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�is paper proposes a stochastic search algorithm called improved hypercube optimisation search (HOS+) to �nd a better solution
for optimisation problems.�is algorithm is an improvement of the hypercube optimisation algorithm that includes initialization,
displacement-shrink and searching area modules. �e proposed algorithm has a new random parameters (RP) module that uses
two control parameters in order to prevent premature convergence and slow �nishing and improve the search accuracy
considerable. Many optimisation problems can sometimes cause getting stuck into an interior local optimal solution. HOS+
algorithm that uses a randommodule can solve this problem and �nd the global optimal solution. A set of experiments were done
in order to test the performance of the algorithm. At �rst, the performance of the proposed algorithm is tested using low and high
dimensional benchmark functions.�e simulation results indicated good convergence and much better performance at the lowest
of iterations. �e HOS+ algorithm is compared with other meta heuristic algorithms using the same benchmark functions on
di�erent dimensions. �e comparative results indicated the superiority of the HOS+ algorithm in terms of obtaining the best
optimal value and accelerating convergence solutions.

1. Introduction

�e optimisation includes �nding the best solutions in a
solution space for which the objective function obtains its
smallest (or largest) value. Real-world optimisation prob-
lems are often nonlinear and can have multiple local optimal
(minimum andmaximum) solutions.�e basic aim is to �nd
the best of these local optimums. Generally, global opti-
misation includes �nding the best available solution from all
feasible solutions given in a de�ned domain for which the
objective function will obtain its smallest (or largest) value.

Traditional numerical optimisation algorithms that are
based on �nding the derivative of the objective function
cannot �nd global optimal points for the function having
multiple local optimums. In such cases, one e�cient ap-
proach is based on the use of heuristic search algorithms.
Metaheuristic search algorithms that are based on directed
random search methods can provide su�ciently good

solutions and solve the local-optimum problem and �nd
global solutions to the optimisation problems [1, 2]. A set of
meta-heuristic optimisation algorithms is developed to �nd
the best solutions. �ese algorithms are: bat algorithm
(BAT) [3], cuckoo search (CS) [4], ant lion optimizer (ALO)
[5, 6], elephant herding optimisation (EHO) [7, 8], moth-
¡ame optimisation (MFO) [9], krill herd (KH) [10], moth
search algorithm (MSA) [11], monarch butter¡y optimisa-
tion (MBO) [12, 13], mussels wandering optimisation
(MWO) [14], and whale optimisation algorithm (WOA)
[15]. Other meta-heuristic optimisation algorithms such as
di�erential evolution (DE) [16], biogeography-based opti-
misation (BBO) [17, 18], harmony search (HS) [19], evo-
lution strategies (ES) [20], sine cosine algorithm (SCA) [21],
gravitational search algorithm (GSA) [22], monkey algo-
rithm [23, 24], dragon¡y algorithm (DA), and hybrid ABC/
DA (HAD) [25, 26] are also e�ciently used for solving many
optimisation problems.
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Paper [27] proposed an intelligent swarm-based MBO
algorithm inspired by the migration behavior of monarch
butterflies in nature. In this algorithm, the whole population is
partitioned into two subpopulations of equal size. Each indi-
vidual in population 1 changes its position based on the mi-
gration operator, each individual in population 2 changes its
position according to the butterfly adjusting operator. )e
algorithm contains exploration and exploitation properties,
easy structure, and strong robustness and is designated for
global optimisation. )e paper [28] proposed a Slime mould
algorithm that is based on the oscillation mode of slime mould
in nature. )e algorithm uses adaptive weights to simulate the
process of producing positive and negative feedback of the
propagation wave of slime mould based on bio-oscillator to
form the optimal path for connecting food with the excellent
exploratory ability and exploitation property. In the moth
search algorithm [29], the best moth is viewed as a light source.
Some neighbourmoths that are close to fittest always display an
inclination to fly around their own positions in the form of
Levy flights. In contrast, the moths that are far from the fittest
one will fly towards the best one in a big step. )ese two
operations corresponding to exploration and exploitation are
the basis of the MSO algorithm. )e paper [30] proposed a
population based hunger game search. )e algorithm is based
on hunger-driven activities and behavioural choice animals.
)e authors used the algorithm for different areas such as
artificial intelligence and machine learning with high optimi-
sation capacity. )e paper [31] based on the predation of
animals proposed a colony predation search algorithm. )e
algorithm utilizes mathematical modelling of animal hunting.
)e algorithm was used for solving engineering problems. )e
paper [32] proposed a mathematical optimisation model based
on simulation of the hunting behavior of Harris hawks. In-
spired by the cooperative behavior and chasing style of Harris
hawks, the authors designed the algorithm. A number of
benchmark examples were used to evaluate the performance of
the algorithm.

