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A linear resistive capacitive inductive shunted model of a Josephson junction with a topologically nontrivial behaviour is
considered in this paper. We have considered a fractional-order �ux-controlled memristor to e�ectively model the feedback �ux
e�ects across the Josephson junction (JJ). �e mathematical model of the proposed JJ oscillator is derived, and the dimensionless
model is used to study the various dynamical properties of the oscillator. �e stability plot shows that the proposed oscillator has
both stable and unstable regions of oscillations for di�erent choices of equilibrium points and fractional order. �e bifurcation
plots are presented to understand the route to crisis, and we have also shown that the oscillator has regions of coexisting attractors.
We have also achieved the synchronization of the proposed oscillator using fuzzy sliding mode control with the master and slave
systems considered with di�erent parameter sets. �e chattering amplitude is estimated by using the fuzzy logic, and it is used in
the synchronization algorithm to minimize the error.

1. Introduction

�e complex nature of nonlinear dynamical systems has long
been a problem for science, but as computers have evolved,
they have become much better at handling it. Particularly, in
some nonlinear systems, chaotic behaviour is unveiled for
interesting parameter values. �e presence of chaotic behavior
is often regarded as undesirable and problematic. �e inves-
tigation about the sensitivity of the nonlinear dynamical system
becomes mandatory for understanding how systems behave
during working range of parameters. Even though there are

lots of studies conducted on this topic, study of irregular
behaviours of the nonlinear dynamical system is a potential
research area. Fractional calculus is an e�ective tool for ex-
ploring the unexplored region of system characteristics [1, 2].
Chaotic systems are identi�ed with more intricate response for
not only parameter changes but also initial conditions. �ere
are many studies found in analysing the chaotic systems with
fractional-order treatment, and really useful results were ob-
tained. On the contrary some literatures proved that not all the
chaotic systems need to study with fractional-order. So, it is
obvious a question in our mind “which chaotic systems
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actually needs fractional-order treatment?” During the course
of finding the answer for the question, we come up with a
better understanding of fractional-order theory.$e fractional-
order approach is particularly suited for analyzing chaotic
systems that exclusively depend on the instant of time but they
are affected by the history of the preceding stage [1–4]. Bi-
furcation theory is a mathematical tool that describes effec-
tively the transformation of behaviour from one state to
another [5]. Using this mathematical tool and fractional-order
treatment will provide an insight analysis of nonlinear dy-
namical systems. It is proved that the fractional-order form
holds unlimited memory and provides more degrees of
freedom [1, 3, 6]. Hence, investigation of chaotic behaviour in
nonlinear dynamical systems with fractional-order circuits is
more complex and unearthed interesting characteristics.

Fractional systems can be used in chemical processes [7],
biological systems [8], electrochemical systems [9], visco-
elastic systems [7, 10], and propagation of electromagnetic
waves [7, 11]. In the literature, it is encountered in the control
of such systems or synchronization applications, communi-
cation [12], control of power systems, or control of chemical
processes [13, 14]. Many methods such as PID [15], sliding
mode control [7], backstepping control [16, 17]¸ fuzzy sliding
mode control [18], and adaptive sliding mode control [19]
have been used in the control of such systems. $e major
significance of SMC is that it has a robust structure against
varying parameters [7, 20]. $anks to that, the controller
keeps the system on the designed surface under varying
conditions. Moreover, the SMCmethod is a powerful method
of controlling high-order systems against disturbances and
parameter uncertainties [21, 22]. On the other hand, sliding
mode control suffers from high amplitude chattering prob-
lem. In this study, fuzzy logic is used to determine the
chattering amplitude. In [23], a set of linguistic rules is de-
termined and adaptive SMC control law can be applied for
chaotic systems. It has also been studied in the control and
synchronization of time-invariant/varying and SMC chaotic
systems [23, 24]. In addition, studies have been made on
determining the surface of fractional chaotic systems with
fuzzy logic [25, 26]. In the study, rather than determining the
surface, the chattering amplitude was determined by fuzzy
logic and synchronization was achieved with the control rule.

