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Attribute reduction is a popular approach of preprocessing data. Discernibility matrix is a typical method that focuses on attribute
reduction. Faced with the processing of modern information systems with large amounts of data and rapid changes, the traditional
static discernibility matrix reduction model is powerless. To overcome this shortcoming, this paper �rst proposes an indis-
tinguishable element pair method that does not need to store discernibility information, which retains the advantages of in-
stitution and easy-to-understand, and at the same time e�ectively solves the problem of space consumption. In order to make the
model adapt to the processing of dynamic data sets, we further study the incremental mechanism and design a set of dynamic
reduction models, which can adjust the reduction set in time according to the changes of objects. �eoretical analysis and
experimental results indicate that the proposed algorithm is obviously superior to the discernibility matrix model, and can
e�ectively deal with the reduction of dynamic data sets.

1. Introduction

Rough sets theory (RST) is a valid mathematical tool, which was
proposed by Pawlak and Skowron in 1982, for dealing with
inaccurate, incomplete, and vague information [1]. RST has been
widely used in many �elds such as machine learning [2], data
mining [3], decision supporting [4], expert system [5], pattern
recognition [6], and music emotions annotation [7]. Attribute
reduction is one of the hot research focuses in RST [8], which
aims to delete redundant data, while keeping the distinguishing
power of the original data in information systems. For the
convenience of the following description, Table 1 summarizes the
list of abbreviations in the article. In the last two decades, many
heuristic attribute reduction approaches have been developed
based on the positive region [9], discernibility matrix [10, 11],
information entropy [12], fuzzy rough [13, 14], m-polar fuzzy
[15, 16], and knowledge granularity [17].

Among the abovementioned approaches, DMA is a
typical reduction model. Since DMA consumes a lot of space

to store distinguishable information, it cannot reduce large
data sets. In order to e�ectively express the distinguishable
information among samples, Hu and Cercone [18] proposed
a concise de�nition of a discernibility matrix. Ye and Chen
[19] proposed a discernibility matrix-elements that retains
all bases of 1. Yang and Sun [20] use the sample comparison
of the upper and lower approximation to obtain the dis-
cernibility matrix. Dong et al. [21] proposed a fast algorithm
of attribute reduction for covering the decision system with
minimal elements in discernibility matrix. Wei et al. [22]
proposed two discernibility matrices in the sense of en-
tropies. However, these approaches only consider how to
improve the distinguishing ability of samples, and do not
consider the space consumption. In order to reduce the
space computation, Jiang [10] proposed a minimal element
selection tree. Li et al. [23] proposed a simple object-attri-
bute discernibility matrix approach. Although scholars have
improved the discernibility matrix, the space consumption
problem has not been fundamentally solved. To overcome
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this deficiency, this paper proposes a method based on IEP
without discernibility matrix. Firstly, we divide the data set
according to conditional attributes and decision attributes
and calculate the number of indistinguishable element pairs.
,en, select the conditional attribute with the smallest values
of IEP. Finally, repeat the abovementioned two steps until
the value is 0.

With the rapid development of communication and
network techniques, the actual data may change over time.
However, the IEP method is only suitable for static data sets.
Hence, it is desired to design an incremental attribute re-
duction algorithm with IEP to deal with dynamic decision
systems.

Incremental learning is an efficient approach making full
use of the precious results of the original decision system,
which can obtain the efficient reduced results by recom-
puting the updated part of the dynamic data set. Many
incremental algorithms have been proposed with different
models for dynamic data. Yang proposed an incremental
algorithm for updating an object or attribute [24]. Ge et al.
developed an incremental attribute reduction based on a
simplified discernibility matrix, which is equivalent to at-
tribute reduction based on a positive region [25]. Liu et al.
proposed a strong discernibility matrix method for incre-
mental attribute reduction on fuzzy decision tables [26]. In
literature [27], Wei proposed three new types of dis-
cernibility matrices by compacting a decision table. Zhang
et al. proposed a method based on a relation matrix under
the change attribute reduction in set-valued information
systems [28]. Ma et al. [29] proposed a compressed binary
discernibility matrix to process the group dynamic data.
Obviously, the abovementioned matrix methods mainly
focus on updating the elements of discernibility matrix.
,ese approaches are ineffective in obtaining the reduction
results with large-scale decision systems due to the limited
memory space. Hence, we incorporate the incremental
update mechanism into the IEP approach. Verifies the
feasibility and efficiency of proposed algorithm through
extensive experiments on UCI data sets.

2. Preliminaries

In this section, we review some basic concepts about rough
set, discernibility matrix, and indistinguishable element-
pair.

2.1. Basic Concepts

Definition 1 (see [1]). Given the decision system is a qua-
druple tuple S � (U, A, V, f), where U is a finite nonempty
object set and A is a finite nonempty attribute set, V �

∪ a∈AVa, Va is a set of its values, and f: U × A⟶ V is an
information function with f(x, a) � Va for each a ∈ A and
x ∈ U. If A � C∪D, where C is the conditional attribute set,
and D is the decision attribute set. For every subset P⊆A , an
indiscernibility relation IND(P) is defined as follows:

IND(P) � (x, y) ∈ U × U |∀a ∈ P, f(x, a) � f(y, a) . (1)

Obviously, if IND(P) denotes as U/P, U/P is an
equivalence relation. We assume includes x, the equivalence
relation x is defined as:

[x]P � y |∀a ∈ P, f(x, a) � f(y, a) . (2)

Definition 2 (see [1]). Given the decision system
S � (U, A, V, f) for every subset Y⊆U and indiscernibility
relation IND(P), the upper approximation set and the lower
approximation set of Y can be defined by the basic set of P as
follows:

P(Y) � x ∈ U|[x]P⊆Y ,

P(Y) � x ∈ U [x]P ∩Y≠∅
  .

(3)

,e universe U is partitioned into three disjoint regions
by these two approximations P(Y) and P(Y): the positive
region POSP(Y), the negative region P(Y), and the
boundary region BNDP(Y). ,en the three different regions
are defined as following, respectively:

NEGP(Y) � U − P(Y)

BNDP(Y) � P(Y) − P(Y)

POSP(Y) � P(Y).

(4)

Definition 3 (see [18]). Let DT � (U, C∪D) be a decision
table, C be the condition attribute set, and D be the decision
attribute. ,e discernibility matrix in all samples is defined
as MD

DT � mD/ij , where:

m
D
ij �

c ∈ C: f xi, c( ≠f xj, c  , f xi, d( ≠f xj, d ,

∅, otherwise.

