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An unambiguous signal processing algorithm when using a wide intermicrophone distance is proposed in this paper for si-
multaneously locating and countingmultiple active sound sources. Based on the kernel density estimator, a multistage structure in
the time-frequency domain is used to suppress the influence of spatial aliasing, then the pooled angular spectrum is combined with
a peak search method having an updated cut-off threshold and a source merging module. Complete source localization and
counting is realized through the combination of these two steps. Simulation results show that the proposed method has a more
robust performance than the classic counterpart, especially in adverse environments with spatial aliasing, reverberation, and
interference between different sound sources.

1. Introduction

Multiple sound source localization is a key element in many
applications ranging from national security to video con-
ference [1, 2]. Especially in far-field speech interaction, lo-
calizing multiple active sound sources accurately is an
essential prerequisite for high-quality speech enhancement
and recognition [3, 4]. In these applications, there is often
ambient noise, reverberation, and mutual interference be-
tween different sources, which makes the source localization
performance seriously affected.

In recent years, based on W-disjoint orthogonality
(WDO) [5, 6] of observed signals between pairwise mi-
crophones, multiple sound source localization methods can
be further divided into clustering, histogram, and angular
spectrum.

+e clustering method, such as interphase difference
(IPD) [7] and direction estimation of mixing matrix
(DEMIX) [8], directly achieves localization results by iter-
atively clustering time-frequency (TF) bins associated with
each sound source [9]. It is sensitive to the initial clustering
parameter [10]. +e histogram method computes the
weighted histogram such as circular integrated cross

spectrum (CICS) [11] and smooth histogram [12] to make it
have high estimation accuracy. However, the used array
topology is relatively difficult to implement and popularize.
Most of the above two methods do not consider spatial
aliasing [13] which may exist in multiple sound source
localization.

From the space sampling theorem, the intermicrophone
distance should be smaller than half the minimum signal
wavelength (e.g. 2 cm for a sampling rate of 16 kHz). When
the distance exceeds half the wavelength, it can be regarded
as a wide distance, and spatial aliasing generated from the
high-frequency part will occur. +e wider the distance, the
more serious the aliasing. +e excessively wide distance will
have a significant impact on sound source localization. To
obtain a high resolution in the time difference of arrival
(TDOA) space, the arrangement of the microphones often
uses a distance far exceeding half the wavelength, especially
in the case of a small number of microphones, thus inevi-
tably generating the influence of aliasing [14]. Hence, we
focus on the angular spectrum method because of its ap-
plicability for a wide intermicrophone distance [10, 15]. It
consists of two steps: (i) spectrum construction and (ii)
localization and counting.
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In the first step, the angular spectrum is constructed by
accumulating the local function related to all possible angles
in each TF bin. Classical generalized crosscorrelation (GCC)
[16] computes the crosspower spectrum phase [17] from the
pairwise microphones. Because of the limitations of the ideal
single-source propagation model [18], the GCC spectrum
will be severely distorted in environments with the coex-
istence of reverberation and spatial aliasing. Generated from
the generalized state coherence transform (GSCT) [19, 20],
approximate kernel density estimator (KDE) using the
nonlinear Gaussian kernel [20, 21] has a significantly im-
proved angular spectrum than GCC under reverberant
environment. +e frequency-dependent weighting factor of
the Gaussian kernel can suppress spatial aliasing to a certain
extent, but the effect is limited [14].

Existing sound source localization methods often regard
the number of sound sources as a prior information [7, 22].
However, during the utterance of mixed speech signal, some
sources may only last for a short period of time and the
number of sources often changes dynamically [23], which
makes it difficult to determine the number of sources in
advance.

+erefore, the second step requires the active sources
to be located and counted simultaneously [8] from the
constructed spectrum. Current source localization and
counting methods mainly use iterative search methods,
such as single-point peak amplitude in peak search (PS)
[24, 25], inner product in matching pursuit (MP) [26, 27],
and source contribution rate in iterative contribution
removal (ICR) [15]. Each iteration selects the optimal
value satisfying the corresponding conditions, removes
the components corresponding to the current sound
source from the spectrum, and restarts the next. MP and
ICR are more accurate than PS when obvious distortion is
not produced in the spectrum. However, in a high-res-
olution spectrum, the computation cost of the inner
product and the contribution rate is much higher, which is
not conductive to real-time tracking the number of
sources at different times. When the spectrum is seriously
distorted due to reverberation and spatial aliasing, the
current incorrect estimation will deteriorate the recon-
structed spectrum, which may exert considerable influ-
ence on the following iteration [28].