Current-voltage relation can be described with resistor;
similarly, the relation between voltage and charge can be
described with capacitor; finally, the current-magnetic flux is
defined with inductor. Memristor is a novel component,
which defines the inter-connection of charge and magnet
flux. Our interest inmemristor is for its memory effect. From
the literature, we identified that the memristor coupling can
effectively describe the effects of memory and show the
relation between output voltage and magnetic flux by
generating induction current [2].$e nonlinearity of electric
circuit is engendered, and the dynamical behaviour becomes
more complex when memristor is used in circuits because
the memductance is dependent on the inputs current [15].
Introduction of memristor in a circuit engendered the
nonlinearity and exhibit intricate behaviours, it is because,
the dependency of the memductance on the input current.

$e application of Josephson junction in supercon-
ductors [27–29] is considered as a milestone since its dis-
covery in the 1960s and attracts attention due to its
significance and suitability for different circuits. $ese de-
vices are very high speed and sensitivity [30]. $e promi-
nence is now extended to various applications such as analog
devices [31]. Many studies [32–36] discussed the usage of
Josephson junction for high-frequency oscillators with high
critical current density, but most of them are deliberately
designed to avoid chaotic regions. Initial investigations show
the need of rigorous studies to establish this application. An
asymmetric memristive diode-bridge-based jerk circuit is
proposed in [37] and studied the asymmetric coexisting
bifurcations, and it has a potential future works to new
applications.

Motivated from the above discussion, we propose a novel
chaotic circuit consisting both memristor and Josephson
junction, and dynamical behaviours are analysed using the
fractional-order approach. Section 2 deals the formulation of
circuit and its mathematical model. Section 3 provides the
numerical simulations. Section 4 describes synchronization
with fuzzy sliding mode. Section 5 presents the simulation
results. Finally, we highlight the significance and effective-
ness of the proposed system in conclusion.

2. Mathematical Model

A Josephson junction with topologically nontrivial barrier
can be defined with a linear resistive capacitive inductive
shunted model discussed in [3, 38, 39]. We include a
memristor parallel to the Josephson junction to derive the
new proposed chaotic oscillator consisting of both mem-
ristor and Josephson junction as discussed in [40], where the
authors considered a flux-controlled memristor with a
Josephson junction [3]. $is memristor is included to model
the feedback flux effects in a Josephson junction device. We
propose the new chaotic oscillator as shown in Figure 1
wherein we used a fractional-order memristor whose
mathematical model is used from [2].

$e circuit of Figure 1 is made of a flux-controlled
fractional-order memristor W, a Josephson junction with
topologically nontrivial barrier J, a capacitor C, and a shunt
inductor LS whose internal resistance is RS. By applying an
external DC current I, the current passing through and the
voltage across the circuit elements can be derived using the
KVL and KCL as

I � IJ + C
dV

dτ
+

V

R
+ IS + IW,

V � LS

dIS

dτ
+ RSLS,

V �
h

4e

dϕ
dτ

,

IW �
d

qρ(φ)

dτq ,

(1)
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where h is the Planck constant, e is the charge of the electron,
and q is the fractional order of the memristor. $e mem-
ductance function can be derived with Faraday’s law through
which we can define the electromagnetic induction current
as

IW �
d

qρ(φ)

dτq �
d

qρ(φ)

dφq

d
qφ

dτq , (2)

whose memductance is given by

W(φ) �
d

q
q(φ)

dφq � α + 3βφ2
. (3)

Using (3) in (2),

IM �
d

q
q(φ)

dφq

d
qφ

dτq � k0W(φ)V. (4)