⎧⎨

⎩

(5)

Definition 4 (see [31]). Let DT � (U, C∪D) be a decision
table, C be the condition attribute set, and D be the decision
attribute. In terms of a positive region, the discernibility
matrix is defined as MP

DT � mP
ij ,where:

Table 1: ,e list of abbreviations.

Abbreviation Original
RST Rough sets theory
DMA Discernibility matrix approach
IEP Indistinguishable element-pair
IEPAO Indistinguishable element-pair adding objects
IEPDO Indistinguishable element-pair deleting objects
CPNR Compute the positive and negative region
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m
P
ij �

c ∈ C: f xi, c( ≠f xj, c  , f xi, d( ≠f xj, d andxi, xj ∈ U1,

c ∈ C: f xi, c( ≠f xj, c  , xi ∈ U1, xj ∈ U2,

∅, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

U1 is the consistent part of the decision table and U2 is the
inconsistent part DT.

Definition 5 (see [22]). Let DT � (U, C∪D) be a decision
table, C be the condition attribute set, and D be the decision
attribute. ,e discernibility matrix in the sense of com-
plement entropy is defined as ME/DT � mE/ij .,where:

m
E
ij �

c ∈ C: f xi, c( ≠f xj, c  , f xi, d( ≠f xj, d  andxi, xj ∈ U1

c ∈ C: f xi, c( ≠f xj, c  , xi ∈ U1, xj ∈ U2

c ∈ C: f xi, c( ≠f xj, c  , xi, xj ∈ U2

∅, otherwise

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

U1 and U2 are the same as Definition 4.

Theorem 1. In the discernibility matrix information in
Definition 5, the total number of pairwise comparisons be-
tween elements is only related to the division of decision
attributes of the data objects.

Proof. Suppose U is a nonempty finite set of data objects. U1
is the consistent part of U which belongs to the set of positive
regions. U2 is the inconsistent part of U, which is included in
the negative region set. ,e samples in U1 and U2 are not
duplicated. Let [U/D] � D1, D2, . . . , Dn, Dneg , DPOS �

D1 ∪D2 ∪ . . . ∪Dn, then U1 � Dpos, and U2 � Dneg.

Suppose | · | is the cardinality of the data set, we can have
|U| � |Dpos| + |Dneg|. According to Definition 5, it can be
seen that there are three cases for comparison between
samples.

Firstly, the positive region samples with different values
of decision attribute should be compared in pairs where
xi, xj ∈ U1 and f(xi, d)≠f(xj, d). Due to the symmetry of
f(xi, d)≠f(xj, d) and f(xj, d)≠f(xi, d), the sample xi

and xj are compared twice, the actual number of com-
parisons should be halved. Let count1 be the number of
comparisons between samples of the positive region set, then
we can achieve the following conclusion:

count1 �
D1


 · Dpos



 − D1


  + D2


 · Dpos



 − D2


  + . . . + Dn


 · Dpos



 − Dn


  

2 � Dpos




2

− 
n
i�1 Di



2

 /2
. (8)

Secondly, let count2 be the number of comparisons
between samples of the positive region and negative region,
then we have count2 � |Dpos| · |Dneg| where xi ∈ U1,xj ∈ U2.

,irdly, all samples among the negative region are
compared with other samples, and repeated comparisons

should be subtracted, we have
count3 � |Dneg| · (|Dneg| − 1)/2.

Overall, the total number (TotalCount) of compari-
sons in discernibility matrix based on Definition 5 is as
follows:
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Totalcount � Count1 + Count2 + Count3 �
Dpos




2

− 
n
i�1 Di



2

 

2
+ Dpos



 · Dneg



 + Dneg





·
Dneg



 − 1 

2
�

|U|
2

− |U| − 
n
i�1 Di



2

− Di


  

2

� C
2
|U| − 

n

i�1
C
2
Di| | �

|U|
2

− |U| − 
n
i�1 Di



2

− Di


  

2

� C
2
|U| − 

n

i�1
C
2
Di| |.

(9)

Obviously, when a data set is given, the total number of
comparisons is only related to the division of decision at-
tributes, and irrelevant to conditional attributes. □

2.2. 2e Presentation of the Indistinguishable Element-Pair.
,e discernibility matrix algorithm records the differences
between samples by different values of conditional attributes
between them, and the amount of distinguishable information
measures the importance of the attributes.,e larger the value,
the more important the attribute. For the discernibility matrix
proposed in literature [24] and literature [22], the number of
comparisons between samples in the discernibility matrix is
determined when the data set is given. Among the samples to
be compared, the value of certain condition attributes is either
the same or different. ,e same values of one conditional
attribute mean being indistinguishable, while different means
being distinguishable. If the amount of distinguishable infor-
mation is larger, the amount of indistinguishable information is
smaller when the total number of comparisons does not
change. Here, we use the amount of indistinguishable infor-
mation to measure the importance of conditional attributes.

Definition 6. Suppose U is a universe that is nonempty finite
data set, A is a conditional attribute set.
U/A � X1, X2, · · · Xn  is the division of data set U on
conditional attribute A and U/D � Y1, Y2, · · · , Ym, Yneg  is
the division on decision attribute D. Yneg is the division of
inconsistent samples in decision attributes ,e

indistinguishable element-pair ofA relative toD is defined as
follows:

IEPU(D|A) � 
n

i�1
C
2
Xi| | − 

m

k�1
C
2
Xi ∩Yk| |

⎛⎝ ⎞⎠, (10)

where C2
|Xi|

� |Xi| · (|Xi| − 1)/2.
In fact, all data objects among the subdivision Xi are

indistinguishable from each other. ,ere are C2
|Xi|

pairs.
However, among these element pairs, some comparisons
should be subtracted due to some data objects with the same
decision attribute value. We have the definition of indis-
tinguishable element-pair.

,e asterisked (∗) data objects belong to the negative
region set

Example 1. Suppose U is a simplified decision table without
repeated samples in Table 2. A is a conditional attribute and
D is a decision attribute. Let A � a∪ b , the data objects x9,

x10} belong to the negative region, Let
U/D � x1, x2, x3 , x4, x5, x6 , x7, x8 , x9, x10  . and
U/A � 1, 2, 5, 6{ }, 3, 4, 9{ }, 7, 8, 10{ }{ }.In subdivisions U/A,
the underlined data objects have the same decision attribute
value. Data set U has three subdivisions
U1 � 1, 2, 5, 6{ }, U2 � 3, 4, 9{ } and U3 � 7, 8, 10{ } on condi-
tional attribute A. According to Definition 6, we have in-
distinguishable information of the three subdivisions as
follows:

IEPU1
(D|A) � C

2
4 − C

2
2 − C

2
2,

IEPU2
(D|A) � C

2
3,

IEPU3
(D|A) � C

2
3 − C

2
2,

IEPU(D|A) � IEPU1
(D|A) + IEPU2

(D|A) + IEPU3
(D|A) � 9.

