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Prediction of tunnel surrounding rock deformation is important for tunnel construction safety evaluation. In this paper, machine
learning algorithms are used to carry out a comparative study of the surrounding rock deformation prediction.�e applications of
Gaussian process regression (GPR), support vector machine (SVM), and long short-term memory network (LSTM) in the
prediction of surrounding rock deformation sequences are compared and analyzed. �e actual data of a diversion tunnel in a
southwest region are used as an example to evaluate and compare the single-step prediction model and multistep prediction
model established by the above algorithm. �e results show that the machine learning algorithm has good operation e�ect on the
prediction of surrounding rock deformation. Overall, the SVMmodel has the best prediction e�ect and outperforms the other two
algorithms in terms of tracking the trend of data changes and the degree of data �t.

1. Introduction

Rock deformation refers to the change of shape and volume
of the rock around the underground cavern and the dis-
location of the cavern wall. �is phenomenon is generally
caused when excavating underground cavities. And the
amount of deformation of unreasonable surrounding rocks
may trigger ground settlement and collapse, water gushing
and rock explosion, and other engineering problems,
eventually leading to the wreckage of underground tunnels,
causing social losses, and casualties. �erefore, it is of great
practical engineering signi�cance to carry out real-time
monitoring and safety evaluation of surrounding rock
deformation during the construction process and opera-
tion of underground cavern projects. �e traditional
manual approach of building empirical models to solve
problems based on measurement data su�ers from sig-
ni�cant limitations in experience and complexity, which
can be remedied by machine learning’s ability to capture
data and learn from its trends. With the dramatic increase
in computer performance, the e�ciency of machine
learning has also increased dramatically and is therefore
widely used in various �elds.

Many attempts have been made in the �eld of machine
learning for surrounding rock deformation prediction. In
terms of support vector machines (SVM), Goh et al. [1]
demonstrated the predictive power of support vector ma-
chines in the mechanical properties of rocks. Yao et al. [2–4]
did a lot of research on the application of support vector
machine to predict the surrounding rock deformation,
proposed SVM-based single-step prediction model and
multistep prediction model for surrounding rock defor-
mation, and gave an evaluation of the performance of these
models and carried out optimization work. Shi et al. [5]
established a prediction model for tunnel displacement
settlement based on SVM and demonstrated the excellent
performance of SVM in predicting tunnel surrounding rock
deformation in conjunction with actual engineering. In
terms of Gaussian process regression, Xie et al. [6] proposed
a prediction method based on optimized GPR surrounding
rock deformation and veri�ed the predictive capability of the
GPR prediction model in combination with actual engi-
neering. Liu et al. [7] introduced Gaussian process regres-
sion (GPR) into tunnel construction surrounding rock
deformation prediction to overcome the problems of
existing models and won the comparison with support
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vector machines. Zhang et al. [8] also improved and studied
the application of GPR in the prediction of surrounding rock
deformation and proposed a time series-based GPR pre-
diction model for its application in predicting surrounding
rock deformation during the tunnel construction period; in
terms of neural networks, most of the research results for
surrounding rock deformation prediction tend to favor the
traditional neural network prediction model in the pre-
diction of surrounding rock deformation in underground
caverns. 'e ability of traditional neural network prediction
models in predicting the surrounding rock deformation of
underground caverns is inferior to that of SVM and GPR
[9,10]. On this basis, in order to make the comparative work
of this paper more meaningful, this paper introduces the
long and short-term memory network (LSTM) for com-
parative study. In terms of research on LSTM, Yang et al.
[11] proposed an LSTM-based method for concrete dam
deformation prediction and verified the effectiveness of the
model in concrete dam time series deformation prediction
by example. Hu et al. [12] developed an LSTM-based
combined prediction model for dam deformation and
compared it with SVM in an example, arguing that LSTM
has a more excellent prediction performance. Hu et al. [13]
demonstrated the excellent performance of LSTM on time
series prediction. All these studies demonstrate the potential
of LSTM in predicting the deformation of surrounding rock
in the underground cavern.