By using equations (3) and (4) in equation (1) and by
substituting dimensionless state variables and parameters,
we can derive the mathematical model as

d
qv v

dt
�

1
βC

IDC − iS − βCv − sin(ϕ) − msin(ϕ) − k0W(φ)v( 􏼁,

d
qis iS

dt
�

1
βL

v − iS( 􏼁,

d
qϕϕ
dt

� v,

d
qφφ

dt
q � k1v − k2φ,

(5)

where the dimensionless state variables are defined as v �

V/RSIC, iS � IS/IC, t � τω0 and the dimensionless parame-
ters are βC � ECIJR2

S/h, βR � R2
SIJ/R, βL � ELSIJ/h, IDC �

I/IJ,ω0 � ERSIJ/h, E � 2πe. $e fractional orders of the
system are q � [qv; qis

; qϕ; qφ].
To numerically simulate system (5), we considered the

modified Adams–Bashforth method [41] for the Capu-
to–Fabrizio (CF) fractional operator [6]. By definition, the
general form of a CF fractional operator can be described in
the form

CF
0 D

q
tφ(t) � F(t, X(t)),

φ(0) � φ0.
(6)

$e definition in (6) can be modified as

M(q)

1 − q
􏽚

t

0
X

1
(τ)exp −q

t − τ
1 − q

􏼠 􏼡dτ � F(t, X). (7)

By the definition from [41], (6) can be numerically
expanded to the form

X(n + 1) − X(n) �
1 − q

MΓ(q)
F tn, Xn( 􏼁 − F tn−1, Xn−1( 􏼁

+
q

1 − q
􏽚

tn+1

tn

F(t, X(t))dt.

(8)

$e solution of (8) can be derived as

X(n + 1) � X(n) +
(1 − q)

mΓ(q)
+

3qΔt
2m(q)

􏼠 􏼡F tn, Xn( 􏼁

−
(1 − q)

mΓ(q)
+

qΔt
2m(q)

􏼠 􏼡F tn−1, Xn−1( 􏼁.

(9)

Using (7) in (5), we could derive the solution for the
fractional-order system as

v(n + 1) � v(n) +
1 − qv( 􏼁

mΓ qv( 􏼁
+

3qvΔt
2m qv( 􏼁

􏼠 􏼡

−
1 − qv( 􏼁

mΓ qv( 􏼁
+

qvΔt
2m qv( 􏼁

􏼠 􏼡

is(n + 1) � is(n) +
1 − qis

􏼐 􏼑

mΓ qis
􏼐 􏼑

+
3qis
Δt

2m qis
􏼐 􏼑

⎛⎝ ⎞⎠
1
βc

v(n) − is(n)( 􏼁􏼠 􏼡

−
1 − qis

􏼐 􏼑

mΓ qis
􏼐 􏼑

+
qis
Δt

2m qis
􏼐 􏼑

⎛⎝ ⎞⎠
1
βc

v(n − 1) − is(n − 1)( 􏼁􏼠 􏼡,

ϕ(n + 1) � ϕ(n) +
1 − qϕ􏼐 􏼑

mΓ qϕ􏼐 􏼑
+

3qϕΔt

2m qϕ􏼐 􏼑
⎛⎝ ⎞⎠(v(n))

−
1 − qϕ􏼐 􏼑

mΓ qϕ􏼐 􏼑
+

qϕΔt

2m qϕ􏼐 􏼑
⎛⎝ ⎞⎠(v(n − 1)),

φ(n + 1) � φ(n) +
1 − qφ􏼐 􏼑

mΓ qφ􏼐 􏼑
+

3qφΔt
2m qφ􏼐 􏼑

⎛⎝ ⎞⎠ k1v(n) − k2φ(n)( 􏼁

−
1 − qφ􏼐 􏼑

mΓ qφ􏼐 􏼑
+

qφΔt

2m qφ􏼐 􏼑
⎛⎝ ⎞⎠ k1v(n − 1) − k2φ(n − 1)( 􏼁.

