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Aimed at the disadvantages of constrained processing technology in the cooperative target allocation of multiple unmanned
combat aircraft (UCAV), the energy-reserved chemical reaction algorithm (CNCRO) is proposed to solve the constrained
optimization problems. On the one hand, convert multiple constraint conditions of the multi-UCAV target allocation into
optimization targets to transform the constrained processing problem into a multiobjective optimization problem including
allocation goals and constrained optimization goals. On the other hand, the energy-reserved chemical reaction algorithm
(CNCRO) is proposed, which introduces the environmental energy-reserved variables buffer into the inefective collision,
combination or splitting reactions between single molecule and multimolecules of CNCRO, which is used to boost energy for the
low kinetic energy molecules, so as to reduce its kinetic energy in case of invalid collision of molecules and control it to gradually
stabilize and converge. At the same time, the splitting reaction is inspired, to greatly change the structure of molecules, promote its
search for more solution space, and improve the splitting reaction ability and its global optimization ability. Finally, the simulation
experiment is completed by using MATLAB software. Te advantages of CNCRO in accuracy are verifed by 8 standard test
functions, the infuence of the weight coefcients in the cooperative target allocation function of UCAV is studied, which are
revenue, loss, and voyage, and the target allocation schemes of traditional constrained processing and unconstrained multi-
objective optimization methods based on diferent attack target number Ci and total target number N are investigated, to obtain
the control law, which can be used to guide the given parameters with diferent emphases.

1. Introduction

Te cooperative target allocation problem of multi-UCAV is
an NP problem of optimization with multiple models,
multiple constraints, and increasing complexity [1]. It is used
to allocate the attack targets for UCAV, so as to maximize
the combat efciency and minimize the combat cost of the
entire UCAV, thus facilitating the rational allocation of force
resources to obtain the maximum attack efect. Its main
feature is that the constraints are numerous and complex [2];
therefore, the constraint processing technology is the key
problem in the process of UCAV cooperative
target allocation, not only the constraints of the UAV itself
but also the constraints of the cooperative problem should be

considered. Currently, the commonly used processing al-
gorithms include genetic algorithm (GA) [3], simulated
annealing (SA) [4], ant colony algorithm (ACA) [5]. Among
them, literature [6] proposed a genetic algorithm with dy-
namic crossover rate and mutation rate, which maintained
the diversity of the population and avoided premature
convergence. Document [7] proposes a hierarchical multi-
agent optimization algorithm, which combines multiagent
optimization algorithm and genetic algorithm (GA) to
improve resource utilization. Literature [8] designed a se-
lection algorithm with the centralized iterative interference
strategy based on the optimal dynamic response and pro-
posed an allocation algorithm of distributed limited feed-
back interference resources. Literature [9] enhances the
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performance of the genetic algorithm by introducing greedy
algorithms. Te adaptive ant colony algorithm proposed in
literature [10] improves the reliability of the algorithm.
Literature [11] uses artifcial immune systems to solve the
problem. Literature [12] focuses on the interference energy
ratio of the interference suppression method and changes
the proposed model into a convex optimization problem.
Document [13] proposes a decision-making algorithm for
resource allocation based on hierarchical reinforcement
learning of bootstrap experts to solve the problem of in-
terference decisions. In addition, considering long-term
benefts and current benefts, the authors of [14] propose a
distributed deep compression algorithm and a distributed
quick compression algorithm and adopt a distributed
framework to complete task optimization. In view of the
rapid response characteristics of multiple UAVs in a dy-
namic environment, the authors of [15] extend the con-
sensus-based bundling algorithm to quickly allocate new
tasks without completely redistributing existing tasks. Based
on the task and the UAV group, the authors of [16] establish
the state information model of the UAV and UAV group
and solve the problem by improving the particle swarm
algorithm and distributed auction algorithm. However, in
the process of solving problems with these algorithms, so-
lutions that do not meet the constraint conditions are in-
evitably generated, and premature convergence is easy
occurring. At this time, it is generally necessary to use the
heuristic information in the constraints to check the solu-
tions, or adopt the methods such as penalty functions and
constraint tournaments [17, 18]. Nevertheless, repeated
attempts to check the solution in real time will afect the
solving speed, and it is difcult to select the penalty factor of
the penalty function method, which has problem relevance
and is difcult for users to grasp. Other algorithms such as
the constraint tournament are always designed for specifc
problems, which are not universal, and their efects are not
good and will increase the time consumption. Terefore, for
the application of multi-UCAV cooperative
target allocation, this paper regards the constraints in target
assignment as multiple targets and transforms the con-
strained optimization problem composed of n decision
variables, single objective function, l inequality constraints,
and m − l equality constraints into a nonconstrained mul-
tiobjective optimization problem with n decision variables
and two objective functions, and the energy-reserved
chemical reaction algorithm (CNCRO) is used to optimize
and to realize the rational allocation of UCAV cooperative
goals under complex constraints.