In this paper, to effectively solve the spatial aliasing when
using a wide intermicrophone distance, an unambiguous
angular spectrum-based algorithm is proposed for simul-
taneously localizing and counting multiple active sound
sources. In the spectrum construction step, the local KDE
spectrum in each TF bin between the pairwise microphones
is generated from a Gaussian kernel function; then a multi-
stage structure [14] is used to divide the entire band into
several sub-bands by the maximum unambiguous fre-
quency. +e sub-band spectra are pooled together across all
the TF bins to suppress the influence of spatial aliasing. In
the localization and counting step, PS is used considering the
simplicity and real-time processing. An updated cut-off
threshold according to the current peak amplitude is used to
replace the fixed threshold in traditional PS, which
strengthen the flexibility of counting. +en the preliminary

estimation is passed through a source merging module [15]
to eliminate the duplicate sound source.

+e remainder of this paper is organized as follows: in
Section 2, the KDE spectrum is constructed on the basis of
the signal propagation model of multiple sound sources. In
Section 3, the MS structure is used to construct the KDEMS
spectrum. +en PS are combined to form the complete
localization and counting process. Numerical comparisons
between the proposed KDEMS-PS and the other classical
ones are given in Section 4. Finally, Section 5 concludes the
paper.

2. Signal Propagation Model of Multiple Sound
Sources and KDE Spectrum Construction

Set sn(i) | n � 1, 2, . . . , N􏼈 􏼉 as N sound source signals at the
transmitting end, and xm(i) | m � 1, 2, . . . , M􏼈 􏼉 as the ob-
served signals corresponding to M microphones at the re-
ceiving end. +e sampling rate is fs. +en in the
approximately far field, the discrete time signal propagation
model of multiple sound sources can be expressed as follows:

xm(i) � 􏽘
N

n�1
hT

m,nsn(i) + vm(i), (1)

where hm,n � [hm,n(0), . . . , hm,n(L − 1)]T denotes the vector
of length L corresponding to the impulse response between
the n-th source and the m-th microphone,
sn(i) � [sn(i), . . . , sn(i − L + 1)]T denotes the vector corre-
sponding to the n-th source, and vm(i) denotes the additive
white Gaussian noise of the m-th microphone which is
independent of source signals and impulse responses.

+rough NFFT point short-time Fourier transform
(STFT), the expression in the discrete TF domain can be
obtained as

X(r, k) � 􏽘
N

n�1
Hn(k)Sn(r, k) + V(r, k), (2)

where r and k denote the frame and frequency indices,
respectively, X(r, k) � [X1(r, k), . . . , Xm(r, k), . . . , XM

(r, k)]T, Sn(r, k) and Xm(r, k) denote the STFT coefficients
corresponding to sn(i) and xm(i), respectively,
V(r, k) ∈ CM×1 denotes the complex vector corresponding
to the noise, and

Hn(k) � H1,n(k), . . . , Hm,n(k), . . . , HM,n(k)􏽨 􏽩
T
, (3)

where Hm,n(k) is the transfer function between the n-th
source and the m-th microphone, including the direct wave
component H(dir)

m,n (k) and the reverberation component
H(rev)

m,n (k). Since the impulse response is time-invariant, the
transfer function is only related to k.

When the intensity of the reflected wave is uniformly
distributed in all possible directions of propagation,
H(rev)

m,n (k) can be regarded as spatially diffuse noise [29, 30].
Hm,n(k) can be decomposed as

Hm,n(k) � H
(dir)
m,n (k) + H

(rev)
m,n (k), (4)
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where H(dir)
m,n (k) � αm,n exp(−j2πfkim,n/fs), fk represents

the frequency at the k-th frequency bin, αm,n and (im,n/fs)

denote the corresponding propagation attenuation and time,
respectively. Under anechoic, noise-free, and WDO con-
ditions [5], only H(dir)

m,n (k) exists, and at most one sound
source energy dominates each TF bin.+en equation (2) can
be simplified as follows:

X(r, k) �

α1,η(r,k)(k)exp
−j2πfki1,η(r,k)

fs

􏼠 􏼡

⋮

αM,η(r,k)(k)exp
−j2πfkiM,η(r,k)

fs

􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sη(r,k)(r, k),

(5)

where η(r, k) ∈ 1, . . . , N{ } is the index of the dominant
sound source in the current TF bin.

Considering one pair of microphones ma, mb in the
array, the normalized cross-power spectrum (NCS) of the
observed signal can be expressed as [21].