'e above study demonstrates the feasibility as well as
the potential capability of machine learning for surrounding
rock deformation prediction. However, little work has been
done to compare the application of these computational
intelligence methods in the prediction of surrounding rock
deformation, and the study of comparative work is of
guidance for the application of these methods in sur-
rounding rock deformation, which can comprehensively
evaluate the prediction performance and prediction accu-
racy of various methods. In addition, for LSTM, its pre-
diction work in the underground cavern surrounding rock
deformation has hardly been carried out, so this paper also
verifies whether LSTM can predict the tunnel surrounding
rock deformation. 'e purpose of this research is to conduct
a comparative study of computational intelligence methods,
including gaussian process (GPR), support vector machine
(SVM), and long short-term memory network (LSTM) in
surrounding rock deformation prediction. 'ese three
techniques are typical computational intelligence methods
that are widely used in engineering applications. In order to
conduct a comparative study, the example of the Guzeng
diversion tunnel in Liangshan, Sichuan Province, China, was
taken. Divided into single-step prediction and multistep
prediction modeling, these three computational intelligence
methods are applied to the prediction of surrounding rock
deformation in the tunnel, and the results of the three
methods are analyzed and compared.

2. Methodology

2.1. Long Short-Term Memory (LSTM). Long short-term
memory (LSTM) [14] is used as a special type of recurrent

neural network (RNN) in the autoregressive (AR) mode,
which is deliberately designed to avoid long-term depen-
dency problems and can be designed to remove the standard
“healthy” components from the signal. Compared with
RNN, LSTM can achieve long-term dependence and avoid
the occurrence of gradient explosion and gradient disap-
pearance. LSTM designs effective “gates” within the
framework of each cycle to form different structures [15] that
allow information to be selected for passage; that is, input
gates, forgetting gates, and output gates are used to protect
and control information. Since LSTM networks can learn
long-term correlations in sequences, they do not require a
prespecified time window and can accurately model complex
multivariate sequences [16]. xt and ht− 1 are the input at
moment t and the hidden layer at moment t-1, respectively.
'e three gates at the core of typical LSTM, the forgetting
gate ft, the input gate it, the output gate Ot and the in-
formation storage unit Ct that are updated to completion at
moment t can be expressed as follows [17]:

ft � σ Wfxt + Ufht− 1 + bf . (1)

it � σ Wixt + Uiht− 1 + bi( . (2)

Ot � σ WOxt + UOht− 1 + bO( . (3)

Ct � tanh WCxt + UCht− 1 + bC( . (4)

Ct � ft ⊙Ct− 1 + it ⊙ Ct. (5)

ht � Ot ⊙ tanh Ct( . (6)

'ese three gates control the forgetting of the long-
term state Ct− 1 at the previous moment, the preservation of
the temporary state Ct at the current moment, and the
transfer of the long-term state Ct to the hidden layer ht at
the current moment, respectively. 'e gates are the for-
getting gate, the input gate, the output gate, and the pa-
rameter matrix of the new information from the input
layer to the hidden layer, respectively, where Wf, Wi, WO,
and WC are the forgetting gate, the input gate, the output
gate, and the parameter matrix of the new information
from the input layer to the hidden layer, respectively. Uf,
Ui, UO, and UC are the cyclic parameter matrix, and bf, bi,
bO, and bC are the deviation matrix; σ is the sigmoid
function, and ⊙ is the multiplication operator of the
matrix. 'e long-term state is processed through the tanh
layer, and then the result Ot of filtering through the output
gate is multiplied to output ht.

LSTM can achieve long-term dependence, and it can
effectively avoid gradient explosion and gradient disap-
pearance. Facing problems and tasks that are sensitive to
time series, LSTM is usually more suitable. As a nonlinear
model, LSTM with special implicit units can preserve the
input for a long time, which can provide powerful guar-
antees for time series-based prediction. 'ese features make
LSTM good for the task of predicting the surrounding rock
deformation in underground caverns.
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2.2. SVM. 'e SVM method is now available for multi-
variate classification problems and is a supervised learning
model [18,19]. In addition to data classification, prediction
and regression are extensions of support vector machines
to mathematical problems and are known as support vector
machine regression [20,21]. SVR models can generate re-
gression functions by applying a set of high-dimensional
linear and nonlinear functions using kernel functions. SVM
applies the concept of ε-excitation loss function and is
highly robust in prediction. Its core is to determine a
separation hypersurface to make the desired risk as min-
imal as possible.