(10)

By proper selection of the system parameters and
commensurate fractional orders q, the circuit in Figure 1
exhibits chaotic oscillations. $e system parameters are
defined as βC � 0.707, βL � 2.5, βR � 0.06, k1 � 0.1, k2 � 0.2;

k0 � 0.8, α � 0.01, β � 0.01, m � 0.6, IDC � 2, q � 0.98. $e
initial conditions of the state variables are [0, 0, 1, 0], and the
phase portraits are shown in Figure 2 for the fractional order
q � 0.95.

Rs

Ls

Is

IJ
J W (ϕ)

IW
R C

b

Figure 1: Fractional-order memristor: Josephson junction circuit.
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3. Numerical Analysis and Discussion

It can be easily noted that system (5) has infinite equilibrium
points which can be calculated by solving sin(ϕ) +

msin(ϕ) � IDC using the Newton–Raphson method. Solving
this equation, we could see that the system has no, two, or
four roots depending on the value of parameters (IDC, m).
Let us assume that the equilibrium points are [0, 0, ϕ∗, 0].

Theorem 1. For system (5) with incommensurate fractional
order to be globally asymptotically stable in the Lyapunov
sense, the necessary condition can be defined as
arg(λi)􏼈 􏼉> (qπ/2), where λi are the roots of characteristic
polynomial for each Ei.

$e characteristic polynomial of system (5) for the
equilibrium points [0, 0, ϕ∗, 0] is given by

λ4 + 0.6196λ3 + +. (11)

By using the theorem, we could say that the condition for
stability is that the fractional order q< (2/π)|arg(λ)| for all λ.
We have shown the stable and unstable regions in Figure 2
where the stable regions are shown by red colour and un-
stable regions are shown by pale green.

To investigate the sensitivity of the nonlinear dynamical
system with respect to parameter changes, bifurcation di-
agram is an effective mathematical tool. $e influence of
parameter changes on the proposed system is analysed in
this section. Firstly, we showed the bifurcation diagram for
the parameter k0 variation. $e range considered for the
investigation is 0≤ k0 ≤ 2. It is observed that system (5)
under consideration shows very rich bifurcation structures
when slowly tuning the control parameter k0. From
Figure 3(a), we can easily identify some striking bifurcation
events including period doubling scenario to chaos, period
halving exit to chaos, symmetry boundary, and interior
crises.

A small change in parameter value ends up with en-
tirely different system behaviours. $e oscillation can be
periodic, period doubling, or chaotic. In order to reveal
fine changes of oscillations, a tiny window is zoomed with

the range of 1.02 to 1.16 and presented in Figure 3. Within
this piece of range, we could observe periodic, period
doubling, and chaotic regions. Multistability is identified
as a significant property in nonlinear dynamics [14–19].
With any abrupt change in the states or parameters, the
said multistable system may enter into a new stable situ-
ation, which may be entirely different from the desired
state. Realizing such properties in dynamical systems and
investigating the parameter ranges where multistability
occurs is essential and interesting. Dark blue dots are
obtained by increasing value of control parameter k0 from
0 to 2 and red dots are obtained by decreasing the value
from 2 to 0 in Figure 3(a). $e end value of the states is
considered as the initial condition for the consecutive
iteration. In Figure 3(b), during parameter range
1.146≤ k0 ≤ 1.151, we can recognize multiperiodic oscil-
lation with blue dots and chaotic oscillation with red dots.
Hence, the existence of multistability property is high-
lighted using the bifurcation plot.