As mentioned, many metaheuristic optimisation algo-
rithms have been designed to find the best solution to global
problems and increase the accuracy of the optimisation.
However, the optimisation algorithms can sometimes get
stuck into an interior local optimal solution and cannot
escape from that state. )ese search algorithms have pre-
mature convergence problems and low search accuracy in
solving optimisation problems. )is happens due to the loss
of diversity among individuals. )e original HOS algorithm
may also have the same problems and this can lead to a lack
of finding a near-optimal solution in the search area. In this
paper, we proposed a new version of the HOS algorithm.)e
novelties of this paper are: )e novel structure of the HOS+
algorithm is proposed; )e new random perturbation
module of the HOS+ algorithm is introduced; )e proposed
algorithm has been tested on benchmark problems; )e
proposed HOS+ algorithm help to prevent premature
convergence problems and find the best solutions and also
improve search accuracy in a small number of iterations.)e
designed HOS+ algorithm provided passing over possible
local optima and has proven to be a successful convergence
optima solution for the lowest iterations.

)e remainder of the paper is organised as follows: Sec.2
presents the improved HOS+ algorithm.)e design stages and
operation modules of HOS+ are explained. Sec.3 presents the
experimental results and discussion. A set of benchmark
functions of different dimensions was used for testing the
proposed HOS+ algorithm. In Sec.4 the performance of the
HOS+ algorithm is evaluated and compared with the per-
formances of other meta-heuristic algorithms using the same
test functions of different dimensions. Finally, the conclusion is
presented in Sec 5.

2. HOS+ Algorithm

)e improved HOS+ algorithm is a new stochastic search
method inspired by a hypercube evolution. )e algorithm is
a derivative-free unconstrained optimisation method and is
based on a set of points randomly distributed inside an m-
dimensional hypercube. )e proposed algorithm provides
the movement of population (number of points inside of the
hypercube) that reaches the minimum (or maximum) of
objective function rapidly by reducing the area of the hy-
percube and updating and searching solutions at each it-
eration. )e original HOS algorithm consists of three-
initialization process, displacement- shrink process and
searching areas process. )e proposed algorithm is renewed
by adding a randommodule in the original search processes.

Stochastic processes are mathematical models of systems
that are changing randomly. )ey are characterised by ran-
dom variables described by a randomprobability distribution.
)ey have applications in different fields such as physics,
industry, economy, information technology, computer sci-
ence and many other fields. )ere are two ways to use a
random process in an optimisation problem: through a cost
function or a set of constraints. At the same time, stochastic
optimisation also refers to any optimisation technique that
uses randomness in some ensembles. We consider the case
where the parameters of objective function or constraints are
random. )e improved HOS+ algorithm is inspired by a
random process and uses random parameter p1 and pa-
rameter p2 in order to improve the problems of premature
convergence and slow finishing and search accuracy con-
siderable. )e proposed algorithm is the improvement of the
stochastic hypercube optimisation algorithm (HOS) algo-
rithm presented in [1, 2]. )e algorithm is presented in
Figure 1 and explained by the following steps in detail.

2.1. Step A: Initialization Process. )e initialization process
starts by generating initial points and forms the initial
matrices for evaluating solutions in a given hypercube. )e
initial points are generated using the following operations.

(1) Initialize the solution using the dimension of
hypercube.

X � random(n, m), (1)

where m is the dimension of the hypercube, n is
population size.
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(2) Use lower bound (LB) and upper bound (UB) to
scale the solutions xij.

xij � LB + xij(UB − LB). (2)

(3) Find the radii (R) of hypercube.

R � UB − LB. (3)

(4) Find the center of hypercube Xc.