Under the given sample, D � (xi, yi) 
n

i , where xi ∈ Rn is
the input vector, and yi is the target vector. Our final goal is
to obtain the optimal f(x) � wϕ(x) + b to approximate the
target vector, with the deviation ε being strictly limited.
'erefore, the parameters to be determined can be calculated
by the following equation:

min
w,b

1
2
ω2

+ C 
n

i�1
ζ i + ζ∗i( . (7)

f xi(  − yi ≤ ε + ζ i,

yi − f xi( ≤ ε + ζ∗i ,

ζ i, ζ
∗
i ≥ 0, i � 1, . . . , n.

(8)

'e first term of the function is the canonical term, and
the second term is the error risk. C is the penalty factor. To
find the equations of the parameters to be determined, or the
parameters ω and b to be determined in the objective
function, the Lagrange function is constructed on this basis,
the Lagrange multipliers are introduced, and the following
constraints are added:

L w, b,α,α∗, ζ, ζ∗,μ,μ∗(  �
1
2
‖w‖

2
+ C 

n

i�1
ζ i + ζ∗i(  − 

n

i�1
μiζ i

− 
n

i�1
μ∗i ζ
∗
i

+ 
n

i�1
αi f xi(  − yi − ε − ζ i( 

+ 

n

i�1
α∗i f xi(  − yi − ε − ζ∗i( .

(9)

Converting to the pairwise problem of SVR, the solution
of SVR is

f xi(  � ωTϕ xi(  + b  � 

n

i�1
α∗i − αi( K xi, x(  + b. (10)

where ai and a∗i are for Lagrange multipliers and b is a scalar
threshold. Clearly, the support vector is the only element of
the data points used to determine the decision function. 'e
above approach can be further extended to nonlinear sur-
faces, and SVR uses kernel function K(xi, x) to transform

the nonlinear inputs into a high-dimensional feature space
without the need for realistic computational mapping.

SVR has been successfully applied to solve various time
series prediction problems, and it performs very well in
avoiding overfitting problems. For time series-based data
such as surrounding rock deformation during underground
cavern excavation, these characteristics of SVR are very
suitable for prediction.

2.3. Gaussian Process Regression. Gaussian process is a
stochastic process indexed by dimensions such as time and
space. 'e essence of the Gaussian model is a regression
model for uncertainty prediction of the distribution of
output variables using a nonparametric probabilistic model
[22,23] whose variables show the nature of a normal dis-
tribution for any linear combination; that is, the Gaussian
process is a generalization of the Gaussian distribution. 'e
form of GPR developed from GP is a variant of “inert
learning” in machine learning. 'e Gaussian distribution
reflects the distribution between random variables, while the
Gaussian process represents the distribution between
functions. 'e purpose of regression modeling is to establish
a functional relationship y � f(x) that can describe the
training data. For the output variable y, it is assumed that the
output values satisfy the following equation:

Yi � f Xi(  + εi. (11)

Here, X� [ X1, X2. . .XN] denotes the input samples, Y� [
Y1, Y2. . .YN] denotes the observations, f () denotes an
arbitrary basis function, εi denotes Gaussian noise with zero
mean, and N is the number of samples.

'e observed value Y and the predicted value Y∗ should
satisfy

Y

Y∗
  ∼ N 0,

k + σ2I kX∗

k∗X k X∗, X∗( 

⎡⎣ ⎤⎦⎛⎝ ⎞⎠. (12)

k � [ki,j] and k∗X � [k(X∗, X1), . . . , k(X∗, XN)]，where
ki,j � k(Xi, Xj) � cov(Yi, Yj)

'e predictive distribution p(Y∗|Y) for Y∗ should be a
Gaussian distribution with variance and mean:

Y∗ � k∗Xk
− 1

Y. (13)

σ2Y∗ � k∗∗ − k∗Xk
− 1

KX∗. (14)

In the GPR model, the performance of the most
commonly used covariance is crucial [24], and the co-
variance between individual dimensional features can be
modeled by a Gaussian process kernel (kernel). 'e
common types of kernels are Squared Exponential Kernel,
Exponential Kernel, Matern 3/2, Matern 5/2, and Rational
Quadratic Kernel.