In this paper, we propose the energy-reserved chemical
reaction algorithm (CNCRO) and applied it to the process of
UCAV cooperative target allocation.Temain novelty of the
proposed approach is as follows: (1) the constrained opti-
mization problem is transformed into a multiobjective
optimization problem for processing, to avoid the repeated
trial of the conventional constrained optimization method.
(2) Te energy-reserved chemical reaction algorithm
(CNCRO) is proposed. Te environmental energy-reserved
variable buffer is introduced into the inefective collision,
combination or splitting reaction between single and mul-
tiple molecules of CNCRO to supplement energy for low
kinetic energymolecules and inspire the splitting reaction, to
greatly change the molecular structure and promote its
search for more solution space, improve the global opti-
mization of CNCRO; (3) the infuence of the weight coef-
fcients (ω1, ω2, ω3) of the overall income, the overall loss,
and the total fight range in the objective function of UCAV
on the allocation scheme is studied through the simulation
experiments, and the infuence laws of the maximum
number of attack targets (Ci) and the total number of targets
(N) on the allocation scheme are obtained, which can lay a
foundation for the subsequent implementation of
target allocation based on diferent emphases.

Te remainder of this paper is organized as follows. In
Section 2, we introduce the target allocation model of multi-
UCAV, including the problem description and constraint
conditions. Te processing process of the chemical reaction
algorithm for solving the cooperative target assignment of
multi-UCAV is introduced in Section 3, including the
collision reaction, the splitting reaction, and the combina-
tion reaction. In Section 4, the performance of the proposed
method is illustrated and compared with some other task
allocation algorithms. Section 5 concludes the paper.

2. The Target Allocation Model of Multi-UCAV

2.1. Problem Description. Assuming that the sets of multi-
UCAV are Ui(Ui ∈ U, i � 1, 2, . . . N), the multiple targets
scattered in diferent locations are
(Tk ∈ T, k � 1, 2, . . . M), and then, the target assignment
problem of multi-UCAV is described as assigning existing
targets to all attackers of the system in the shortest time.
Taking the minimum loss to obtain the maximum beneft
and the minimum fight range as the indexes to evaluate the
efectiveness of the attack aircraft, the objective function is
given as follows:

max(f(x)) � ω1 · E − ω2 · G − ω3 · D

� ω1 

N

i�1


M

k�1
xik · Pik · Ek − ω2 

N

i�1


M

k�1
xik · Qik · Vi − ω3 

N

i�1


M

k�1
xik · Dik,

(1)
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where xik is the decision variable which defned as

xik �
1; t arg et k is assigned to attacker i,

0; t arg et k is not assigned to attacker i.
 (2)

Pik is the killing probability of the attacker Ui to the
targetTk; Ek is the value of objectivesTk;E is the total beneft
obtained by UCAV after attacking all targets; G is the overall
loss of the entire attack feet; D is the total fight range of
UCAV; Qik is the probability of death when the attacker Ui

attacks the target Tk; Vi is the value of the ith attack aircraft;
Dik is the fight range while the ith aircraft Ui attack the
target Tk; ω1, ω2, and ω3 are the weight coefcient of income,
loss, and fight range, respectively.

2.2. Te Constraint Conditions. Te constraint conditions
for multi-UCAV are as follows:

(1) 
N
i�1 xik � 1, which represents that each target is

assigned to only one attacker
(2) 1≤ 

M
k�1 xik ≤Ci, which means that each attacker

must be assigned one target and attack Ci target at
most

(3) 
N
i�1 

M
k�1 xik � T, which means that all targets are

assigned to the group of attack aircraft, T is the
collection of multiple targets

2.3. Te Handling Method of Constraint Conditions. Te
above problem is a single objective function composed of n

decision variables, which is a constrained optimization
problem with multiple constraints. Te focus of this paper is
to transform it into an unconstrained multiobjective opti-
mization problem and use a chemical reaction algorithm to
optimize it.