Secondly, we considered the bifurcation parameter as m

and other parameters are taken as discussed in the previous
section. From Figure 4, periodic oscillations (0.2 to 0.31),
period doubling (0.376 to 0.425, 0.62 to 0.65, 0.79 to 0.81,
0.90 to 0.91, and more tiny ranges), period halving (0.322 to
0.375), and cascades of chaotic regions (0.31 to 0.321, 0.376
to 0.39, 0.45 to 0.60, and many more small windows) can be
observed. $e parameter range considered for the investi-
gation is 0.2≤m≤ 1.2; with this small variation, the system
shows variety of oscillations, and very rapidly, it changes the
behaviours. $e increment of the parameter shows the in-
crease of amplitude of the oscillations, and the frequency of
the occurrence of chaotic regions is reduced. We could also
observe multistability property, and it is clearly shown in
Figure 4(a).

We increased (or decreased) in tiny steps of parameter m

and plotted the local maxima of v. $e final state at each
iteration of the parameter is considered as the initial state for
the next iteration. $is strategy is identified as forward (blue
plot) and backward (red plot) continuation, and it signifies a
simple way to localize the window in which the system
advances to multistability. In Figure 4(a), the multistability
region is identified and highlighted during 0.322≤m≤ 0.35
parameter range.

Investigating the influence of order while analysing the
fractional-order system is more important. In Figure 4(b),
we showed how the system behaves when it is treated with
different orders. As we mentioned before, the system is very
sensitive in nature. We can observe it even a small change it
enters from multiperiodical state to chaotic state. For ex-
ample, for q � 0.98, the system shows chaos, for q � 0.99, it
is with multiperiodic oscillation, and for q � 1 (integer
order), it oscillates in chaotic behaviour.

4. Fractional Chaotic System
Synchronization with Fuzzy Sliding Mode

In this study, although the two systems to be synchronized
are the same in structure, the one that is to be synchronized

1

0.95

q 0.9

0.85

0.8
-5 0

ϕ*
5

Figure 2: $e stable and unstable regions shown for various values
of ϕ∗ and q.
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parametrically is different. Fractional chaotic system is given
in (12) which is parametrically equivalent to (5).

D
q
x1 �

1
βc

I − x2 − βrx1 − sin x3( 􏼁(

− msin
x3

2
􏼒 􏼓 − k0mxx1􏼓 + u,

D
q
x2 �

1
βl

x2 − x1( 􏼁,

D
q
x3 � x1,

D
q
x4 � k1x1 − k2x4.

(12)

Fractional chaotic system (12) is given in equation (13)
which is to be synchronized to

D
q
y1 �

1
βc

I − y2 − βry1 − sin y3( 􏼁(

− 0.5msin
y3

2
􏼒 􏼓 − k0mxy1􏼓,

D
q
y2 �

1
βl

y2 − y1( 􏼁,

D
q
y3 � y1,

D
q
y4 � k1y1 − k2y4.

(13)

Error dynamics of difference of master and slave system
are determined as in (14) to accomplish synchronization.

5
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Figure 4: (a) Bifurcation diagram of system (5) with varying parameter m. (b) Bifurcation diagram for fractional-order variation for
0.91≤ q≤ 1.
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Figure 3: (a) Bifurcation diagram of system (5) with varying parameter k0. (b) $e zoomed regions to show coexisting attractors.
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e1 � x1 − y1,

e2 � x2 − y2,

e3 � x3 − y3,

e4 � x4 − y4,

D
q
e1 �

1
βc

I − x2 − βrx1 − sin x3( 􏼁 − msin
x3

2
􏼒 􏼓 − k0mxx1 + u

− I − y2 − βry1 − sin y3( 􏼁 − 0.5msin
y3

2
􏼒 􏼓 − k0mxy1􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

D
q
y2 �

1
βl

x2 − x1 − y2 − y1( 􏼁( 􏼁,

D
q
y3 � x1 − y1,

D
q
y4 � k1x1 − k2x4 − k1y1 − k2y4( 􏼁.