NCS(r, k) �
Xa(r, k)X

∗
b (r, k)

Xa(r, k)X
∗
b (r, k)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� exp −j2πfkτη(r,k)􏼐 􏼑, (6)

where (τη(r,k) � (ia,η(r,k) − ib,η(r,k))/fs) denotes the true
TDOA of the dominant sound source between ma and mb.
Without loss of generality, the subscript of τη(r,k) can be
omitted and τ can be estimated by regarding it as a random
variable that satisfies a given probability distribution. +en a
Gaussian kernel function is introduced as [20].

g(e(τ)) �
1

2πfk

exp −
e(τ)/2πfk( 􏼁

2

2h
2
K

􏼠 􏼡, (7)

where
e(τ) � exp −j2πfkτ( 􏼁 − NCS(r, k)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (8)

is a function of τ to calculate the Euclidean distance between
exp(−j2πfkτ) and NCS(r, k),

hK �
τmax

B
�

dmax

cB
, (9)

is the bandwidth of the kernel function where τmax is the
maximum possible TDOA, dmax is the maximum spacing
between adjacent microphones across the given pairs in the
array, c is the velocity of sound propagation, and B is a factor
that affects the resolution in the TDOA space. If B is set too
large, the kernel function may generate many burrs, which
may subsequently lead to the distortion of the spectrum. If B

is set too small, the main lobe is obese, which is not con-
ducive to locate the source correctly. B is set as 20 empirically
when fs � 16kHz. Substitute equation (8) into equation (7),
the local KDE spectrum in each TF bin can be expressed as

φ(r, k, τ) �
1

2πfk

exp −
exp −j2πfkτ( 􏼁 − NCS(r, k)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2σ2k
⎛⎝ ⎞⎠,

(10)

where σk � 2πfkhK.
Pool the local spectra across all the TF bins [10, 21]; the

total KDE spectrum can be constructed as

ΦKDE(τ) � 􏽘
k

φk(τ) � 􏽘
(r,k)

φ(r, k, τ), (11)

where φk(τ) denotes the narrow-band KDE spectrum
corresponding to the k-th frequency bin after pooling the
local spectra across all time frames.+e estimated TDOAs of
sound sources can be obtained from the peaks of ΦKDE(τ).

3. Localization and Counting Based on
Multistage Structure and Peak Search

+ere is a frequency-dependent weighting factor (1/(2πfk))

in φ(r, k, τ), which means that the higher the frequency is,
the more the amplitude of the local spectrum is suppressed.
+en spatial aliasing mainly caused by the high-frequency
part is weakened to a certain degree, but it cannot be
completely eliminated [14], especially in a strong rever-
beration environment where the spectrum is severely dis-
torted. Hence, a multistage structure is used to eliminate the
influence of spatial aliasing more efficiently in this section.

3.1. Spectrum Construction with Multistage Structure.
When calculating ΦKDE(τ) in equation (11), the indices of
the lowest frequency bin and the highest are set to kL and kH,
respectively. +en the corresponding center frequencies can
be set to (fL � kL · fs/NFFT) and (fH � kH · fs/NFFT),
respectively.

According to the spatial Nyquist sampling theorem, the
unambiguous condition can be expressed as

dmic ≤
λmin

2
, (12)

where dmic is the distance between ma and mb, and λmin
represents the minimum signal wavelength corresponding
to fH which can be expressed as

λmin �
c

fH

. (13)

Substituting equation (13) into equation (12), the con-
dition can be rewritten as

fH ≤
c

2dmic
� fUA, (14)

where fUA denotes the maximum unambiguous frequency. If
equation (14) is fulfilled, no spatial aliasing exists. However, in
order to produce a higher resolution angular spectrum to
distinguish different sound sources, it is necessary to use a
wider dmic, which makes fH exceed fUA inevitably.

If fH >fUA, the entire frequency band can be divided
into two sub-bands [fL, fUA] and [fUA, fH] where a single
sub-band may contain one or more continuous frequency
bins. +en if fH > 2fUA, [fUA, fH] can be further divided
into [fUA, 2fUA] and [2fUA, fH]. By analogy, if fH >pfUA
where p> 1, the sub-bands divided at the p-th stage can be
deduced as [(p − 1)fUA, pfUA] and [pfUA, fH]. +e entire
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band can be finally divided into a total of P sub-bands
[fL, fUA], . . . , [(P − 1)fUA, fH]. P can be obtained as