(11)

Theorem 2. 2e smaller the indistinguishable element pair,
the stronger the distinguishing ability.

Proof. According to ,eorem 1, if the data set is given, the
number of data objects in the positive and negative regions is
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also definite. Obviously, according to Definition 5, the
number of comparisons between all data objects in the data
set is also an invariable number. Suppose TotalCount is the
total number of comparisons and the indistinguishable el-
ement-pair based on conditional attribute A is IEPU(D|A),
then the discernibility element-pair’s TotalCount-

IEPU(D|A). So, the smaller the IEPU(D|A), the bigger the
TotalCount-− IEPU(D|A), the stronger the
discernibility. □

Theorem 3. Given the decision system S � (U, C∪D) and
B⊆P⊆C. 2en U/(D|P) is detailed of U/(D|B), and we have
IEPU(D|P)≤ IEPU(D|B)

Proof. Let U/B � x1, x2, · · · , xj ∪xj+1, xj+2, · · · , xn  and
U/P � x1, x2, · · · , xj, xj+1, · · · , xn . Suppose xj ∪ xj+1 is a
subdivision of U/B. ,e detail subdivision based on P is xj 

and xj+1  and xj ∩ xj+1 � ∅, the other subdivision is un-
changed. Let U/D � Y1, Y2, · · · , Ym . For convenience be-
low, let Δ � 

n
i�1∧i≠ j∧i≠ j+1(C2

|Xi|
− 

m
k�1 C 2

|Xi ∪Yk|), |Xj|

� x,|Xj+1| � y, 
m
k�1 |Xj ∩Yk| � ax, 

m
k�1 |Xj+1 ∩Yk| � by

and 0≤ a, b≤ 1, we have the result as follows:

IEPU(D|B) � Δ + C
2
Xj ∪Xj+1




− 
m

k�1C
2

Xj ∪Xj+1( ∩Yk




� Δ +
(x + y)(x + y − 1)

2
−

(ax + by)(ax + by − 1)

2
IEPU(D|P)

� Δ + C
2
xj




+ C
2
xj+1




− 
m

k�1
C
2
xj ∩Yk




− 
m

k�1
C
2
xj+1 ∩Yk




� Δ +
x(x − 1)

2
+

y(y − 1)

2
−

ax(ax − 1)

2

−
by(by − 1)

2
IEPU(D|B) − IEPU(D|P) � xy − axby.

(12)

Since 0≤ a, b≤ 1, IEPU(D|B) − IEPU(D|P) � C2
|xi ∪ xj|

− C
2
xi| | − C

2
xj



≥ 0,Weave IEPU(D|P)≤ IEPU(D|B) (13)

□

Theorem 4. Let S � (U, C∪D) be a decision table and U is a
data set without duplicate samples, then IEPU(D|C) � 0.

Proof. Assume U/C � U1, U2, . . . , Un , Since U′ is a data
set without duplicate samples, |U1| � |U2| � . . . � |Un| � 1,
So IEPU(D|C) � 

n
i�1 0. □

Definition 7. Let S � (U, C∪D) be a decision table and
B⊆C. U is a data set without duplicate samples. ,en B is a
relative reduction based on the following indistinguishable
element-pair of S if B satisfies:

(1); IEPU(D|B) � IEPU(D|C)

(2); ∀a ∈ B, IEPU(D|(B − a{ }))≠ IEPU(D|B)

Definition 8 (see [30]). Let S � (U, A) be an information
system. For any a ∈ A the value of object x about attribute a
is f(a, x). Let Dis(a) � (xi, xj)|f(a, xi)≠f(a, xj)  and

Dis(A) � ∪ a∈ADis(a), we called Dis(a) and Dis(A) the
discernibility relations in terms of a and A, respectively.

Definition 9 (see [30]). Suppose U � x1, x2, · · · , xn , let
MS � (cij)n×n denote a n × n matrix, where
cij � a ∈ A: f(a, xi)≠f(a, xj)  for (xi, xj) ∈ Dis(A),
otherwise cij � ∅, MS is called the discernibility matrix of
the information system S � (U, A).

3. The Algorithm Based on
Indistinguishable Element-Pair

,e indistinguishable element-pair algorithm obtains the
importance of attributes by means of discernibility matrix
information and does not create the discernibility matrix.
We should compute the positive region and negative region
at first, then achieve the simplified decision table. Reduce the
calculation of duplicate data objects, saving a lot of time.

3.1. Compute the Positive and Negative Region (CPNR). In
each detailed subdivision, if the decision value of the sample
is different, then we put the first sample x into the negative
region set and let Uneg � Uneg and ∪ x the rest put the x into

Table 2: Simplified decision table.

No a b c D
1 1 0 0 1
2 1 2 0 1
3 1 2 0 1
4 1 2 1 2
5 1 0 2 2
6 1 0 3 2
7 0 0 1 3
8 0 0 2 3
9 1 2 3 ∗
10 0 0 3 ∗
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the positive region set and let U � Upos ∪Uneg. In the process
of calculating positive and negative regions, equivalence
class division needs to be calculated continuously. Here is an
ingenious method, which can greatly speed up the calcu-
lation speed of equivalence class partitioning. ,e details are
described as follows: for i in range (n): list [array[i]
AppendixAppendix for clarity. (i).

If the data object has an integer value on the attribute, the
characteristics of an integer can be used. By collecting all the
objects with the same value in the same subdivision,
equivalence class division can be obtained quickly and
accurately.