(14)

4.1. Sliding Mode Control. In order to control a fractional-
order system on the sliding surface, it is necessary to define
the surface. For this, a surface definition is made as

s(t) � k1D
q−1

en + k2 􏽚
t

0
􏽘

n

i�1
cieidt. (15)

Also, this surface function is a derivative as in the fol-
lowing equation:

_s(t) � k1D
q
en + k2 􏽘

n

i�1
ciei � 0. (16)

In order to provide stability, the Lyapunov function is
determined on the surface defined as in equation (16) and its
derivative is taken. Here, the control signal is chosen to
ensure _V≤ 0’i in equality (18).

V � s
2
, (17)

_V � s _s. (18)

In this section, the process that is the basis of the sliding
mode control will be repeated. In other words, equation (19)
must be provided to satisfy _V � s _s≤ 0. w is a constant value
and a required amplitude to satisfy the condition _V � s _s≤ 0.
$e corresponding –sign(S) function will be used. $us,
_V≤ s(−sign(s))≤ 0 is obtained. $is is given more clearly in
Figure 5.

Equations (20) and (21) are obtained by expanding
equations (15) and (16).

_s(x) �
w, ∧s< 0,

−w, ∧s≥ 0,
􏼨 (19)

s(t) � k1D
q−1

e1 + k2 􏽚
t

0
c1e1 + c2e2 + c2e2 + c2e2( 􏼁dt,

(20)

_s(t) � k1D
q
e1 + c1e1 + c2e2 + c2e2 + c2e2 � −sign(s). (21)

In equation (21), variables are substituted and expanded
as in equation (22). When the equation is arranged to de-
termine the control law to be applied, it is obtained as in the
following equation.

_s(t) � k1
1
βc

I − x2 − βrx1 − sin x3( 􏼁 − msin
x3

2
􏼒 􏼓 − k0mxx1

− I − y2 − βry1 − sin y3( 􏼁 − 0.5msin
y3

2
􏼒 􏼓 − k0mxy1􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ k1

u

βc

+ c1 x1 − y1( 􏼁 + c2 x2 − y2( 􏼁 + c3 x3 − y3( 􏼁 + c2 x4 − y4( 􏼁 � −kssign(s),

(22)

u(t) �
βc

k1

−k1
1
βc

I − x2 − βrx1 − sin x3( 􏼁 − msin
x3

2
􏼒 􏼓 − k0mxx1

− I − y2 − βry1 − sin y3( 􏼁 − 0.5msin
y3

2
􏼒 􏼓 − k0mxy1􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−c1 x1 − y1( 􏼁 − c2 x2 − y2( 􏼁 − c3 x3 − y3( 􏼁 − c4 x4 − y4( 􏼁 − kssign(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

4.2. Fuzzy System. Although fuzzy logic applications are
quite easy and have a broad mathematical background,
they have an uncomplicated and easy-to-understand
structure. $us, an easier and more durable control law
can be produced. Fuzzy logic can be defined with mem-
bership functions and rules, which are designed as expert-
based and usually expressed linguistically, as well as
structures that can learn by data (ANFIS). However, in

this study, membership functions and rules, which will be
expressed linguistically, have been established. It was then
used to determine the amplitude of the control signal
using this structure. $e general structure of fuzzy logic is
given in Figure 6. $e basic structure used in the fuzzy
logic system is the membership function. Membership
functions are used both for fuzzification and for defuz-
zification. Figure 7 shows the structures of the
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Figure 7: Membership functions used in fuzzy logic.

s (t)
-s (t)sign (s (t))

-sign (s (t))

s (t)

Figure 5: s(t), −sign(s(t)), and −s(t)sign(s(t)) functions.

Fuzzification Fuzzy inference

Rule base

defuzzification

s (t) s (t) ks
ʃ
t

0

Figure 6: Fuzzy logic inference.
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membership functions used in this study, and their in-
formation is shown in Table 1. $e rule table allowing the
association of membership functions for input and output
is given in Table 2. A total of 13 rules have been created
and these rules are associated with inputs and outputs.
$is structure used is generally called the Takagi–Sugeno
(TS) model in the literature.