P � ceil
fH − fL

fUA
􏼠 􏼡, (15)

where ceil(·) denotes the round-up operator.
+en by pooling φk(τ) across all frequency bins con-

tained in each sub-band, the sub-band KDE spectrum can be
obtained as

Φ(p)

KDE(τ) � 􏽘

kpH

k�kpL

φk(τ), (16)

where p � 1, . . . , P, kpL denotes the index of the lowest
frequency bin contained in the p-th sub-band which can be
expressed as

kpL �
kL, p � 1,

(p − 1)kUA + 1, p � 2, . . . , P,
􏼨 (17)

and kpH denotes the index of the highest frequency bin
which can be expressed as

kpH �
pkUA, p � 1, . . . , P − 1,

kH, p � P.
􏼨 (18)

In equations (17) and (18), kUA is the index corre-
sponding to fUA which can be obtained as

kUA � floor
fUA · NFFT

fs

􏼠 􏼡, (19)

where floor(·) is the round-down operator. When p � 1, the
frequency will not exceed fUA, so there is no interference of
spatial aliasing; when p> 1, equation (14) is no longer
fulfilled, and the p-th sub-band spectrum Φ(p)

KDE(τ) will have
at most one more false peak than the previous sub-band.

+en the MS structure is used for sub-band processing,
and the output of the first stage can be expressed as

Φ(1)
KDEMS(τ) � Φ(1)

KDE(τ). (20)

By multiplying Φ(1)
KDEMS(τ) with the second sub-band

spectrum, the output of the second stage can be obtained as

Φ(2)
KDEMS(τ) � Φ(1)

KDEMS(τ)Φ(2)
KDE(τ) � Φ(1)

KDE(τ)Φ(2)
KDE(τ),

(21)

where the false peaks in Φ(2)
KDE(τ) can be suppressed by

Φ(1)
KDEMS(τ). +en the weighted output Φ(2)

KDEMS(τ) is
substituted into the next stage. By analogy, the output of the
P-th stage, that is, the KDEMS spectrum can be deduced as

ΦKDEMS(τ) � Φ(P)
KDEMS(τ) � Φ(P−1)

KDEMS(τ)Φ(P)
KDE(τ) � 􏽙

P

p�1
Φ(p)

KDE(τ).

(22)

+e spectrum of the lower sub-band has a wider main
lobe and lower resolution but is less affected by spatial
aliasing, while the spectrum of the higher sub-band has a

narrower main lobe and higher resolution but is subject to
spatial aliasing. Combining these two parts of the spectrum
through the MS structure can effectively absorb the ad-
vantages of each part while making up for their short-
comings, resulting in the final output spectrum with obvious
ambiguity suppression and high resolution.

Comparing equations (11) and (22), it can be seen that
the MS structure does not increase the computational
complexity. +e total number of operations for both KDE
and KDEMS can be approximately expressed as

Ncom � Nφ × Nτ × kH − kL + 1( 􏼁, (23)

where Nφ denotes the number of operations required for
φk(τ), and Nτ denotes the number of samples contained in
the TDOA space.

3.2.Multiple SoundSource Localization andCounting by Peak
Search. When the angular spectrum is constructed, an
improved PS is used to realize multiple sound source lo-
calization and counting. Without loss of generality and to
facilitate the subsequent processing, the normalized form of
the spectrum is obtained as

Φ(τ) �
ΦAL(τ) − min ΦAL(τ)( 􏼁

max ΦAL(τ)( 􏼁 − min ΦAL(τ)( 􏼁
, (24)

where AL represents KDE, KDEMS, or other angular
spectrum-based methods (e.g. GCC) and min(·) and max(·)

represent the operators to find the minimum and maximum
values in the function, respectively. +en the sequence
containing all the peaks in Φ(τ) can be expressed as

Φ � Φ τ1( 􏼁, . . . ,Φ τQ􏼐 􏼑􏽨 􏽩, (25)

where τ1, . . . , τQ denote the TDOAs corresponding to the
peaks in the TDOA space sampled with τgrid as the grid value
and Q denotes the total number of peaks. +e elements in
equation (25) are sorted in the descending order of peak
amplitude, so the condition Φ(τi)≥ Φ(τi+1) where
i � 1, . . . , Q − 1 is fulfilled. When the number of sound
sources N is known where N≤Q, only the first N elements
need to be extracted from Φ, and the set of the estimated
TDOAs can be expressed as τi|i � 1, . . . , N􏼈 􏼉. However, in
most real cases, N is unknown. Hence, it is necessary to
count the number of sound sources to obtain effective lo-
calization results.