Xc � R/2, (4)

Formula (1) initialize the solutions X inside hypercube
which is search area.

X �

x1,1 . . . x1,m
⋮ ⋱ ⋮
xn,1 . . . xn,m

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, where m is the dimension of the

hypercube, n is population size. Each position is evaluated
using an objective function. )e best point Xbest is deter-
mined according to the values of test (or objective) function
F.

In the initialization stage, the initial solutions are gen-
erated using initial conditions such as the dimension of the
hypercube (m), radii of the hypercube (R), lower-upper
boundaries (LB, UB) and a number of points (population,
m) inside the hypercube (Figure 2). )e lower and upper
boundaries are used to generate the hypercube. )e basic
parameters of the hypercube are the center Xc and radii R,
which are formulated by formulas (3) and (4). In the given
search interval, using generated xij(i� 1,. . .,n; j� 1,. . .,m)
data points inside the hypercube, the values of the objective
functions fij are calculated (here fij are elements of F). After
each iteration, the points change their positions (move-
ment). )ese initial points are evaluated according to the
objective function. So initialization process creates matrices
as Xbest, Fbest (nx1) after evaluating initial points. )e

determined Xbest point is improved (updated) using local
searches, such as hill climbing or derivative-based local
search. If we use a derivative-based local search then
Xnew

best � Xbest + ρ∇F, where 0≤ p≤ 1, F is the objective
function. )e details of the initialization process in the
HOS+ algorithm are shown in Figure 2. In the next iteration,
the Xbest is utilised to determine the Hypercube center. )is
operation is realised by computing the center and mean of
the last position point (Xc) and the last best Xbest point. )e
given process is called the “displacement” process.

2.2. Step B: Displacement–Shrink Process. )e dis-
placement–shrink process determines the hypercube’s
centre and evaluates the test (or objective) function. )e
centre of the next hypercube is evaluated using the average of
the sum of the previous hypercube’s centre and the present
best point (Xbest). )us the centre of the next hypercube
(new hypercube) is determined as

Xnew_center �
Xc + Xbest

2
, (5)

Rnew � R∗ S. (6)

Here R and Rnew are old and new radii, S is the con-
vergence factor calculated in Section 3. )e updates of
hypercube parameters are performed using (5) and (6). As a

B

YES
END All Solutions

Stop
Condition?

Displacement
and Shrink

Random
Parameters (RP)

Searching
Areas

Initialization Process

Evaluations

START

NO

A

C

D

Figure 1: Flowchart of the improved HOS+ algorithm.

Generating initial points (m, R, X, LB, UB)

Drive uniformly distributed random xij
points inside the Hypercube

Figure 2: )e steps of the initialization process.
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result of this process, the hypercube size and correspond-
ingly the search space are reduced. )e process is called
“shrink.” )e decrease in hypercube size leads to an increase
in the density of the search points (population). )e
movement of the best value is governed by contraction. )e
contraction is greater for smaller movements. )is guar-
antees fast convergence, while it protects against getting
stuck at an undesired (local) minimum.

As shown, new data points are generated at each iter-
ation and the objective function is evaluated. According to
the evaluation results, the hypercube size is changed. As a
result, the hypercube size is decreased and the search space is
shrunk correspondingly. )e decrease of hypercube size
causes an increase in the density of test points. )is process
causes a rapid finding of the optimum value of the objective
function.

)e algorithm will pass through a series of points from
the current position which determines themaximal distance.
)e displacement ranges are presented below.

(1) Normalized xij:

x
n
ij �

xij − Xc 

R
. (7)

xn
ij is a normalized value of ij

x .
(2) Normalized Xbest:

X
n
best �

Xbest − Xc( 

R
. (8)

Xn
best is the normalized value of Xbest.

(3) Normalize distance dn:

dn �
sum x

n
ij − X

n
best 

2
 

1/2

R
.

(9)

(4) Re-normalize distance:

dnn �
dn��
m

√ . (10)

)e x displacement is calculated and normalized twice
for each iteration: at first, each element of x is divided by its
corresponding initial interval so that the displacement is
converted into unity-sided points (equations (7) and (8)),
and then this number is again normalized by dividing it to
the diagonal of the points such as

��
m

√
(equations (9) and

(10)). )us, the contraction of the hypercube is becoming
higher, when the movement of the number of points shrink
which accelerates the convergence.