Example 2. ,ere are six data objects, the values of attribute
A are 1, 2, 1, 3, 2, and 1, respectively. Let Array [1–6]� {1, 2,
1, 3, 2, 1}, collecting the data objects with the same value into
the same list. Array [1]�Array [3]�Array [6]� 1, we have
list [1]� {1, 3, 6}. Array [2]�Array [5]� 2, we have list [2]�

{2, 5}. Array [4]� 3, we have list [3]� {4}.
Abovementioned all, data objects 1, 3, and 6 are divided

into the same subdivision, and data objects 2 and 5 are
divided into the same subdivision. (Algorithm 1)

3.2. 2e Attribute Reduction Algorithm Based on Indistin-
guishable Element-Pair (IEP). Suppose f (x, a) is the value of
the data object x on the conditional attribute A. ,ere have
two different data objects xi and xj, if f(a, xi)≠f(a, xj),
then a is recorded in the discernibility matrix. Another way
to think about it is to take down indistinguishable data
objects. After research, all samples divided by the same
subdivision are indistinguishable. Algorithm IEP is de-
scribed as follows: (Algorithm 2)

Example 3. Suppose U′ is a simplified decision table without
repeated samples in Table 3. Based on the definition
equivalence class, we have U′/a∪D � {{1, 4},{2, 3},{5,
6∗}}.,e bold data objects of the subdivision have the same
value on the attribute a∪D. ,e asterisked (∗ ) data objects
belong to the negative region set. Based on the Definition 6,
we have IEPU′

(D|a) � C2
2 + 0 + C2

2 � 2, U′/b∪D � {{1, 2, 3,
4},{5, 6∗}}, IEPU′

(D|b) � C2
4 − C2

3 + C2
2 � 4, U′/c∪D � {{1,

3, 6∗},{2, 5},{4}}, IEPU′
(D|c) � C2

3 − C2
2 + C2

2 + 0� 3,
U′/e∪D � {{1, 3, 5, 6∗},{2, 4}}
IEPU′

(D|e) � C2
4 − C2

2 + C2
2 � 6

When the conditional attribute with the lower indis-
tinguishable degree has a stronger distinguishing ability, we
select the attribute a, and let red� {a}. If the amount of
information is not zero, we enter the next cycle. On the basis
of it is divided by conditional attributes {b, c, e}, we obtain
the following: U′/red∪ b∪D � {{1, 4},{2, 3},{5, 6∗}}
IEPU′

(D|(red∪ b) � C2
2 + 0 + C2

2 � 2, U′/red∪ c∪D � {{1},
{2}, {3}, {4}, {5}, {6}}, IEPU′

(D|red∪ c) � 0,
U′/red∪ e∪D � {{1}, {2}, {3}, {4}, {5, 6∗}} IEPU′

,
(D|e) � 0 + 0 + 0 + 0 + C2

2 � 1.
Because IEPU′

(D|red∪ c) � 0 is the smallest, we select c
to merge into the reduced set red. Now, the amount of
information is 0, and the algorithm terminates. Reduce
result is red � a, c{ }.

3.3. 2e Existing Static Reduction Algorithms. ,e typical
discernibility matrix algorithm and the related improved
algorithms constantly revise the definition of discriminant
matrix from the perspective of distinguishable data objects,
leading to the inevitable consumption of a large amount of
space resources to store the discernibility matrix. ,e
phenomenon of memory overflow often occurs during the
reduction of large data sets, which leads to the failure to
complete the reduction task.

,e IEP method does not need to store discernibility
matrix and is suitable for reduction of large-scale data sets. In
order to further verify the effectiveness of the IEP presented in
this paper, let’s analyze the complexity of time and space and
other similar algorithms based on discernibility matrix. In IEP
algorithm, U is a decision table. Steps 2-3 focus on calculating
the simplified decision table U′ and |U′|≤ |U|. ,e time
complexity of computing U′ is O(|U||C|). ,e time com-
plexity of steps 5 is O((|C|2 − |Red|2)|U′|). ,e space com-
plexity of data set is O(|U||C|), steps 5 want space O(|U′|).
,erefore, the total time complexity of algorithm IEP is
O(|U||C|) + O((|C|2 − |Red|2) · |U|′) and the space com-
plexity is O(|U||C|). Table 3 shows a comparison of the time
and space complexity of computing the reductions by Al-
gorithms HU [18], DDMSE [22], and MEDA [30]. From
Table 4, we can obtain the time complexity of IEP is usually
much smaller than the algorithms HU because of O((|C|2 −

|Red|2) · |U|′) + O(|U||C|) is lower than
O(|U||C|) + O(|U|2|C|2). ,e time complexity of the algo-
rithm MEDA is O(|U|2|C|2) . ,e space complexity of al-
gorithm IEP is O(|U||C|) but the space complexity of storing
the discernibility matrix of HU, DDMSE is O(|U|2|C|).
,erefore, the space consumption of algorithm IEP is much
less than that of algorithms HU, DDMSE, and MEDA.

4. Incremental Attribute Reduction Algorithm
Based on Indistinguishable Element-Pair

,e abovementioned algorithm IEP only adapts to the static
data set. In reality, most data sets are dynamic. ,e tradi-
tional static methods are ineffective. ,erefore, it is neces-
sary to study some algorithms for dynamic data sets.

4.1. An Incremental Method to Calculate Indistinguishable
Element-Pair after Adding Some Objects (IEPAO). ,ere are
two kinds of data objects as to updating in data set: increase
and decrease. Let’s introduce the first one: to increase the
data objects. When some data objects are added to data set,
we only need to calculate the IEP of the updating part and
obtain the amount of information with the help of the
previous reduction result red. If the amount of information
is zero, the updated reduction result is red. Otherwise, the
added part objects will be merged with the basic data, we
compute the amount of information based on detailed
subdivision according to attribute set red∪D.

Theorem 5. Let S � (U, C∪D) be a decision system,
U/C∪D � X1, X2, · · · , Xm . It is assumed that UΔx is the
new data objects,

6 Mathematical Problems in Engineering



UΔx/C∪D � Y1, Y2, · · · , Ym′
 , Xi ∪Yi � Xi

′, 1≤ i≤ k.

According to the division of U/C∪D, UΔx/C∪D, we have
U∪UΔx/C∪D � X1′, X2′, . . . , Xk

′, Xk+1, Xk+2, . . . , Xm, Yk+1,

Yk+2, . . . , Ym′
}. ,en IEPU∪UΔx(D|C) � IEPU(D|C) + IEPUΔx

(D|C) + |U||UΔx| − 
k
i�1 |Xi||Yi|

Proof. See Appendix 1 for the proof process.
According to,eorem 5, the value of IEPU(D|C) is related

to IEPUΔx
(D|C), where add data objects. We propose the al-

gorithm IEPAO based on this characteristic. (Algorithm 3)
In Table 5, red is the reduction result before adding data,

red′ is the final reduction result IEP can only reduce static
data set the time complexity is
O(|U||C|) + O((|C|2 − |red|2) · |U|) If data objects UΔx is
added, the time complexity becomes
O((|U| + |UΔx|) · |C|) + O((|C|2 − |red|2)(|U| + |UΔx|)). ,e
IEPAO algorithm uses the previous reduction results, the
time complexity is O(|UΔx| · |C|) + O(((|C| − |red|)2

− (red′ − red)2) · min |UΔx|, |U| ). It clearly shows that the
calculation time of IEPAO is less than IEP. □

4.2. Incremental Updating Attribute Reduction Algorithm
When Delete Some Objects (IEPDO). In reality, some data
will be discarded after a long time. IEPDO algorithm can
reduce the deleted data objects dynamically.