First, according to the constraint conditions of the co-
operative target assignment task of UCAV described above,
inequality constraint conditions gj(x) and equality con-
straint conditions hj(x) are constructed, so that

Yj(x) �
max 0, gj(x) ; 1≤ j≤ l(l � 2),

hj(x)


; l + 1≤ j≤m(m � 4),

⎧⎪⎨

⎪⎩
(3)

where gj(x) and hj(x) are specifcally defned as

g1(x) � 1 − 
M

k�1
xik,

g2(x) � 
M

k�1
xik − Ci,

h3(x) � 

N

i�1
xik − 1,

h4(x) � 
N

i�1


M

k�1
xik − T.

(4)

Ten,

Y(x) � 
4

j�1
Yj(x). (5)

Tus, the constraint conditions of multi-UCAV target
assignment are transformed into a single objective function.
So, two-objective vectors F(x) are formed by Y(x) and f(x)

as follows:

F(x) � (f(x), Y(x)). (6)

So far, a constrained optimization problem consisting of
n decision variables, single objective function, l inequality
constraints, and m − l equality constraints has been trans-
formed into an unconstrained multiobjective optimization
problem with n decision variables and two-objective func-
tions; therefore, the objective function is redefned as

max(F(x)) � max(f(x), Y(x)). (7)

In this paper, the constrained optimization problem is
transformed into a multiobjective optimization problem for
processing. Te main purpose is to avoid the repeated trial
for the real-time check of the solution in the conventional
constrained optimization method, as well as the problems
such as the difculty in selecting penalty factors and the
increasing of time consumption. However, this method is
fundamentally diferent from the conventional multi-
objective optimization problem [18]. For the conventional
multiobjective optimization problem, its purpose is to fnd
an optimal solution set with uniform distribution and good
diversity, and in this paper, F(x) degenerates into a single
objective optimization problem Y(x) � 0, and its optimal
solution is still one point, which is simpler and more reliable
to deal with.

3. TheChemical ReactionAlgorithm for Solving
Multi-UCAV Cooperative Target Assignment

Chemical reaction optimization (CRO) is a heuristic opti-
mization algorithm with strong global optimization ability
[19], which originates from the basic process of molecular
reaction in the chemical feld. Based on the continuous
changes in molecular structure and energy in chemical re-
actions and the characteristics of energy conservation law,
Lam and other scholars were inspired and proposed the
algorithm in 2009. Subsequently, Lam used the Markov
chain to prove the convergence of the algorithm under the
total energy and molecular reaction [19]. In 2011, Lam et al.
proposed a real-coded chemical reaction optimization al-
gorithm (RCCRO) [20] to solve the optimization problem of
solution space in the multidimensional real number domain,
which make up for the problem that the conventional al-
gorithm can only solve the optimization of solution space in
the discrete domain. So far, the CRO algorithm has received
the attention of scholars and has been widely used in the
felds of the spectrum allocation of radio systems and net-
work computing [21], and its global optimization ability has
also been fully confrmed.
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After the constraint optimization problem of UCAV is
transformed into a multiobjective problem, how to balance
the feasible solution and the infeasible solution becomes
particularly important. If the optimization population after
entering the feasible domain does not have enough diversity,
then the search will focus on a part of the feasible domain, so
that the whole population is easily trapped in local opti-
mization. By simulating the interaction between molecules
in chemical reactions, CRO achieves a low-energy steady
state which has the ability of distributed, parallel, large-scale,
and fast global search, so it is suitable for solving multi-
objective optimization problems [21]. Based on the tradi-
tional chemical reaction algorithm, the energy-reserved
chemical reaction algorithm (CNCRO) is proposed in this
paper. In the reaction process, the energy-driven method
(the molecular with large kinetic energy reacts violently and
the molecular with small kinetic energy tends to be stable) is
used to increase the diversity of molecular structure through
four simple chemical reaction operations, mainly including
inefective collision, combination or splitting reactions of
single and multiple molecules. In addition, in the inefective
collision and splitting reaction between a single molecule
and the container wall, the environmental energy-reserved
variables (buffer) are used to supplement energy for low
kinetic energy molecules, so that when an inefective col-
lision occurs, buffer is utilized to store energy, and the
current kinetic energy of the colliding molecule is reduced
and gradually tends to be stable; at the same time, the
splitting reaction is inspired by using buffer to greatly
change the structure of the single molecule to increase the
possibility of drastic changes in the molecular structure,
improve its splitting reaction ability, make it search more
solution spaces, and improve the global optimization ability
of the algorithm. Finally, for the cooperative target as-
signment task of multi-UCAV, CNCRO is used to efectively
deal with the multiobjective optimization constraint prob-
lem based on UCAV.