'e GPR model has the advantages of easy imple-
mentation, adaptive acquisition of hyperparameters, and
probabilistic significance of the predicted output. It is
suitable for dealing with nonlinear complex and complicated
regression problems. Based on the above characteristics,
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GPR has become a classic algorithm for dealing with de-
formation of surrounding rock in underground caverns.

2.4. Analysis of the Advantages and Disadvantages of the
Algorithms. 'e advantage of LSTM is that it can achieve
long-term dependence and effectively avoid gradient ex-
plosion and gradient disappearance. LSTM has high sen-
sitivity to time-series data set, and its built-in hidden unit
can preserve the input for a long time, which is not available
in GPR and SVR.'e disadvantage of LSTM is that it cannot
handle parallel problems efficiently and will result in higher
time cost when processing the problem due to its complex
model structure, which is not a problem with SVR and GPR.
Moreover, LSTM requires a lot of parameter settings in
terms of network topology, initial values of weights, and
thresholds and has a certain degree of “black box problem,”
and there is no credible predictive equation, unlike GPR and
SVR, which both have explicit forms of predictive equations.
'e advantages of the GPR model are that it is easy to
implement, the hyperparameters are adaptively acquired,
and the predicted output is probabilistically meaningful, it
has a higher explanatory power compared to LSTM, and it is
more convenient than SVR in terms of parameter setting.
'e disadvantage of GPR is that the predictionmodel usually
performs well in interpolation prediction, while it performs
worse than LSTM and SVR in extrapolation prediction due
to the difficulty of data coverage. 'e advantages of SVR are
its strict mathematical logic, high prediction accuracy for
nonlinearities, good generalization ability on the test set,
higher processing ability for small data set than LSTM and
SVR, and higher performance in dealing with overfitting
problems than LSTM and SVR. 'e disadvantage of SVR is
that it is overly sensitive to parameters and kernel functions
and has inferior processing power to LSTM and SVR when
large fluctuations in the predicted data set occur. Since each
algorithm has its own advantages and disadvantages, it is
necessary to carry out targeted research to compare the
performance of different algorithms in practical scenarios,
taking into account the characteristics of the tunnel project
itself and the actual engineering arithmetic examples.

2.5. Cross-Validation Algorithm. Cross-validation is often
used in cases of over- and underfitting due to model
complexity and is a method of chunking data samples to
form smaller subsets on which to base the analysis. Cross-
validation is a model validation technique used to evaluate
the generalization ability of a statistical analysis model on
independent data sets. In the data-intensive case, the data set
is divided into two parts, that is, the training set and the test
set, and then the average of error is obtained as the final
evaluation to reflect the real ability of the model. In general,
the commonly used cross-validation methods are random
subsampling validation, K-fold cross-validation, and leave-
one-out cross-validation, depending on the form of the
cutoff. Although many studies have investigated leave-one-
out cross-validation, from a computational perspective,
k-fold cross-validation may be more common. For k-fold
cross-validation, the data is randomly divided into k

approximately equal-sized packets D(1), . . . , D(K), and for
each D(i), satisfying ni � |D(i)|, 


ni � N. One packet at a

time is used as the test set, and the remaining k-1 packets are
used as the training set for training. 'e accuracy of the
training is discriminated based on the performance metric
CV of the classifier.

CVN,K � 
k

i�1

ni

N
MSEi. (15)

2.6. Dropout. For the overfitting problem in deep learning,
Hinton proposed the Dropout mechanism in 2012 [25],
which is also a typical example of integrated models, and it is
a good solution to the time-consuming problem of inte-
grated models.

'e dropout mechanism works in such a way that,
during the training of a neural network, some neurons are
randomly selected and temporarily hidden (discarded) for a
layer of the network in one iteration, and then the training
and optimization are performed again. In the next iteration,
some neurons continue to be hidden randomly, and so on
until the end of training. Since it is randomly discarded, each
minibatch is training a different network.

During training, each neural unit is retained with
probability p (dropout discard rate is 1 − p); during the
prediction phase (testing phase), each neural unit is present,
and the weight parameter ω is multiplied by p. 'e output is
pω. 'e schematic diagram is as follows.