Theorem 6. Let S� U, C∪D{ } be a decision system and
U/C∪D � X1, X2, · · · , Xm . We assume that the deleted
data object set is UΔx and UΔx/C∪D � Y1, Y2, · · · , Yk .
From the definition of equivalence class divided, we have
(U − UΔx)/C∪D � X1′, X2′, · · · , Xk

′, Xk+1, · · · , Xm , where
Xi
′ � Xi − Yi (i� 1, 2, . . ., k). If delete the data objects UΔx

from U, the indistinguishable amount of information is

Input: U, R � ∅, count � 0, C, D

Output: U′, Upos′ , Uneg′
/∗U′ is a data set without duplicate samples, Upos′ is a positive region, data set and Uneg′ is a negative region data set. ∗ /

Step 1: U′ � Upos′ � Uneg′ � ∅
Step 2: U″ � U

Step 3: while (count≤ |U|&&R⊆C) do{
Step 3.1: for any Ci ⊂ C − R, let R � R∪Ci

Step 3.2: compute U″/R � U1″, U2″, . . . , Un
″ ,

Step 3.3: statistics of the subdivisions regarded as
|Ui
″| � 1, let Upos′ � Upos′ ∪Uik, count add 1. }

Step 4: scan the remaining subdivisions.

ALGORITHM 1: CPNR algorithm computes the positive and negative region method.

Input: S � (U, C∪D)

Output: red
Step 1: red←∅, B←∅
Step 2: Calculate the positive region Upos and negative region Uneg with CPNR
Stet 3: get the simplified decision table U′ through Step 2
Step 4: IEP←Sys.maxsize, IEP list←∅
Step 5: while (IEP> 0) do {
Step5.1: IEP(b, B, D)�min{IEP(a, B, D), a ∈ C − B

Step 5.2: IEP list←IEP list(b, B, D)

Step 5.3: delete all the subdivisions and the card is 1 of IEP_list
Step 5.4: B←B∪ b{ }}

Step 6: red←B return red

ALGORITHM 2: ,e indistinguishable element-pair algorithm (IEP).

Table 3: Example of decision table.

No a b c e D
1 0 0 1 0 1
2 1 0 0 1 1
3 1 0 1 0 1
4 0 0 2 1 2
5 2 1 0 0 2
6 2 1 1 0 ∗

Table 4: A comparison of time and space complexity of IEP, HU,
DDMSE, and MEDA.

Algorithm Time Space
IEP O(|U||C|) + ((|C|2 − |Red|2) · |U|′) O(|U||C|)

HU O(|U||C|) + O(|U|2|C|2) O(|U|2|C|)

DDMSE O(|U||C|) + O(|U|2|C|2) O(|U|2|C|)

MEDA O(|U|2|C|2) O(|U|2)

Mathematical Problems in Engineering 7



IEPU− UΔx
(D|C), then IEPU− UΔx

(D|C) � IEPU(D|C) +IEPUΔx

(D|C) − |U||UΔx| + 
k
i�1 |Xi||Yi|.

Proof.

IEPU− UΔx
(D|C) � C

2
U− UΔx| | − 

k

i�1
C
2
Xi − Yi| | − 

m

i�k+1
C
2
Xi| |

� C
2
|U| + C

2
UΔx| | − |U| UΔx


 − 

k

i�1
C
2
Xi| | + C

2
Yi| |  + 

m

i�1
Xi


 Yi


 − 

m

i�k+1
C
2
Xi| | � IEPU(D|C) + IEPUΔx

(D|C) − |U| UΔx


 + 
k

i�1
Xi


 Yi


.

(14)

According to ,eorem 6, the value of IEPU(D|C) is
related to IEPUΔx

(D|C) where delete data objects. We
propose the algorithm IEPDO based on this characteristic.
(Algorithm 4)

When some objects are deleted, we have the indistin-
guishable information of updated data set, which needs a
small amount of computation through the previous reduced
result and deleted data objects. Suppose the final reduction
result is red′, usually, |red′| less than or equal to |red| and less
than |C|. ,e time complexity comparison of IEPDO and
IEP is provided in Table 6. Obviously, the time complexity of
IEPDO is smaller than IEP. □

5. Experiment Analysis

In this section, lots of experiments are conducted on both
static and dynamic data sets to verify the efficiency of the
proposed attribute reduction algorithms. In the experi-
ments, fifteen data sets are downloaded from UCI. Table 7
displays the basic information of each data set, where |U|

represents the number of samples, |C| represents the number
of conditional attributes, |D| represents the number of
decision classes, and Type represents the decision system is
consistency (Y in short) or inconsistency (N in short), re-
spectively. For the convenience of the following description,

Input: U, U/red∪D, red and incremental object sets UΔx, where U is the simplified decision table before update.
Output: Updated reduction set red′
Step 1: Mark the negative region data objects, list←U/red∪D, red′←red
Step 2: Compute IEPUΔx

(D|red′)
Step 3: We may assume that (U/red′)∩ (UΔx/red′) has k subdivisions and Xi ∈ U, Yi ∈ UΔx, then compute 

k
i�1 |Xi||Yi|.

Step 4: Compute Info � IEPU(D|red′) + IEPUΔx
(D|red′) + |U||UΔx| − 

k
i�1 |Xi||Yi|

Step 5: If Info� 0, algorithm is terminated else
While Info≠ 0 do {
Let list←U∪UΔx/red′
for a in C − red′ {

Compute IEPU∪UΔx(D|red″ ∪ a)

, a∗←min IEPU∪UΔx(D|red″ ∪ a) 

red′←red′ ∪ a∗ ,
list←(U∪UΔx)/red′ }

Compute Info � IEPU∪UΔx(D|red′) }
Step 6: return red′

ALGORITHM 3: Incremental updating algorithm based on IEP when adding some objects (IEPAO).

Table 5: ,e time complexity of each step of algorithm IEPAO.

Step no Time complexity Result
Step 1 O(|UΔx||C|) Get UΔx
Step 2 O(|UΔx/red∪D|) Get IEPUΔx(D|red)

Step 3 O(|U/re d|) + O(|UΔx/red|) Get (U∪UΔx)/red
Step 4 O(1) Get info
Step 5 O(|UΔx|•|C|) + O(((|C| − |red|)2 − (red − red)2)•min |UΔx|, |U| ) Get red′

8 Mathematical Problems in Engineering



the data set Letters recognition is abbreviated as Letters,
Mammographic Mass as Mass. All the character or string
features are normalized into an integer. All of the experi-
ments have been implemented on a PC with Windows 10,
Core™ i7-10710U CPU 1.10GHz 1.61Hz and 8G memory.
All of the algorithms are coded in python, and the used
software isPyCharm Community Edition 2020.2.3× 64 and
Weak3.2.