2.3. Step C: Searching Areas Process. Using equations
(7)–(10) the distances between new and old optimum values
are calculated in this process. In addition, the “Searching
areas” process uses the interval defined for re-normalized
distance, given in (11), to control the movements of x.

0≤dm ≤ 1. (11)

In case of satisfaction the condition by the movement x,
the convergence factor S is computed and updated at each
iteration as

S � 1 − 0.2e
− 3dnn . (12)

In the above equation, dnn is the normalized distance cal-
culated by (10) and based on the average of the last two best
values of x. )us, the purpose of the proposed algorithm
ensures the movement of the population that reaches the
minimum point rapidly by reducing the area of the hy-
percube after each iteration. A flowchart of the searching
areas process in the proposed algorithm is shown in Figure 3.

2.4. Step D: Random Parameter (RP) Module. HOS+ algo-
rithm includes a new RP module characterised by two
control parameters p1 and p2. )is module improves the
points (current positions) inside the hypercube that might
get stuck at some local solutions. At first, the p1 improves the
points having local optima problem. )e process is con-
tinued according to some tolerance and fixed by tolX. In
addition, the upper bound of dimension d can be deter-
mined according to the value of tolX. )e value of the so-
lution at the local point is updated by multiplying the
parameter p1 by a random scalar drawn from the standard
normal distribution, that is Xnew←X∗(1 + p1∗randn). Here
randn generates random numbers in the interval of 0 and 1.
)e new point will be accepted according to the values of test
functions. If the value of the optimisation function in the
new point will be minimum (or maximum) than the pre-
vious one then the new point will be included in the solution.
)us, by using this operation the presented random module
prevents the point from getting stuck in some local optimal
solutions while controlling the points’ positions inside the
hypercube. After these operations, the second new random
parameter is introduced in order to control directed
movements of all points inside the hypercube. )e intro-
duced second parameter (p2) improves the solutions along
the direction pointing to their current position with different
perturbations originating from some possible local mini-
mum and searching for another minimum point. )e points
are updated by multiplying the parameter p2 to uniformly
distributed random numbers (rand [1 x D]). )at is

X
new

(·)←X(·) ∗ (1 + p2∗ rand[1, D]). (13)

where D is searching dimension. )us, the improvements of
positions are performed along the direction pointing with
different perturbations in order to exit from some possible
local minimum or to search for another minimum point.
)e pseudocode of the random permutation module is given
in Figure 4.

)e computational complexity of the HOS+ algorithm
was analyzed. HOS+ includes initialization, fitness evalua-
tion, displacement-shrink and normalization, searching
areas and random parameter modules. Hypercube dimen-
sions n, population size m and a maximum number of it-
erations T are the main parameters affecting the running
time of the HOS+ algorithm in these modules.
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Computational complexity of initialization is O(n·m), dis-
placement- shrink and normalization module is O(n·m),
searching areas O(n), random permutation module is
O(n·m). )e displacement-shrink and normalization mod-
ule, searching areas, random permutation module running
in each iteration t; if we take into account the maximum
number of iterations T then the computational complexity of
HOS+ will be presented by O(n·m+ n·T+ n·m·T).

3. Benchmark Functions

)e benchmark functions used are Sphere function (F1),
Schwefel 2.22 function (F2), Rotated Hyper-Ellipsoid
function (F3), Ackley function (F4), Griewank function
(F5), and Hyperellipsoid function (F6). )e details of in-
formation for these test functions are given below. )e
performance of the HOS+ was evaluated using low, me-
dium and high dimensional optimisation functions. In the
paper, low dimension is taken equal to 30D, medium di-
mension equal to 60D and high dimension-90D. For more
information about these benchmark functions, we refer the
reader to the link: https://www.sfu.ca/∼ssurjano/
optimisation.html.