'e reason for the need to multiply P in the prediction
phase is that the output of a neuron in the previous hidden
layer before dropout is x, and the expected value after
dropout during training is E � px − (1 − p) _0; in the pre-
diction phase, the layer neurons are always activated and in
order to keep the same output expectation and to get the
same result in the next layer, it is necessary to adjust
x⟶ px, where p is the probability that themedian value of
the Bernoulli distribution (0-1 distribution) is 1.

3. Engineering Application and Comparison

3.1. Case Study. Guzeng Hydropower Station is located on
the mainstream of theMuli River inMuli County, Liangshan
Prefecture, Sichuan Province. It is the fifth step of the “One
Reservoir and Six Levels” hydropower plan for the main-
stream of the Muli River (Shangtongba-Abudi River sec-
tion).'e tunnel is located on the left bank of theMuli River.
Water is drawn from about 0.4 km downstream of themouth
of the Xiaogou River to the Grade I terrace on the left bank of
the Muli River, about 300m downstream of the mouth of
Mannianjigang, building ground-level plants to generate
electricity. From the inlet to the regulator well, the diversion
line is about 11.06 km long. 'e water diversion tunnel area
crosses four large-scale faults, such as Sawa Fault and
Mannianjigang Fault. Small faults, extrusion fragmentation
zones, and interlayer misalignment zones are randomly
developed in the rock body, and fold phenomena such as
intralayer kneading and flexure are also more developed, and
groundwater is more active in the ditch section, fault zone,
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and �ssure-dense zone. �erefore, the condition of the
tunnel surrounding rock is controlled by the rock strength,
rock integrity, weathering, and unloading degree and also
in¡uenced by the spatial combination of rock layer, tectonic
line and hole axis, groundwater, and other conditions. Rock
strength and rock integrity are closely related to stratigraphic
lithology; therefore, the principle of classi�cation of sur-
rounding rocks in tunnel area is based on lithology, com-
bined with the development of geological formations, and
the surrounding rocks in tunnel area are classi�ed into III,
IV, and V according to the geological classi�cation standard
of surrounding rocks in the Code for Geological Investi-
gation of Small and Medium Hydropower Projects (DL/
T5410-2009).

�e data set used in this paper for the prediction of the
surrounding rock deformation consists of the deformation
data of the arch bottom surrounding rock of a typical section
(section 7 + 318) of the main tunnel No. 4 of the Guzeng
water diversion tunnel from July 10, 2019, to December 31,
2019, which was measured at the construction site by a
multipoint displacement meter, as detailed in Figure 1 and
Table 1. �e hyperparameters of the LSTM, GPR, and SVR
models are taken as shown in Table 2.

3.2. Analytical Results

3.2.1. Single-Step Prediction. Single-step prediction means
that the input window predicts only one future value for
each prediction. �e strategy used in this paper for single-
step prediction is to use the true value as an input to predict a
future value and then input the true value in turn to obtain
all future predicted values.

Figure 2 presents the results of SVR, GPR, and LSTM for
single-step prediction of the surrounding rock displacement.
As can be seen from the �gure, all three methods can predict
the amount of surrounding rock deformation in the latter
14 days well, and all of them can be good close to the actual
data in terms of trend.

For the performance of single-step prediction models of
SVR, LSTM, and GPR, we give data comparisons in terms of
three evaluation metrics, MSE, MAE, and MAPE (Table 3).
Comparing the data of the three evaluation metrics, we can
see that the model e�ect of SVR is optimal compared with
LSTM and GPR, while LSTM is slightly better than GPR, but

the model e�ect of both is not much di�erent. Among them,
the MAPE of SVR prediction model can reach 0.48%, which
is much better than LSTM and GPR.

Moreover, from Figure 3, the prediction results of the
three prediction models, SVR, LSTM, and GPR, all per-
formed very well in the period from November 21 to De-
cember 31, almost �tting the original data.

3.2.2. Multistep Prediction. Multistep prediction means
that each time a prediction is made, the input window
predicts n future values (also called n steps). �e strategy
for multistep prediction in this paper is to use all true values
as input when predicting the �rst future value, and when
predicting the next n-1 values, the predicted values from
the last prediction are used as input along with the true
values for prediction, and one input is performed to obtain
the future n values.