Fuzzy logic is used in the modelling and control of
systems in decision making and many other situations. In
this section, it will be used to adjust the amplitude of the
control signal to be applied with the sliding mode control.
Fuzzy-based control and sliding mode have been used to
prevent rapid and high amplitude changes, which will be
applied in the actuator especially in a stationary situation
where the error is reduced. $e general structure of the
system synchronized with fuzzy sliding is given in Figure 8.
Especially in the application, when the system approaches
the desired surface, the integral value of this error can re-
main constant. $erefore, a feedback gain (H) is added to

reduce the effect of the integral over time, so that this integral
value does not remain constant. In order for this structure,
which acts as a stable low filter, to be close to the pure
integrator, the feedback gain is low.

5. Simulation Studies

$e states of the system synchronized in the simulation
studies, the amplitude of the control signal, and the am-
plitude of ks are given in Figure 9. As can be seen, the system
was started to be controlled after 15 seconds and the am-
plitude of s (t) surface increased until the system was
controlled. After the system started to be controlled, s(t)
approached 0 and when it reached this value, rapid changes
occurred in the control signal at a high frequency due to the
amplitude of ks. However, according to the fuzzy logic
decision according to the situation of s(t), the value of ks was
reduced after a certain time and the desired performance was
tried to be achieved.

+

-
H

Fuzzy
Logic

Control
Law

Fractional
Chaotic
System 2

Fractional
Chaotic
System 1

ks u (t)

ʃ
t

0

S (t)

x1x2
x3
x4

y1y2
y3
y4

Figure 8: Synchronization of fractional chaotic system by fuzzy sliding mode.

Table 1: Membership types and values in use in fuzzification and defuzzification.

Input membership
function for E Input membership function for integral E

MF1 Triangle [−40 −10 0] 1 Triangle [−30 −10 0]
MF2 Triangle [−0.05 0 0.05] 2 Trapeze [−2 −1 1 2]
MF3 Triangle [0 10 20] 3 Triangle [0 10 30]
Output membership function
MF1 Singleton 0
MF2 Singleton 20
MF3 Singleton 5

Table 2: Rule table for fuzzy inference.

E (integral E) MF1 MF2 MF3
MF1 MF1 MF1 MF1
MF2 MF1 MF2 MF1
MF3 MF1 MF1 MF1
E/E MF1 MF3
MF1 MF3 —
MF3 — MF3
Integral E (integral E) MF1 MF3
MF1 MF3 —
MF3 — MF3
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6. Conclusion

In this study, we have proposed a chaotic oscillator with a
Josephson junction device whose feedback flux effects are
modelled using a fractional-order memristor. We have de-
rived the dimensionless model of the proposed oscillator and
the dynamical properties are investigated using eigenvalues,
Lyapunov spectrum, and bifurcation plots. To show the ap-
plication prospective of the proposed oscillator, we have
derived the synchronization between master and slave sys-
tems with different parameter sets. $e control laws required
for the synchronization of the chaotic systems are determined
by the sliding mode control technique. $en, fuzzy logic was
used to determine the chattering amplitude in the sliding
mode control. With the determination of this amplitude, high

amplitude changes in the control signal are prevented.
Subsequently, this approach has been performed to syn-
chronize fractional chaotic systems. As a future direction, the
discussed model can be formulated using the Abu-Shad-
y–Kaabar fractional derivative [42] to obtain analytical so-
lutions and can widen the application in many fields.
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Figure 9: States of the (a) synchronized system, (b-c) control signals for s(t) and ks values.
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[5] R. Basiński and Z. Trzaska, “Bifurcations and chaos in dy-
namical systems,” Elektronika, vol. 23, no. 2, pp. 7–14, 2008.

[6] M. Caputo and M. Fabrizio, “A new definition of fractional
derivative without singular kernel,” Progr. Fract. Differ. Appl.,
vol. 1, pp. 73–85, 2015.
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