In traditional PS, a fixed cut-off threshold set as Γ is
compared with the elements in Φ one by one iteratively
according to the order of the sequence until the element is
not greater than Γ. If Γ is set too large or too small, it will lead
to excessive missing alarm rate or false alarm rate, respec-
tively. So the threshold is set to vary as the peak amplitude
changes to improve the counting flexibility. Set Γ1 as the first
threshold. It is generally assumed that there is at least one
active sound source, so Φ(τ1)> Γ1 holds. +en the infor-
mation of the first peak amplitude is introduced into the
threshold setting and the threshold used in the next iteration
can be updated as Γ2 � max Φ(τ1)/2, Γ1􏼈 􏼉 where max ·{ }

represents the operators to find the maximum in the set. If
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Φ(τ2)> Γ2, the iteration continues. Set the index of the
iteration to i. +en the threshold used in the i-th iteration
can be updated as

Γi � max Φ τi−1( 􏼁/2, Γ1􏼈 􏼉, (26)

where i � 2, . . . , I. I is the total number of iterations. Give
the following condition:

Φ τi( 􏼁≤ Γi
i> Imax

􏼨 , (27)

where Imax denotes the maximum number of iterations.
When either of the two conditions in equation (27) is not
fulfilled, the iteration stops. +e set of the estimated TDOAs
can be expressed as

Ω � τi|i � 1, . . . , I − 1􏼈 􏼉. (28)

Due to the interference of reverberation and noise, there
may be multiple peaks with similar amplitude near the peak
corresponding to the true TDOA in the distorted angular
spectrum, which will lead to repeated estimation of the same
sound source, thus bringing undesirable counting results. To
address this problem, it is necessary to merge the duplicate
estimation. +e source merging is implemented as follows:
for any two estimated TDOAs τi and τi′ where i≠ i′, the
condition can be given as

τi − τi′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< τmin, (29)

where τmin indicates the allowedminimum distance between
the estimated TDOAs corresponding to two different sound
sources. τmin can be obtained as [15]

τmin �
dmic sin Amin( 􏼁

c
, (30)

where Amin is the minimum angular distance empirically set
to 10° when the interval is [0, 180]°. When equation (29) is
fulfilled, according to the peak amplitude, the estimated
results can be reassigned as

τi′ � τi, Φ τi( 􏼁≥ Φ τi′( 􏼁,

τi � τi′ , otherwise.
(31)

After the reassignment, all the estimated TDOAs with
the same value are merged into only one. +en the final
localization and counting results can be expressed as

Ω′ � 􏽢τn|n � 1, . . . , 􏽢N􏽮 􏽯, (32)

where Ω′ ⊆Ω, 􏽢τn indicates the estimated TDOA of the n-th
sound source when using PS with the source merging
module, and 􏽢N � card(Ω′) indicates the estimated number
of sound sources where card(·) is the operator to find the
number of elements in the set.

A complete localization and counting method can be
used by combining the constructed angular spectrum with
PS, where the combination is marked with “-” in this paper.
Hence, when the angular spectrum is generated by GCC,
KDE, or KDEMS, the corresponding localization and
counting method can be called GCC-PS, KDE-PS or

KDEMS-PS, respectively.+e block diagram of the proposed
KDEMS-PS is shown in Figure 1, and the steps can be
summarized as follows:

(i) STFT: Transform the observed signals of one pair of
microphones xa(i), xb(i) into the corresponding
coefficients Xa(r, k), Xb(r, k) in each TF bin by
STFT.

(ii) Narrowband KDE spectrum calculation: Calculate
NCS(r, k) from equation (6), and then pool the local
KDE spectrum φ(r, k, τ) in equation (10) across the
k-th frequency bin to obtain the narrowband KDE
spectrum φk(τ).

(iii) Multi-stage processing: Determine the number of
sub-bands P and the index corresponding to the
maximum unambiguous frequency kUA from
equations (15) and (19), respectively, then obtain the
sub-band KDE spectrum Φ(p)

KDE(τ) where
p � 1, . . . , P from equation (16).

(iv) Pooling and normalization: Pool all the sub-band
spectra to construct the KDEMS angular spectrum
ΦKDEMS(τ) from equation (22), then obtain the
normalized form Φ(τ) from equation (24).

(v) Peak search: Search the peaks in Φ(τ), sort them in
descending order, and then compare them with the
updated cut-off threshold Γi from updated equation
(26) to obtain the estimated TDOAs in Ω.