5.1. Performance Comparison between Algorithm IEP and
Other Discernibility Matrix Algorithms Based on Static Data
Sets. In experiment, we consider the fifteen data sets from
UCI listed in Table 7. ,ese selected data sets are reasonably
distributed, including large data sets for Letters and small

data sets for Hepatitis, Audiology, consistent data sets (Gene
and Mushroom, etc.), and inconsistent data sets (Mass and
Spect heart). In order to show the time effect of each al-
gorithm, we refer to the SpeedupRatio�Tbaseline/T method
proposed by literature [31], is the executing time of a typical
algorithm. Tbaseline reaches its maximum when the typical
algorithm cannot perform the reduction task. ,en
SpeedupRatio ∈ [0,∞).

For the different data sets, the SpeedupRatio of IEP and
the other three algorithms (Hu, DDMSE, andMEDA) is also
different. Table 8 shows the SpeedupRatio of IEP, Hu,
DDMSE, and MEDA. ,e data in bold indicates that the
algorithm runs the fastest on a certain data set. In Table 8, we
have the unpredictable speed of Hu, DDMSE, andMEDA on
Letters and Connect-4 data sets because these two data sets

Input: U, U/red∪D, red and delete object sets UΔx, where U is the simplified decision table before update.
Output: red′
Step 1: Mark the deleted data objects is UΔx, list←U/red∪D, red′←red
Step 2: Compute IEPUΔx

(D|red′);
Step 3: We may assume that (U/red′)∩ (UΔx/red′) has k subdivisions and Xi ∈ U, Yi ∈ UΔx, then compute 

k
i�1 |Xi||Yi|

Step 4: Compute Info � IEPU(D|red′) + IEPUΔx
(D|red′) − |U|‖UΔx‖ + 

k
i�1 |Xi||Yi|

Step 5: Let list←(U − UΔx)/red′
for a in red′ {
Compute Info � IEPU− UΔx

(D|red′ − a),
if Info� 0 then red′←red′ − a∗ and list←(U − UΔx)/red′

else
break;
}

Step 6: return red′

ALGORITHM 4: Increment updating algorithm based on IEP when delete some objects (IEPDO).

Table 6: ,e time complexity of algorithm IEPDO and IEP.

Algorithm Time complexity
IEP O((|U| − |UΔx|)|C|) + O((|C|2 − |red|2)(|U| − |UΔx|))

IEPDO O((|U| − |UΔx|)|red|) + O((|red|2 − |red′|2)(|U| − |UΔx|))

Table 7: A description of data sets.

Dataset |U| |C| |D| Consistency?
Mushroom 8124 22 2 Y
Audiology 226 70 24 Y
Blance-scale 625 4 3 Y
Breast 286 9 2 Y
Car 1728 6 4 Y
Letters 20000 17 26 Y
Ticdata2000 5822 85 2 Y
Gene 3190 60 3 Y
Nursery 12960 8 5 Y
Handwritten 5620 64 10 Y
Mass 830 6 2 N
Hepatitis 155 19 2 N
Connect-4 67557 42 3 Y
Chess kr-kp 3196 36 2 Y
Spect heart 267 22 2 N

Mathematical Problems in Engineering 9



are too large. ,e SpeedupRatios of IEP are 1.6109 and
2.4286, respectively, on data sets Audiology and Hepatitis.
Since the values are greater than 1, the speed of IEP is faster
than Hu on Audiology and Hepatitis. From Table 8, IEP is
the fastest but the difference is not obvious among the Hu,
DDMSE and MEDA based on small data sets. Overall, the
SpeedupRatio is related to |U|2 · |C|. ,e smaller the
|U|2 · |C|, the faster the speed.

Table 9 shows the reduction and performance time of the
comparisons of four algorithms. In Table 9, time is measured
in seconds, red is reduction and the data in bold represents
the minimum reduction time of many algorithms. ,e IEP
takes only 1.953 seconds to reduce the Mushroom data set,
while DDMSE takes 230.071 seconds. ,e main reason is
that DDMSE modifies the definition of discernibility in-
formation to improve the distinguishing ability, leading to
the increasing number of compared element pairs. ,en, it
makes the space for storing discernibility matrix larger and
larger. On data sets Letters and Connect-4, IEP can quickly
and effectively obtain the reduction results, while Hu,
DDMSE, and MEDA cannot complete the reduction task
due to insufficient memory. On the small data set Breast and
Balance-scale, IEP needs to waste 0.035 seconds, while the
other three algorithms take 0.191,0.152 and 0.044 seconds
respectively. For the reduction on a small data set, the time
effect of IEP and other algorithms is not obvious.

Compared with other discernibility matrix algorithms,
IEP has less time consumption, while getting the same re-
duction results based on the same data sets. Especially, the
reduction effect is more obvious on large-scale data sets.

5.2. Time Comparison of IEPAO and IEPWhen Adding Data
Objects. In the following experiments, we select nine data
sets for dynamic update experiments from Table 7. For each
data set, 50% of the data objects are randomly selected as the
original object set, and the remaining data are randomly
generated at the proportions of 10%, 20%, 30%, 40%, and 50%
as incremental object sets, respectively. ,e incremental part is
divided into 5 groups of experiments, each group is executed 10
times and computes the average time. Experimental results are
outlined in Figure 1. In the experiment of IEP, time statistics do
not include the calculating time of original objects.

In each subfigures of Figure 1, the x-coordinate repre-
sents the increment ratio, and the unit is the proportion of
the increased part of the data in the total data. ,e value of
the y-coordinate y is the time of computing reduction in
different incremental, which are measured by seconds. In
Figure 1, the curve with a five-pointed star mark shows the
change in the running time of IEPAO, while the curve with a
circle mark indicates the variation of IEP.

It can be seen in Figure 1 that as the size of data set
expands, the time of calculating reduction will increase. ,e
calculation time of IEPAO is much less than IEP. ,e main
reason for this phenomenon is that when we add the new
objects into the data set, IEPAO only needs to calculate the
added part of the data, and then combine the previous
reduction results in obtaining the changed result quickly.
But, IEP can only process static data sets. When new data is

added, it takes longer time to recalculate the original data
and the added part. On the whole, the performance of
IEPAO is relatively stable in Figure 1. With the increase of
updated data, the calculation time is also increasing. But,
IEPAO has an anomaly in that the calculation time de-
creased as the data increasing. ,e subfigure (f ) of Figure 1
displays that IEPAO takes 4.543 seconds to reduce the
Letters data set with a 20% increment, and 4.253 seconds to
reduce the data with 30% increment. ,e main reason is that
when the data increases, it accelerates the division of data on
conditional attributes. Since the amount of information is
zero based on subdivision of cardinality 1, these objects are
constantly deleted during the reduction process to accelerate
the convergence speed.

