.6 0.6􏼂 􏼃
T.

According to *eorem 2, given the fault indication

matrix F �
1 0
0 1􏼢 􏼣, the controller gain matrix, observer gain

matrix, and event-triggered weight matrix for normal op-
eration of the system are as follows:

K �
−0.1945 −0.0245

−0.0431 −0.1645
􏼢 􏼣, L �

4.1849

0.8596
􏼢 􏼣, V � 4.6857. (47)

*e triggering instants are shown in Figure 2, the state
and its estimated value curves of the system are shown in
Figures 3–4.

Given the fault indication matrix F �
1 0
0 0􏼢 􏼣

1 0
0 0􏼢 􏼣,

the controller gain matrix, observer gain matrix, and event-
triggered weight matrix for a system actuator failure are as
follows:

K �
−0.1973 −0.0185

0.1882 −0.7919
􏼢 􏼣, L �

4.1656

0.8093
􏼢 􏼣, V � 4.6690. (48)

*e triggering instants are shown in Figure 5, the state
and its estimated value curves of the system are shown in
Figures 6–7.

Given the fault indication matrix F �
0 0
0 1􏼢 􏼣, the

controller gain matrix, observer gain matrix, and event-
triggered weight matrix for a system actuator failure are as
follows:

K �
−0.1942 −0.0246

−0.0426 −0.1639
􏼢 􏼣, L �

4.1673

0.8359
􏼢 􏼣, V � 4.5781. (49)

*e triggering instants are shown in Figure 8, and the
state and its estimated value curves of the system are shown
in Figures 9–10.

As can be seen from Figures 2, 5, and 8, the system
requires much less data to be transmitted near the equi-
librium point than during the transient process, which is
exactly in line with the expectation of transmitting data
according to the control demand and can effectively save
network communication resources, reduce waste, and save
resources compared to the time-triggered mechanism. As
can be seen from Figures 6, 7, 9, and 10, the system remains
stable with effective fault-tolerant control in the event of an
actuator failure.

5. Conclusion

In this paper, a robust fault-tolerant controller is designed
for the Lurie NCS with time-delay and uncertainty from the
sensor to the controller and from the controller to the ac-
tuator, which makes the system fault-tolerant effective and
keeps the system stable in case of an actuator failure. By
constructing an observer on the controller node, a mathe-
matical model of the observer-based event-triggered
mechanism is established to ensure the stability of the
closed-loop system while also reducing the amount of data
transmission in the network, which in turn saves network
bandwidth resources. According to Lyapunov stability
theory, sufficient conditions for the stability of the closed-
loop system are derived, and the collaborative design of the
event-triggered mechanism, fault-tolerant controller, and
the observer is realized. In future research, the focus will be
on more complex systems based on event-triggered mech-
anisms, such as T-S fuzzy systems that simultaneously
consider the effects of packet loss and external disturbances.
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