3.1.Te Inefective Collision Reaction between SingleMolecule
and theWalls ofContainer. During the movement of a single
molecule, the process of rebound after collision with the
container wall is defned as the invalid collision reaction
between the single molecule and the container wall, which is
referred to as the invalid collision reaction with the wall.
When an inefective collision with the wall occurs, some
properties of the molecule will change, and the molecular
structure will also change at the same time. However, the
collision is not too violent, so the molecular structure will
not change too much.

Assuming that the structure of the molecule is ω before
the inefective collision reaction with the wall occurs, and the
new molecular structure is ω′ after the inefective collision,
the acquisition method of new structure is as follows:

ω′ � N(ω), (8)

where N(·) is the domain operation function of themolecule
in the potential energy surface.

At the same time, the molecular structure change in this
process needs to meet certain energy conditions, which is
defned as follows:

PEω + KEω ≥PEω′ , (9)

where PEω and KEω are the molecular potential energy and
kinetic energy corresponding to the original molecular
structure, respectively; PEω′ is the molecular potential en-
ergy corresponding to the new molecular structure, which
are calculated by using the objective function of the opti-
mization object in the algorithm. If the equation (9) is
satisfed, the molecular structure is updated. According to
the principle of energy conservation, the molecular kinetic
energy of the new molecular structure is defned as follows:

KEω′ � PEω + KEω − PEω′(  × q, (10)

where q is the random decimal number between loss rate and
1 (loss rate is the lower limit of kinetic energy loss probability
which is variable).

When an invalid collision reaction occurs between a
single molecule and the container wall, part of the energy
will be lost from the molecular reaction to the container
environment, which will afect the generation of the optimal
solution. To store the lost energy, the environmental energy-
reserved variables of buffer are defned in the CNCRO al-
gorithm, which mainly considers the following reasons, and
on the one hand, the energy will be continuously lost in the
event of an invalid collision of a single molecule, and its
kinetic energy needs to be reduced to make it gradually
stable and make the system gradually converge. On the other
hand, the energy saved by the variable of buffer is used to
start the splitting reaction after the single molecule collides
with the container wall, which greatly changes the molecular
structure to promote the splitting reaction of the single
molecule, to ensure it can search for more solutions in the
solution space, and improve the global optimization ability
of the algorithm. Specifcally, it is defned as follows:

buffer � buffer + PEω + KEω − PEω′(  ×(1 − q). (11)

3.2. Te Splitting Reaction between Single Molecule and the
Walls of Container. Te violent collision between a single
molecule and the wall of the container will cause great
changes in the structure of molecular, and the process of
splitting onemolecule into two ormore molecules is referred
to as a splitting reaction. Tere are huge diferences between
the structure of the new molecule and that of the original
molecule. Te specifc algorithm is as follows.

Assuming that the structure of the original molecule isω,
the structure of the newmolecule generated by splitting is ω1
and ω2, respectively (taking two molecules as an example). If
the original molecule has sufcient energy by itself (equation
(12)), or has sufcient energy supplemented by the variables
of buffer (equation (13)), it can provide sufcient potential
energy for the new molecule, and then, the splitting reaction
is successful. Otherwise, the algorithm maintains all the
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properties of the original molecule, such as the molecular
structure and energy parameters.

PEω + KEω ≥PEω1
+ PEω2

. (12)

Or

PEω + KEω + buffer≥PEω1
+ PEω2

. (13)

If the equation (12) or (13) is satisfed, it is defned as
follows:

KEω1
� temp × k,

KEω2
� temp ×(1 − k).