5.3. Time Comparison of IEPDOand IEPWhenDeleting Data
Objects. ,e same as Section 5.2, nine data sets are selected
in Table 7. Take the original data of each data sets as the basic
data, and randomly select 10%, 20%, 30%, 40%, and 50%
objects in the remaining data to delete respectively. Use IEP
and IEPDO to reduce the updated data. Each group of data
was selected to repeat the experiment for 10 times and
averaged the time of 10 times.,e experimental results show
in Figure 2. In each subfigure of Figure 2, x-axis represents
the proportion of decrement data objects, while y-axis
represents the computational time. ,e time is measured by
seconds. ,e curve with five-pointed star mark in Figure 2
shows the change in the running time of the IEPDO, while

As shown in Figure 2, when we delete some data objects
from data set, the computational time of IEP and IEPDOwill
decrease accordingly. In the same computing environment,
IEPDO takes less time than IEP. ,e IEPDO method only
needs to calculate the updated objects when deleting data
objects. Some updated objects when deleting data objects.
Some conditional attributes with zero indistinguishable ele-
ment-pair are removed from the reduction set. However, IEP
takes longer time because of calculating the reduced data set
from all conditional attributes. For the IEP selected, it takes
0.0338 seconds on the decreased 30% data objects of Hepatitis,
while taking 0.0352 seconds to compute the deleted 40%data. It
costs 1.233 seconds to calculate the decrease of 30% data of
Nursery but takes 1.2451 seconds on the decrease of 40% data.
Why the calculation time increases with the decreasing data is
that the speed of dividing equivalence class is slowed down as it
randomly selects some weak distinguish power on conditional
attributes. ,e performance of IEPDO is relatively stable. By
deleting data, the calculation time decreases. From nine sub-
figure of Figure 2, when we reduce the large-scale data, the
time-consuming effect of IEPDO is more obvious with the
decreased data objects, while the effect is not significant on
small data sets, such as data sets of Chess kr-kp and Hepatitis.

5.4. Classification Accuracy Analysis of IEP, IEPAO, and
IEPDO. In this section, the precision of classification is
calculated on the selection of reducts obtained by the al-
gorithms IEP, IEPAO, and IEPDO. Firstly, we take 50% of
objects of each data set in nine data sets from Table 7 as the
basic data set, the rest 50% data as the incremental objects
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Table 8: A speedup ratio comparison of IEP, MEDA, HU, and DDMSE.

Data set
Speedup ratio

IEP MEDA HU DDMSE
Mushroom 81.916 4.3723 1 0.6954
Audiology 1.6109 1.5839 1 0.7454
Blance-scale 17.857 9.1912 1 1.1220
Breast 5.4571 4.3409 1 1.2566
Car 41.639 10.5291 1 1.2320
Letters ∞ — — —
Ticdata2000 19.3021 18.1108 1 1.5578
Gene 26.4713 4.5756 1 0.5976
Nursery 1397.65 34.368 1 3.5097
Handwritten 54.5751 1.0171 1 0.4773
Mass 22.3890 13.4333 1 1.0824
Hepatitis 2.42862 1.8478 1 0.9884
Connect-4 ∞ — — —
Chess kr-kp 26.7601 1.797 1 1.3320
Spect heart 10.0600 2.086 1 0.9860
,e bolded values are the fastest speed ratio.

Table 9: A time and reduced comparison IEP, MEDA, HU, and DDMSE.

Data sets
IEP MEDA HU DDMSE

|Red| Time (s) |Red| Time (s) |Red| Time (s) |Red| Time (s)
Mushroom 4 1.953 5 36.59 4 159.981 4 230.071
Audiology 14 0.293 14 0.298 13 0.472 14 0.633
Lance-scale 4 0.035 4 0.068 4 0.625 4 0.557
Breast 9 0.035 9 0.044 9 0.191 9 0.152
Car 6 0.133 6 0.526 6 5.538 6 4.495
Letters 12 5.892 — ∞ — ∞ — ∞
Ticdata2000 23 7.724 23 8.232 23 149.085 23 95.701
Gene 10 2.593 10 15.001 10 68.639 10 114.863
Nursery 8 1.32 8 53.679 8 1844.866 8 525.649
Handwritten 7 4.688 8 251.558 7 255.848 7 536.041
Mass 5 0.054 5 0.09 5 1.209 5 1.117
Hepatitis 8 0.039 9 0.046 8 0.085 8 0.086
Connect-4 34 64.358 — ∞ — ∞ — ∞
Chess kp-kr 29 2.22 29 33.059 29 59.407 29 44.568
Spect heart 18 0.035 18 0.1685 18 0.3521 18 0.357
,e time shown in bold is the least time.

IEP
IEPAO

0.0

0.5

1.0

1.5

2.0

2.5

Co
m

pu
ta

tio
na

l t
im

e (
s)

20 30 40 5010
Size of increment objects (%)

(a)

IEP
IEPAO

0

10

20

30

40

50

60

Co
m

pu
ta

tio
na

l t
im

e (
s)

20 30 40 5010
Size of incremental objects (%)

(b)

IEP
IEPAO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
m

pu
ta

tio
na

l t
im

e (
s)

20 30 40 5010
Size of incremental objects (%)

(c)

Figure 1: Continued.

Mathematical Problems in Engineering 11



IEP
IEPAO

0

1

2

3

4

5
Co

m
pu

ta
tio

na
l t

im
e (

s)

20 30 40 5010
Size of incremental objects (%)

(d)

IEP
IEPAO

20 30 40 5010
Size of incremental objects (%)

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

Co
m

pu
ta

tio
na

l t
im

e (
s)

(e)

IEP
IEPAO

0

1

2

3

4

5

6

Co
m

pu
ta

tio
na

l t
im

e (
s)

20 30 40 5010
Size of incremental objects (%)

(f )

IEP
IEPAO

0.0

0.5

1.0

1.5

2.0

2.5

Co
m

pu
ta

tio
na

l t
im

e (
s)

20 30 40 5010
Size of incremental objects (%)

(g)

IEP
IEPAO

20 30 40 5010
Size of incremental objects (%)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Co
m

pu
ta

tio
na

l t
im

e (
s)

(h)

IEP
IEPAO

0
1
2
3
4
5
6
7
8

Co
m

pu
ta

tio
na

l t
im

e (
s)

20 30 40 5010
Size of incremental objects (%)

(i)

Figure 1:,e time comparison of IEP and IEPAO when adding data objects. (a) Chess kr-kp. (b) Connect-4. (c) Gene. (d) Handwritten. (e)
Hepatitis. (f ) Letters. (g) Mushroom. (h) Nursery. (i) Ticdata2000.
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Figure 2: Continued.
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and select the algorithms IEP and IEPAO to reduce. Sec-
ondly, we delete 50% of objects randomly from each data set,
using the algorithms IEP and IEPDO to process. ,en, the
classification accuracies are acquired by using J48, Naive-
Bayes (NB), RandomForest (RF), SMO classifier, and 10-fold
cross-validation. ,e experimental results are shown in
Tables 10 and 11.