(vi) Source merging: Merge the repeatedly estimated
sound sources from equation (31) to obtain the final
localization and counting results in Ω′.

4. Numerical Analysis

In this section, compared with classic GCC and KDE, the
KDEMS spectrum is analyzed. +en the localization and
counting performance of the combined GCC-PS, KDE-PS,
and KDEMS-PS is further discussed.

+e sound sources are taken from 16 pure speeches
composed of 8male and 8 female in the TIMITdatabase [31].
Each speech segment sampled with fs � 16kHz lasts
2 seconds, and has the same average power through pre-
processing. +e room is 7.8m × 8.1m × 3m whose x-y plane
diagram is shown in Figure 2. A pair of omni-directional
microphones ma, mb with distance dmic parallel to the x-axis
is located at the center of the room marked with o, where
dmic is set to be an multiple of 0.5λmin with a positive integer
u as themultiple factor. N sound sources are distributed on a
semicircle with o as the centroid, where direction of arrival
(DOA) of the n-th sound source θn ∈ [0, 180]° is defined in
an anti-clockwise manner with 90° being the direction
perpendicular to the line connecting ma and mb. +en, the
true TDOA can be obtained as (τn � −dmic cos(θn)/c) where
c is the sound velocity set as (344m/s). dms is the micro-
phone-source distance set as 3m. In Figure 2, z coordinates
of the sound sources and the microphones are all set as 1.3m.

When the reverberation time expressed as RT60 changes
between 200ms and 500ms and dmic changes from 0.5λmin to
6λmin with 0.5λmin as the interval, 200 simulations are
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performed under each scenario. In each simulation, N

sound sources are randomly selected from the 16 candidate
segments, convolved with the room impulse response (RIR)
generated by the image-source model [32, 33], and added
white Gaussian noise with fixed signal-to-noise ratio (SNR)
which can be obtained as

SNR � 10 log10
Pa + Pb

2Pv

, (33)

where Pa and Pb indicate the average power of the noise-free
observed signal corresponding to ma and mb, respectively,
and Pv indicates the average power of the additive white
Gaussian noise at the receiving end. In the simulation
scenarios, multiple sound sources with equal angular in-
tervals are used. When N is 2,4, or 6, the true DOA dis-
tribution is shown in Table 1.

+en the observed signal is passed through the bandpass
filters between 0.2 kHz and 4 kHz [14] and transformed into
the T-F coefficients with a 1024-point Hamming-weighted
STFT, where the frame shift rate is 25%. +irty consecutive
frames are extracted to pool the spectrum. According to the
current environment, the parameters are chosen empirically.
In the Gaussian kernel function used by KDE and KDEMS, B
is set to 20. τgrid in the TDOA space is uniformly set to
1 × 10− 5 s. In the localization and counting step, Γ1 is set to
0.35, and Imax is set to 10.

When N � 2 and RT60 � 200ms, with dmic set as 0.5λmin,
1.5λmin, 3.5λmin, or 5.5λmin, the normalized spectra gener-
ated by GCC, KDE, and KDEMS are shown in Figure 3. In
each subfigure, three curves colored by red, green, and blue
correspond to GCC, KDE, and KDEMS, respectively. For the
intuitiveness and unity of graphic expression, a weighting
factor (1/τmax) is introduced to ensure the unified abscissa
with different dmic. +en the true TDOAs of the sound
sources are located at 0.5 and −0.5, which are marked with
two vertical dashed lines.

In Figure 3(a), since equation (12) is fulfilled when
dmic � 0.5λmin, there is no spatial aliasing. Hence, the
KDEMS spectrum coincides with KDE. However, the low-
resolution spectra generated by the narrow dmic makes the
peak too wide to produce good discrimination between
different sound sources in the TDOA space. GCC has only
one peak obviously deviated from the true TDOAs which
make it difficult to give correct estimation.

In Figure 3(b), when dmic is widened to 1.5λmin, the
resolution in the TDOA space improves and all the three

(P)

(P)

(1)

Figure 1: A block diagram of the multiple sound source localization and counting method combined KDEMS with PS.

SN

dms

y

x

Microphone

Sound source

dmic=0.5uλmin

mbma O

S1

θN

θ1

Figure 2: +e x-y plane diagram of the room.

Table 1: Number of sources N versus DOA.

N DOA (°)

2 60, 120
4 30, 60, 120, 150
6 0, 30, 60, 120, 150, 180
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spectra can form two peaks with the two highest amplitude
near the true TDOAs. However, the main lobe corre-
sponding to each sound source is still too wide and there is
still a certain degree of deviation.