Figure 4 shows the e�ect of multistep prediction of
surrounding rock displacement for SVR, GPR, and LSTM.
From the �gure, it can be seen that the three prediction
models given in this paper all produce a certain degree of
decline in the prediction e�ect of the surrounding rock
deformation, but all three prediction models can still give a
reference prediction e�ect on the surrounding rock defor-
mation. Among them, the prediction data of SVR �ts the
data set more closely, while the prediction data of GPR is
relatively close to the actual data in terms of trend but biased
more in the prediction data from Oct. 6 to Oct. 31.

As for the performance of multistep prediction models
of SVR, LSTM, and GPR, we still give data comparisons
from three evaluation metrics, MSE, MAE, and MAPE, and
the data are shown in Table 4. Comparing the data of the
three multistep prediction model evaluation metrics, we
can see that the model e�ect of SVR still outperforms that
of LSTM and GPR, while the two models of LSTM and GPR
are still closer in the two metrics of MAE and MAPE, but in
the performance of MSE, GPR produced a larger error
value of 7.12. Among them, the MAPE of SVR prediction
model can reach 0.61%, and the prediction e�ect of the
model is still excellent. And from Figure 5, the prediction
e�ect of SVRmultistep prediction model still performs very
well very close to the data set during the period from
November 21 to December 31, while LSTM and GPR are
dwarfed.
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Figure 1: �e surrounding rock displacement of Guzeng Tunnel.
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4. Discussion

Figure 6 and 7 show the performance of different sur-
rounding rock deformation prediction methods in single-
step prediction and multistep prediction. In recent years,
scholars have been using LSTM to conduct research in
various fields with a high degree of enthusiasm. Although
LSTM has better processing performance for time-series
tasks, its own model structure is relatively complex, and the
time cost for training is much higher than that of SVR and
GPR. Even though it alleviates the long-term dependency
problem of RNNs and the “gradient disappearance” problem
caused by the backpropagation of RNNs during training to a
certain extent, it still cannot completely solve these prob-
lems. In addition, neural networks require a large number of
parameter settings in terms of network topology, initial
values of weights and thresholds, and all have a certain
degree of “black box problem,” and we cannot control the
details of the processing of hidden nodes very well, and there
is no credible prediction equation for neural networks. But
GPR and SVR are different, and both of them have pre-
diction equations of explicit form.

GPR is a nonparametric and kernel-based probabilistic
model. 'e prediction model of GPR usually performs well
in interpolation prediction, while for extrapolation predic-
tion, GPR is not very good in extrapolation prediction due to
the difficulty of data coverage. Compared with GPR, SVR
requires more tuning parameters, but the processing of small
sample data is the strength of SVM, so after using the ap-
propriate method to optimize the parameters, SVR performs
better in both single-step and multi-step prediction results.

Table 1: Surrounding rock deformation data.

Date Deformation/mm
2019/7/10 0.000
2019/7/11 14.500
2019/7/12 31.370
2019/7/12 34.285
2019/7/13 46.175
2019/7/14 50.260
2019/7/15 55.880
2019/7/16 64.330
2019/7/17 71.455
2019/7/18 79.985
2019/7/19 88.355
2019/7/20 95.840
2019/7/21 102.580
2019/7/22 109.910
2019/7/23 114.030
2019/7/24 120.265
2019/7/25 124.495
2019/7/26 128.205
2019/7/27 132.62
2019/7/28 135.865
2019/7/29 138.600
2019/7/30 141.730
2019/7/31 144.540
2019/8/1 147.835
2019/8/2 151.990
2019/8/3 155.160
2019/8/4 157.240
2019/8/5 160.930
2019/8/6 164.335
2019/8/7 165.520
2019/8/8 166.530
2019/8/9 169.550
2019/8/10 172.260
2019/8/11 174.055
2019/8/12 176.655
2019/8/13 178.485
2019/8/14 180.655
2019/8/15 182.840
2019/8/17 187.745
2019/8/19 191.600
2019/8/21 195.715
2019/8/25 202.39
2019/8/28 207.475
2019/8/30 210.705
2019/9/1 213.070
2019/9/4 216.885
2019/9/7 222.100
2019/9/8 222.575
2019/9/11 225.055
2019/9/15 225.300
2019/9/20 235.305
2019/9/22 235.805
2019/9/23 236.090
2019/9/26 239.375
2019/9/27 239.390
2019/9/30 242.245
2019/10/4 245.155
2019/10/6 247.280
2019/10/9 251.560
2019/10/11 254.090

Table 1: Continued.