From Table 10, it is clear that when some objects are
added into the information systems, the average classifica-
tion accuracy of the reduction found by incremental algo-
rithm IEPAO is better than those of algorithm IEP in data

sets Chess, Connect-4, Gene, Handwritten, Hepatitis,
Letters and Ticdata2000 are coincide with those of algo-
rithm IEP in data sets, e.g., Chess kr-kp, Mushroom, and
Nursery. ,e experimental results show that the incre-
mental algorithm IEPAO can find a feasible attribute re-
duction when incremental algorithm IEPAO replaces
algorithm IEP. Moreover, the algorithm IEPAO can obtain
high-quality attribute reduction with less time consump-
tion. Similarly, when some objects are deleted from the
original object set, the average classification accuracy of the
reduction obtained by the algorithm IEPDO is better than
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Figure 2: ,e time comparison of IEP and IEPDO when deleting data objects. ,e curve with circle mark shows the calculation time
variation form of IEP. (a) Chess kr-kp. (b) Connect-4. (c) Gene. (g) Mushroom. (h) Nursery. (i) Ticdata2000.

Table 10: A comparison of IEP and IEPAO on classification accuracy.

Data set
J48 RF NB SMO

IEP (%) IEPAO (%) IEP (%) IEPAO (%) IEP (%) IEPAO (%) IEP (%) IEPAO (%)
Chess kr-kp 99.4368 99.4368 99.0926 99.0926 88.3292 88.3292 95.4318 95.4318
Connect-4 80.9006 83.6573 82.1099 85.0756 72.2027 74.7908 80.2002 82.4056
Gene 65.7053 68.0923 70.3762 72.9031 67.2424 69.6412 66.6771 69.4532
Handwritten 65.3203 67.5629 71.9757 72.9084 62.6868 64.0985 67.4021 70.2341
Hepatitis 79.3548 82.5094 82.5806 84.5620 80.0001 83.8007 80.0001 83.0924
Letters 87.5150 89.3318 95.2050 95.2050 60.2500 62.6780 76.6250 79.9138
Mushroom 100.00 100.00 100.00 100.00 98.6091 98.6091 100.00 100.00
Nursery 97.0525 97.0525 99.0664 99.0664 90.3241 90.3241 93.0787 93.0787
Ticdata2000 82.0225 84.4521 80.1498 83.4097 77.9026 79.8094 82.7157 86.7732
,e bold values are the classification accuracy with the best classification performance.
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IEP in data sets Connect-4, Gene, Handwritten, Hepatitis,
Letters, and Ticdata2000.

Accordingly, we can conclude that the incremental al-
gorithm IEPDO can find a feasible attribute reduction.

Hence, the experimental results verified that the pro-
posed incremental methods IEPAO and IEPDO can obtain
an efficient attribute reduction and provide a quick data
preprocessing method for dynamic data sets.

6. Conclusions and Further Study

Attribute reduction can effectively eliminate redundant
information.,ough the discernibility matrix method is one
of the intuitive and effective reduction methods, it cannot
deal with the reduction of large-scale data sets effectively
because of memory overflow. ,e attribute reduction
mechanism based on IEP can effectively solve the problem of
space consumption analyzed in this paper. During the re-
duction process, IEP effectively prunes the subdivisions with
cardinality 1, which speeds up the calculation of equivalence
class division. IEP has better time and space effects in re-
duction, but it only adapts to the environment of static data
sets. Considering the constant updating of data, in reality,
IEPAO and IEPDO are proposed on the basis of IEP to deal
with the reduction of adding data objects and deleting data
objects respectively. As to IEP, the entire data set has to be

reduced again and consumed a lot of time with the data
changes. IEPAO and IEPDO only compute the changed part
data and combine the previous reduction results, which can
obtain the data set with fewer redundancies and better
outcomes.

Of course, the algorithm proposed has some short-
comings in this paper. For example, (1) ,e IEP method can
only reduce integer or character data, but cannot adapt to
process other types of data. (2) ,e incremental update
algorithm proposed in this paper does not consider the
changes in attributes and values.

In the future, we will conduct the research from the
following aspects: design an increment algorithm adapting
to different types of data; develop a reduction method re-
garding the change values of data objects; propose an in-
cremental mechanism with adding and deleting some
attributes. Additionally, those approaches should adapt to an
incomplete decision system.

Appendix

The proof of Theorem 5

Proof. From Definition 8, we have
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Table 11: A comparison of IEP and IEPDO on classification accuracy.

Data set
J48 RF NB SMO

IEP (%) IEPAO (%) IEP (%) IEPAO (%) IEP (%) IEPAO (%) IEP (%) IEPAO (%)
Chess kr-kp 99.4368 99.4368 99.2925 99.2925 99.2925 99.2925 96.7315 96.7315
Connect-4 81.6038 84.4270 83.3241 86.0821 73.4528 77.5632 81.2032 84.3158
Gene 67.3467 69.9341 72.3478 75.9318 68.2463 71.3484 68.8741 72.5629
Handwritten 66.8630 69.4582 72.9360 74.9348 63.6868 65.5376 68.8053 74.6523
Hepatitis 81.3372 84.9823 84.2367 86.5892 81.0206 84.9341 82.5690 85.6538
Letters 88.8510 91.4426 96.0027 96.8721 61.2433 64.5629 77.4537 81.8942
Mushroom 100.00 100.00 100.00 100.00 98.8042 99.3589 100.00 100.00
Nursery 98.2525 98.9126 99.1521 99.1521 91.5482 91.5482 93.6788 93.6788
Ticdata2000 83.3241 86.3782 82.4582 86.4892 78.9789 82.3472 84.5321 87.7626
,e bold values are the classification accuracy with the best classification performance.
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