⎧⎨

⎩ (14)

where temp � PEω + KEω − PEω1
− PEω2

.
Otherwise, execute equation:

KEω1
� (temp + buffer) × m1m2,

KEω2
� temp + buffer − KEω1

  × m3m4,

⎧⎨

⎩ (15)

where k, m1, m2, m3, m4 are all random pure decimals.
Tere are two purposes for setting four random

numbers of m1 ∼ m4 in equation (15). First, the energy
value of buffer is generally large, so it is necessary to avoid
transferring too much energy to a new molecule at one
time, which is unfavorable to the convergence of the al-
gorithm. Second, it is necessary to avoid exhausting all the
energy buffer at one time, to complete the energy-en-
lightening efect on other molecules. At this time, buffer is
defned as follows:

buffer � temp + buffer − KEω1
− KEω2

. (16)

3.3. Te Invalid Collision Reaction between Molecules. Te
process in which two or more molecules rebound back
after colliding with each other is referred to as an invalid
collision reaction of intermolecular [20]. Its collision
intensity is small, the molecular structure changes little,
and the energy changes little. Tis collision reaction is
mainly used to complete the local optimization task,
similar to the inefective collision between a single mol-
ecule and the container wall, the changes of molecular
structure are obtained by using the neighborhood func-
tion N(·), and the molecules in the reaction process meet
the energy conservation and do not exchange energy with
the container environment; that is, the reaction process is
independent of buffer.

Suppose that there is an invalid collision reaction
between two molecules, the original molecular structure is
ω1 and ω2, and the new molecular structure is ω1′ and ω2′.
Ten, the reaction can proceed only if the energy transfer
conditions of equation (17) are satisfed; otherwise, the
original molecular structure and energy properties are
maintained.

PEω1
+ KEω1

+ PEω2
+ KEω2
≥PEω1′

+ PEω2′
. (17)

According to the law of energy conservation, the reac-
tion process is as follows:

KEω1′
� temp × k,

KEω2′
� temp ×(1 − k),

⎧⎨

⎩ (18)

where temp � PEω1
+ KEω1

+ PEω2
+ KEω2

− PEω1′
− PEω2′

, k

is the random decimal between 0 and 1.

3.4. Te Combination Reaction after Molecules Colliding with
Each Other. Te process in which two or more molecules
combine into one molecule after a violent collision is re-
ferred to as the combination reaction [20]. It is assumed that
the molecular structures before the combination reaction are
ω1,ω2, the new molecular structure generated after the
combinationω.Tis reaction occurs under the condition of a
violent collision, which is similar to the splitting reaction, the
molecular structure changes dramatically, and the new
molecular structure is very diferent from the original
molecular structure. Similarly, the reaction can be com-
pleted only if the energy-changing relationship shown in
equation (19) is satisfed; otherwise, the original properties of
the two molecules remain unchanged.

PEω1
+ PEω2

+ KEω1
+ KEω2
≥PEω. (19)

Ten, the reaction process is as follows:

KEω � PEω1
+ PEω2

+ KEω1
+ KEω2

− PEω. (20)

If PEω and PEω1
, PEω2

have similar values, the diference
of KEω and KEω1

, KEω2
is large; therefore, the combined

molecules have large kinetic energy, to ensure their ability to
jump out of the local optimal neighborhood in the subse-
quent reaction and expand the optimization range of the
algorithm.

3.5. Te Processing Process of CNCRO. In solving the co-
operative target assignment of multi-UCAV, the four re-
action processes of the CNCRO are implemented in three
stages: initialization phase, iteration phase, and result pro-
cessing phase. Te whole algorithm fow is shown in
Figure 1.

Te initialization phase is used to complete the initial-
ization of parameters and variables required for the algo-
rithm, including the creation of initial molecules and the
initialization of molecular structures and energy values. In
the iteration phase, relevant reaction conditions need to be
detected to determine the reaction type, and the iteration
phase continues until the end conditions are met. Te result
processing phase is mainly used to read the minimum
potential energy molecule and output its molecular struc-
ture, which is the global optimal solution.

Te pseudocode of the specifc processing process is
shown in Algorithm 1.

4. The Simulation Experiment and the
Comparison of Results

4.1. Te Performance Test of the CNCRO Algorithm. Te
energy-reserved chemical reaction algorithm (CNCRO) is
simulated by MATLAB 2010, and its performance is
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compared with the particle swarm optimization (PSO) de-
scribed in document [22], the parallel genetic algorithm with
the elite set (PGA) described in document [23], the simu-
lated annealing genetic algorithm (SAGA) described in
document [24], the deep intelligent ant colony optimization
algorithm (ACA) described in document [25], and the
chemical reaction algorithm (CRO) described in document
[26]. Te algorithm parameters are shown in Table 1. At the
same time, eight standard test functions are used to verify the
efectiveness of CNCRO. Te test functions are shown in
Table 2.