Date Deformation/mm
2019/10/17 257.420
2019/10/23 260.300
2019/10/30 262.335
2019/11/8 262.805
2019/11/21 262.870
2019/11/28 263.070
2019/12/2 263.340
2019/12/12 265.791
2019/12/19 268.035
2019/12/24 268.140
2019/12/30 268.245

Table 2: Model hyperparameters.

Model Hyperparameters

LSTM

input_size� 1; time_step� 6; batch_size� 1;
num_layer� 2; hidden_size� 64; learn_rate� 0.002

drop_out� 0.2; optimization:Adam;
Activation function:tanh

GPR kernel� kernel1, n_restarts_optimizer
� 100, alpha� 0.0029, random_state� 42

SVR kernel� “rbf”, C� 100, gamma� 0.1, epsilon� 0.0019
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Figure 2: Prediction of surrounding rock displacement based on GPR, SVM, and LSTM (single-step prediction).

Table 3: Model evaluation index table (single-step prediction).

Model MSE MAE MAPE
SVR 1.88 1.57 0.48
LSTM 4.67 1.89 0.74
GPR 5.09 1.99 0.77
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Figure 3: Displacement prediction and percentage error for di�erent monitoring methods (single-step prediction).
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Figure 4: Prediction of surrounding rock displacement based on GPR, SVM, and LSTM (multistep prediction).
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However, all prediction results depend on the quality of
the data set and the ability to respond to the problem, and
the setting of parameters can directly a�ect the performance
of the prediction model. �erefore, the optimization and
adjustment of various model parameters, as well as the
analysis of the degree of in¡uence of each parameter on the
accuracy of the model, are the next tasks that can be
attempted. In addition, if the con�dence level and noise of
the dataset used for model training is too high, the use of the
trained model needs to be carefully considered in the context
of the actual situation.

5. Conclusions

With the development of technology, the risk assessment
and detection of underground cavern construction are
getting more and more attention, and the prediction of
surrounding rock deformation can provide a potential way
to predict the large-scale deformation and collapse time of
surrounding rock in the underground cavern, and in the
future, the prediction of surrounding rock deformation is
bound to be one of the important parts for the security of
underground cavern construction and monitoring. �e
purpose of this paper is to compare the prediction e�ect of
various algorithms for underground cavern surrounding
rock deformation and provide some basis for the selection of
algorithms for the prediction of surrounding rock defor-
mation, and taking Guzeng diversion tunnel as an example,
the single-step prediction model and multistep prediction
model for surrounding rock deformation prediction are
established by introducing LSTM, SVM, and GPR algo-
rithms, and the prediction model performances of various
algorithms are compared and analyzed. Firstly, from the
prediction results of each model, it is feasible to use LSTM,
SVM, and GPR algorithms to predict the deformation of the

Table 4: Model evaluation index table (multistep prediction).

Model MSE MAE MAPE
SVR 3.78 1.61 0.61
LSTM 5.26 2.09 0.78
GPR 7.12 2.08 0.81
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Figure 5: Displacement prediction and percentage error for di�erent monitoring methods (multistep prediction).
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Figure 6: Performance of di�erent methods for prediction of
surrounding rock deformation (single-step prediction).
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Figure 7: Performance of di�erent methods for prediction of
surrounding rock deformation (multistep prediction).
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underground cavern surrounding rock. In terms of per-
formance, SVR outperforms LSTM and GPR in both single-
step prediction and multistep prediction and is better than
the other two in terms of predicting the direction of the
surrounding rock deformation and the degree of data fit. In
general, all these methods have better predictions for areas
with stable deformation of the surrounding rock than for
areas with large deformation of the surrounding rock.
'erefore, the optimization of the performance of the in-
telligent algorithmmodel for the area with large fluctuations
in the surrounding rock deformation is still a problem to be
focused on for future research.
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