3.1. Sphere Function (F1). )e function is convex, contin-
uous, differentiable, separable and uni-modal. It is used xi ∈
[−5.12, 5.12] for all i� 1,. . .,n and the global minimum is at
f(x)� 0.

f(x) � f x1, x2, . . . , xn(  � 
n

i�1
x
2
i . (14)

3.2. Schwefel 2.22 Function (F2). )e function is convex,
continuous, non-differentiable, separable and uni-modal. It
is used xi ∈ [−10,10] for all i� 1,. . .,n and the global min-
imum is at f(x)� 0.

f(x) � f x1, x2, . . . , xn(  � 
n

i�1
xi


 + 

n

i�1
xi


. (15)

3.3. Rotated Hyper Ellipsoid Function (F3). )is function is
convex, continuous and uni-modal. It is used xi ∈ [−65,
65] for all i � 1,. . .,n and the global minimum is at f(x) � 0.
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B

Figure 3: Flow chart of the searching areas process in the proposed algorithm.
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f(x) � f x1, x2, . . . , xn(  � 
n

i�1


i

j�1
x
2
j . (16)

3.4. Ackley Function (F4). )is function is continuous and
multi-modal. It is used xi ∈ [−32, 32] for all i� 1,. . .,n and the
global minimum is at f(x)� 0.

f(x) � f x1, x2, ..., xn( 

� −20 exp −0.2
�
1
n





n

i�1
x
2
i

⎛⎝ ⎞⎠ − exp
1
n



n

i�1
cos 2πxi( ⎛⎝ ⎞⎠

+ 20 + e.

(17)

3.5. Griewank Function (F5). )is function is continuous
and uni-modal. It is used xi ∈ [−600, 600] for all i� 1,. . .,n
and the global minimum is at f(x)� 0.

f(x) � f x1, x2, . . . , xn(  � 1 + 
n

i�1

x
2
i

4000
− 

n

i�1
cos

xi�
i

√ .

(18)

3.6. Hyper Ellipsoid Function (F6). )is function is convex,
continuous, differentiable, separable and uni-modal. It is
used xi ∈ [−5.12, 5.12] for all i� 1,. . .,n and the global
minimum is at f(x)� 0.

f(x) � f x1, x2, ..., xn(  � 
n

i�1
i
2
x
2
i . (19)

An RP module (
Input (Step D): Number of Population (n), Number of Tolerance (tolX), Lower
Bound (LB) and Upper Bound (UB), Random Parameters (p1 and p2), randn [0,1],
Global maximum is searched (min)
Output: Best Solution (Best (X))
for i = 1 to n do

for j = 1 to tolX do
d
Xi

new

if LB < Xi
new < UB then

Continue
end if

if min > 0 then
| if f (Xi

new) > f (Xij) then

| end if
Else
| if f (Xi

new) < f (Xij) then
|
| end if
end if

end for 
end for
for i = 1 to n do

for j = 1 to tolX do

Continue
end if

if min > 0 then

|
| end if
Else

|
| end if
end if

end for 
end for
Output 

Xi
new

if LB < Xi
new < UB then

| if f (Xi
new) > f (Xij) then

| if f (Xi
new) < f (Xij) then

Xij Xi
new

Xij Xi
new

Xij Xi
new

Xij Xi
new

Xij (.) (1 + p2 * rand [1, D])

Xid * (1 + p1 * randn)
ceil (rand x D)

Step D) of the HOS+ algorithm

Figure 4: Pseudocode of random perturbation module.
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4. The Performance of HOS+ Algorithm on
Benchmark Functions

)e HOS+ algorithm is simulated in Matlab R2017a for
finding optimal solutions for a set of benchmark functions.
)e computer used for simulations has the following
characteristics;

(i) CPU: i5-8250U
(ii) CPU Speed:1.60 GHz–1.80GHz
(iii) RAM: 8.00GB
(iv) OS: Windows 10

)e HOS+ algorithm has been tested using the above-
mentioned benchmark functions on 30D, 60D, and 90D
dimensions. Evaluations are carried out using the same
population size of 50, the same number of iterations of 50
and the maximum function evaluation. For all cases, the
results are averaged using 100 independent runs of the al-
gorithm. For measuring the performances of the algorithm
the best, mean and standard deviation are taken.