In Figure 3(c), when dmic is further widened to 3.5λmin,
sharper peaks close to the true TDOAs make the deviation
smaller than Figure 3(b). However, the simultaneously in-
troduced spatial aliasing makes false peaks with a certain
amplitude start to appear at −0.9, −0.2, 0.2, and 0.9 in GCC.
Due to the suppression of high frequency components by the
frequency-dependent (1/(2πfk)) in Gaussian kernel func-
tion, the amplitudes of the false peaks in KDE are lower than
GCC. +en by further MS processing, the false peaks are
almost completely suppressed in KDEMS.

In Figure 3(d), when dmic � 5.5λmin, the number of false
peaks in GCC is obviously more than KDE and KDEMS, the
overall amplitudes of the false peaks becomes higher than
Figure 3(c). +e amplitude at −0.3 in GCC is almost
equivalent to the one at 0.5 corresponding to the true TDOA,
which is easy to produce incorrect estimation. However,
KDE and KDEMS maintain sharp peaks near the true
TDOAs and still have a good suppression on the false peaks,
thus have better recognition than GCC.

+e normalized spectra when RT60 increases to 500ms
are shown in Figure 4. +e enhancement of reverberation
makes the spectrum distortion more serious. In Figure 4(a),
GCC, KDE, and KDEMS still face the influence of low
resolution. In Figure 4(b), all the three spectra cannot es-
timate the TDOAs effectively because of the deviation.

Compared with Figure 3(c), the amplitudes of the false peaks
at −0.9, −0.2, 0.2, and 0.9 are higher in Figure 4(c), where the
amplitude at −0.2, 0.2 is almost equivalent to the one at 0.5 in
GCC. In Figure 4(d), the amplitudes of the false peaks at 0.3,
0.7 have exceeded the amplitude at 0.5 in GCC, the am-
plitude at 0.7 is close to 0.5 in KDE, while KDEMS has a
relatively flat spectrum which shows that KDEMS is more
robust than GCC and KDE under strong reverberation.

After the spectrum analysis of a single simulation, the
source localization and counting performance of GCC-PS,
KDE-PS, and KDEMS-PS can be evaluated in terms of three
measures defined as

Rrate �
􏽢Nco

N
, Prate �

􏽢Nco
􏽢N

, Fscore �
2Rrate · Prate

Rrate + Prate
, (34)

where recall rate expressed as Rrate and precision rate
expressed as Prate are used to measure miss-detections and
false alarms, respectively, F-score expressed as Fscore is the
combination of Rrate and Prate, and 􏽢Nco denotes the number
of correctly estimated sound sources. +e condition for
correct estimation can be expressed as

|􏽢θ − θ|< 5° , (35)

where 􏽢θ and θ represent the DOAs corresponding to the
estimated TDOA and the true TDOA, respectively.

Set dmic as 3.5λmin, the average values of these three
measures versus SNR when N � 2 and N � 6 are shown in
Figures 5 and 6, respectively, where they all reach its best
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Figure 3: Normalized spectral function Φ(τ) of GCC, KDE, and KDEMS versus (τ/τmax) when RT60 � 200ms and (a) dmic � 0.5λmin;
(b) dmic � 1.5λmin; (c) dmic � 3.5λmin; (d) dmic � 5.5λmin.
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value at 1 and worst at 0. As SNR decreases from 30 to
−10 dB, the measures of GCC-PS, KDE-PS and KDEMS-PS
gradually decline. In Figure 5(a), since only two sound
sources are used, the difference of Rrate between these three
methods is not very obvious. But the false peaks in GCC and
KDE spectra will produce more false alarms than KDEMS.
With the decrease of SNR, the increase of the spectrum base
further aggravates the influence of false peaks, so Prate of
KDEMS-PS is significantly better than the other two
methods. +e situation of Fscore is similar to that of Prate.

Due to the increase in the number of sound sources, the
missed-detection situation has been enhanced. +en Rrate of
KDEMS-PS is significantly better than the other two in

Figure 6(a). False alarms still exist in Figure 6(b) but will be
alleviated to a certain extent by the added sources. Prate of
KDEMS-PS is still the best of the three methods. +e sit-
uation of Fscore is similar to that of Rrate.