At first, the performance of the HOS+ algorithm is
compared with the original HOS algorithm given in [1, 2].
Using both algorithms the experiments were conducted for all
benchmark functions on 30, 60 and 90 dimensions. Table 1
depicts the results of experiments obtained for six optimisation
functions of F1, F2, F3, F4, F5, and F6 for the HOS and HOS+
algorithms. )e simulations have been done at the same initial
conditions. )e best, averaged values of mean and standard
deviation are illustrated in the table.)e convergence plots and
time-spent of HOS+ algorithm obtained from the simulations
on 90-dimensional optimisation functions F1, F2, F3, F4, F5,
and F6 were depicted in Figures 5 to 10, correspondingly. )e
results of the experiments were presented using the conver-
gence plots and global search ability of the proposed algorithm.
For comparative purpose, the convergence plots of original

HOS algorithm are presented in Figure 11. )e comparative
results of performances given in Table 1 and the convergence
plots given in Figures 5 to 10 and Figure 11 demonstrate the
superiority of the HOS+ algorithm over the original HOS
algorithm.

5. Comparison of HOS+ with Other
Metaheuristic Algorithms

)e HOS+ algorithm performance was compared with the
performances of other meta-heuristic optimisation algo-
rithms using 6 test functions on different dimensions,
particularly 30D, 60D, and 90D. )e comparisons of the
algorithms were done using the same initial conditions. All
algorithms are simulated using the same iterations’ number,
the same dimensions, and the same maximum function
evaluation [26, 33].

)e comparative results of each function are presented in
Tables 2–5. )e best results are marked in bold. Tables 2–4
depict comparative results of experiments obtained for
optimisation functions (F1–F6) on dimensions 30, 60 and
90.100 independent runs have been done for each optimi-
sation function using HOS+ algorithm. Table 5 demon-
strates the experimental comparative results of the F1, F2,
and F4 functions on dimensions 20, 50, and 100. )e results
are averaged values of 30 independent runs of each
algorithm.

)e initial values of the parameters for the HOS+ al-
gorithm were set as follows: population size is set equal to 50
and a number of iterations is set equal to 50.

First, the proposed algorithm was compared with a
selected collection of other meta-heuristic algorithms. DA,
ABC, and HAD algorithms were taken for comparison.
Table 2 illustrates the best, mean and best standard deviation
obtained from the experiments.

Table 1: )e performances of the HOS and HOS+ algorithms using different dimensions.

HOS HOS+
Benchmark functions D Best Mean Std. Dev. Best Mean Std. dev.

Sphere (F1)
30 1.19E− 06 8.88E+ 00 4.86E+ 00 9.95E− 137 2.63E− 51 4.29E− 51
60 1.30E− 02 5.92E+ 01 4.00E+ 01 7.79E− 96 6.39E− 39 6.19E− 39
90 1.20E− 01 1.49E+ 02 7.49E+ 01 1.70E− 81 2.19E− 32 3.59E− 32

Schwefel 2.22 (F2)
30 3.00E− 01 2.67E+ 01 1.41E+ 01 1.19E− 95 1.98E− 27 3.19E− 27
60 6.50E− 01 1.01E+ 02 4.40E+ 01 3.21E− 72 3.88E− 22 6.39E− 22
90 4.75E+ 00 1.67E+ 02 7.66E+ 01 2.49E− 59 5.72E− 18 6.91E− 18

Rotated hyper ellipsoid (F3)
30 2.59E+ 02 2.10E+ 04 1.11E+ 04 3.39E− 134 2.69E− 47 2.03E− 47
60 4.08E+ 02 2.77E+ 05 1.59E+ 05 5.25E− 109 1.75E− 34 2.09E− 34
90 5.85E+ 02 9.81E+ 05 5.09E+ 05 1.05E− 75 1.35E− 28 1.79E− 28

Ackley (F4)
30 5.00E− 03 1.06E+ 01 3.49E+ 00 8.88E− 16 3.57E− 15 4.69E− 15
60 5.40E− 01 1.51E+ 01 3.86E+ 00 8.88E− 16 2.53E− 14 2.79E− 14
90 5.70E− 01 1.69E+ 01 4.40E+ 00 4.44E− 15 4.29E− 13 6.69E− 13

Griewank (F5)
30 5.00E− 02 3.10E+ 01 1.85E+ 01 0.00E+ 00 0.00E+ 00 0.00E+ 00
60 6.90E− 01 1.50E+ 02 1.19E+ 02 0.00E+ 00 0.00E+ 00 0.00E+ 00
90 1.20E+ 01 4.19E+ 02 2.39E+ 02 0.00E+ 00 0.00E+ 00 0.00E+ 00

Hyper ellipsoid (F6) sphere (F1)
30 5.10E+ 01 2.61E+ 02 4.59E+ 01 1.55E− 139 2.19E− 48 1.77E− 48
60 6.30E+ 01 2.75E+ 03 6.49E+ 02 4.35E− 113 3.39E− 36 3.59E− 36
90 6.90E+ 01 1.04E+ 04 2.45E+ 03 4.89E− 79 2.99E− 29 3.96E− 29
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In the second stage, the HOS+ algorithm was compared
with the meta-heuristic optimisation algorithms ACO, GA,
DE, and PSO. Table 3 depicts the experimental results for
each function.

In the third stage, the HOS+ algorithm was compared
with the EHO, MSA, andWOAmeta-heuristic optimisation

algorithms. Table 4 depicts the experimental results obtained
for each function.

In the fourth stage, the HOS+ algorithm was compared
with the monarch butterfly optimisation algorithm
(MBO), MBO with opposition-based learning and ran-
dom local perturbation (OPMBO), and MBO with greedy
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strategy and self-adaptive crossover operator (GCMBO)
using three benchmark functions. )e comparative results
are presented in Table 5. )e best results are marked in
bold.

In the fifth stage, the simulation results ofHOS+ algorithm is
compared with the simulation results of sine-cosine algorithm

(SCA), m-SCA [34] and improved crow search algorithm ICSA
[35]. Table 6 shows the experimental comparative results of the
F1, F2, F3, F4 and F5 functions on 30 dimensions.

)e experimental comparative results of ACO, ABC, DA
DE, HAD, GA, PSO, EHO, MSA, WOA, MBO, GCMBO,
OPMBO, ICSA, SCA, M-SCA and HOS+ algorithm showed
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Table 2: )e mean of test functions values found by ABC, DA, HAD, and HOS+

F D ABC DA HAD HOS+

F1
30 2.98E+ 01 1.76E+ 00 2.61E− 14 2.63E− 51
60 1.97E+ 02 2.29E+ 00 3.46E− 10 6.39E− 39
90 4.07E+ 02 8.53E+ 00 2.05E− 09 2.19E− 32

F2
30 7.54E+ 00 7.46E+ 00 3.40E− 08 1.98E− 27
60 6.19E+ 01 2.80E+ 01 4.66E− 06 3.88E− 22
90 1.59E+ 02 3.10E+ 01 4.89E− 05 5.72E− 18

F3
30 4.85E+ 04 1.96E+ 03 9.76E− 14 2.69E− 47
60 9.03E+ 05 2.70E+ 04 2.56E− 08 1.75E− 34
90 2.92E+ 06 1.53E+ 05 1.24E− 07 1.35E− 28

F4
30 1.70E+ 01 1.76E+ 00 5.89E− 08 3.57E− 15
60 1.95E+ 01 7.41E+ 00 7.18E− 06 2.53E− 14
90 2.00E+ 01 7.00E+ 00 3.08E− 05 4.29E− 13

F5
30 9.22E+ 01 7.64E+ 00 4.79E− 12 0.00E+ 00
60 6.93E+ 02 1.74E+ 01 8.68E− 09 0.00E+ 00
90 1.43E+ 03 2.27E+ 01 2.72E− 07 0.00E+ 00

F6
30 2.36E+ 02 4.98E+ 00 5.16E− 14 2.19E− 48
60 7.72E+ 03 1.41E+ 02 1.16E− 10 3.39E− 36
90 3.85E+ 04 6.56E+ 02 2.09E− 08 2.99E− 29

Table 3: )e mean of test functions values found by ACO, DE, GA, PSO, and HOS+.