It can be seen from Figures 5 and 6 that when the number
of sound sources is small, Prate can better distinguish the
performance of different methods, and when the number of
sound sources is large, Rrate is better, while Fscore is the har-
monic average of Rrate and Prate to comprehensively evaluate
the performance. Hence, without loss of generality, useFscore to
measure the performance of different methods. With SNR set
as 20dB, the average F-score versus dmic when RT60 � 200ms
and RT60 � 500ms is shown in Figures 7 and 8, respectively.
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Figure 4: Normalized spectral function Φ(τ) of GCC, KDE, and KDEMS versus (τ/τmax) when RT60 � 500ms and (a) dmic � 0.5λmin;
(b) dmic � 1.5λmin; (c) dmic � 3.5λmin; (d) dmic � 5.5λmin.
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Figure 5: When N � 2 and dmic � 3.5λmin, the average measure of GCC, KDE and KDEMS versus SNR using (a) recall; (b) precision;
(c) F-score.
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In Figure 7(a), when dmic ≤ 1.5λmin, the deviation caused
by the low resolution makes 􏽢Nco small, thus bringing low
Fscore, then Fscore gradually rises as dmic widens. When
dmic > 1.5λmin, the growth of Fscore disappears, GCC-PS and
KDE-PS begin to gradually decline; this is due to the increase
in the amplitude of false peaks caused by spatial aliasing,
which makes 􏽢N increase. However, due to MS processing,
KDEMS-PS is much higher than the other two and it can
stabilize around 0.9 with no obvious downtrend when
1.5λmin < dmic ≤ 3.5λmin, which demonstrates the capability
to effectively suppress the influence of spatial aliasing.

+e overall Fscore declines to a certain extent when N

increases. When dmic � 4λmin, KDEMS-PS can maintain
around 0.8 and 0.6 in Figures 7(b) and 7(c), respectively, not
decline as shown in Figure 7(a). +is is because the increase
of N requires higher resolution to distinguish different
sound sources, so a higher Fscore can be brought about when
dmic is appropriately increased.

+e rule in Figure 8 is similar to that of Figure 7. +e
enhancement of reverberation makes 􏽢Nco smaller on the one
hand and 􏽢N larger on the other hand, thus makes Fscore of
different methods have a certain degree of decline. +e
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Figure 6: When N � 6 and dmic � 3.5λmin, the average measure of GCC, KDE and KDEMS versus SNR using (a) recall; (b) precision;
(c) F-score.
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Figure 7: +e average F-score of GCC-PS, KDE-PS, and KDEMS-PS versus dmic when RT60 � 200ms and (a) N � 2; (b) N � 4; (c) N � 6.
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Figure 8: +e average F-score of GCC-PS, KDE-PS, and KDEMS-PS versus dmic when RT60 � 500ms and (a) N � 2; (b) N � 4; (c) N � 6.
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overall performance is still KDEMS-PS >rbin KDE-PS >rbin
GCC-PS. When 1.5λmin < dmic ≤ 4λmin, KDEMS-PS can still
maintain above 0.5 and 0.4 when N � 4 and N � 6, re-
spectively, much higher than KDE-PS and GCC-PS, which
shows the robustness of the method under strong rever-
beration and interference between different sound sources.

5. Conclusion

To correctly locate the sound sources in real scene, the
number of them needs to be estimated simultaneously.
Based on the kernel density estimator, a multiple sound
source localization and counting method called KDEMS-PS
is proposed in this paper. Divide the entire frequency band
into several sub-bands and process them stage by stage, the
KDEMS angular spectrum is constructed. +en PS with an
updated threshold and a source merging module is com-
bined to locate and count multiple sound sources. As shown
in the computer simulation using spectrum analysis and
comparison of F-score, KDEMS spectrum can effectively
weaken the interference caused by false peaks and KDEMS-
PS is a robust multiple sound source localization and
counting method with good spatial aliasing suppression
when using a wide intermicrophone distance. In the ex-
periment, we found that the MS structure is mainly used to
process sound sources with more low-frequency energy and
more uniform spectrum coverage (e.g. speech). When the
spectral components are concentrated in the higher fre-
quency range (e.g. bird sound), the sub-band processingmay
face the problem that the unambiguous low-frequency
spectrum has very weak energy, which may cause a decrease
in localization performance due to insufficient peak energy
at the sound source location. Whether to use some spectrum
enhancement techniques or other unambiguous methods to
extend the scope of application is still a question worthy of
further study. +eoretically, the angular spectrum-based
method based on pairwise microphones has no additional
restrictions on the number of microphones or the topology.
In this paper, the applied microphone array consists of only
two microphones to focus on the improvement of the MS
spectrum. More microphone pairs of different topologies
(e.g. planar, spherical) can be added for some specific ap-
plications in the following research.
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