F D ACO DE GA PSO HOS+

F1
30 1.63E+ 02 2.79E+ 01 9.58E+ 01 5.12E+ 01 2.63E− 51
60 3.76E+ 02 1.74E+ 02 2.86E+ 02 2.13E+ 02 6.39E− 39
90 6.02E+ 02 3.80E+ 02 4.65E+ 02 4.29E+ 02 2.19E− 32

F2
30 1.13E+ 02 5.38E+ 01 8.60E+ 01 1.14E+ 02 1.98E− 27
60 2.48E+ 02 1.71E+ 02 2.03E+ 02 2.49E+ 02 3.88E− 22
90 3.88E+ 02 2.97E+ 02 3.23E+ 02 3.89E+ 02 5.72E− 18

F3
30 2.13E+ 05 5.52E+ 04 1.41E+ 05 9.79E+ 04 2.69E− 47
60 1.65E+ 06 7.03E+ 05 1.18E+ 06 9.92E+ 05 1.75E− 34
90 4.30E+ 06 2.93E+ 06 3.20E+ 06 3.47E+ 06 1.35E− 28

F4
30 1.85E+ 01 1.87E+ 01 1.77E+ 01 1.87E+ 01 3.57E− 15
60 1.90E+ 01 1.90E+ 01 1.86E+ 01 1.90E+ 01 2.53E− 14
90 1.91E+ 01 1.91E+ 01 1.88E+ 01 1.91E+ 01 4.29E− 13

F5
30 8.57E+ 01 9.38E+ 01 1.27E+ 02 1.69E+ 02 0.00E+ 00
60 4.32E+ 02 6.02E+ 02 4.64E+ 02 7.27E+ 02 0.00E+ 00
90 7.13E+ 02 1.31E+ 03 8.87E+ 02 1.62E+ 03 0.00E+ 00

F6
30 2.34E+ 03 1.75E+ 02 1.20E+ 02 2.79E+ 02 2.19E− 48
60 2.28E+ 04 4.88E+ 03 7.93E+ 03 3.44E+ 03 3.39E− 36
90 8.42E+ 04 2.61E+ 04 4.28E+ 04 1.48E+ 04 2.99E− 29

Table 4: )e mean of test functions values found by EHO, MSA, WOA, and HOS+.

F D EHO MSA WOA HOS+

F1
30 2.49E− 07 2.30E− 08 2.42E− 09 2.63E− 51
60 6.44E− 07 3.67E− 07 4.67E− 09 6.39E− 39
90 1.06E− 06 1.17E− 06 7.45E− 09 2.19E− 32

F2
30 4.12E− 03 1.78E− 04 3.76E− 05 1.98E− 27
60 9.34E− 03 9.50E− 04 9.19E− 05 3.88E− 22
90 1.46E− 02 1.63E− 03 1.52E− 04 5.72E− 18

F3
30 4.59E− 04 3.02E− 07 6.47E− 06 2.69E− 47
60 2.41E− 03 8.01E− 06 2.97E− 05 1.75E− 34
90 6.11E− 03 4.79E− 05 6.02E− 05 1.35E− 28

F4
30 1.94E− 03 6.84E− 05 1.21E− 04 3.57E− 15
60 2.22E− 03 1.88E− 04 1.19E− 04 2.53E− 14
90 2.33E− 03 3.57E− 04 1.41E− 04 4.29E− 13
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that the proposed HOS+ algorithm has obtained better
results and best convergence due to escaping local optimums
in the majority of the evaluations. )e obtained simulation
results indicate the effectiveness of using HOS+ algorithm in
optimisation problems.

6. Conclusions

)is paper proposes a novel stochastic search algorithm
based on the evolution of hypercube.)e design stages of the
algorithm were explained. A new random perturbation
module is introduced in order to solve local optimum
problems in optimisation problems and to find a global
solution. )e HOS+ algorithm has been tested using various
low and high dimensional optimisation functions and the
solution of the specified local optimum problem has been
proven by experimental results. )e obtained results dem-
onstrated that the algorithm can successfully avoid getting
stuck in the local optimum and find a global solution for the
lowest iterations. Comparative results of performances that
include the best, the mean, standard deviation and con-
vergence plots demonstrate advantages of the proposed
HOS+ algorithm over other thirteen meta-heuristic algo-
rithms. )e obtained simulation results indicate the effi-
ciency of using the HOS+ algorithm in the solution of
optimisation problems. Future research includes the ap-
plication of the HOS+ algorithm to solve practical opti-
misation problems.
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