In order to make the experimental results more scientifc
and efective, eight benchmark functions are given in Ta-
ble 2, which are divided into three types of functions. Te
frst one is composed of four unimodal functions (f1, f2, f5,
f6) where f1 and f5 are simple unimodal function in high-
dimensional space, f2 is a multimodal function, f6 is
unimodal functions with random interference. Te second
type includes three complex multimode functions (f3, f4,
f7), and the last type is the rotation function f8. Te global
optimal solution of all test functions is zero.

In the experiment, each problem function is set to 50
dimensions, 6 algorithms are used to optimize 8 standard
test functions. Each test function runs independently for 30
times under the same conditions, and the average optimi-
zation results and standard deviation are recorded. Te
experimental results are shown in Table 3.

It can be seen from Table 3 that the CNCRO algorithm can
achieve better average value and standard deviation in most
functions when solving 50-dimensional problem, especially in
the functions of f1, f3, f4, f5, f8. For the four unimodal

functions, CNCRO can fnd the global optimal solution of f1
and f5. For f2 and f6, the performance of CNCRO is slightly
worse than that of PGA but better than other algorithms. For
the threemultimodal functions, CNCRO can fnd their optimal
solution. Among them, both CNCRO and PGA have the best
performance in fnding the global optimal solution of f7. In
addition, the optimization efect of CRO for f3 is better, which
is second only to CNCRO, and the efect of PGA in the
function of f4 is slightly worse than that of CNCRO. For the
rotation function, CNCRO can fnd the global optimal solution
of f8, and the performance of PGA in f8 is slightly worse than
that of CNCRO.

In general, CNCRO performs well for most functions
except for a few functions. It can be seen that the CNCRO
algorithm has strong efectiveness and robustness. By using
the environmental energy-reserved variable of buffer to
supplement energy for low kinetic energy molecules, the
molecular diversity of the CNCRO and the correlation be-
tween multiple decision variables are increased, which makes
it difcult to fall into local optimization and improve the
ability of the new algorithm to solve the complex problems.

4.2. Te Simulation Experiment of Multi-UCAV Cooperative
Target Allocation Based on CNCRO

4.2.1. Te Design of Experimental Parameters. In order to
further verify the efectiveness of CNCRO in the cooperative
target allocation of multi-UCAV, the following simulation
experiments are designed. Assuming that there are 5 attack
aircraft (Ua1–Ua5) and 10 targets (Ta1–Ta10), the survival

Start
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single molecule
reaction? 

Select a molecule Select two molecules
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conditions met? Splitting
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Invalid collision
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phase 
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Y
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N

Figure 1: Te processing fow of energy-reserved chemical reaction algorithm (CNCRO).
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probability of the attacker against the target (1− Qik), the
fight range (Dik), the killing probability (Pik), the value of
target (Ek), and the value of attack aircraft (Vi) is shown in
Tables 4–8, respectively.

4.2.2. Te Overall Experimental Results. Matlab 2010 is used
for the simulation, and the CNCRO algorithm is compared
with conventional target allocation methods (CRO, ACA,

SAGA, PGA, PSO). Te parameters of the algorithms are
shown in Table 1, and the parameters of UCAV cooperative
target allocation are shown in Tables 4–8, and the weight
coefcients of the income, loss, and fight range in the
objective function are set as ω1 � ω2 � ω3 � 1, and the
maximum number of targets that can be attacked by each
UAV is set as Ci � 4. Each algorithm has been simulated for
25 times. Te curve of the average best solution of the ftness
of the objective function is shown in Figure 2. In addition,

(1) Defne and initialize corresponding parameters, such as the number of molecules (pop size), the lower limit of kinetic energy loss
rate (loss rate), the condition threshold (Molecoll), and the initial kinetic energy of molecules (initialKE)

(2) Create molecules based on the number of molecules (popsize)
(3) For every molecule do

Obtain randomly the molecular structure ω, calculate PEω with objective function f(ω), and initialize KEω with initial value of
kinetic energy (initialKE)

(4) end for
(5) Initialize the environmental energy-reserved variable (buffer � 0)

Create the molecular pointer (M, M1, M2)
(6) while the end condition of iteration is not satisfed do

Generate a random number between 0 and 1 for the temporary variable t

(7) If t>Molecoll then
Select a molecule of M from the container

(8) If the conditions of classifcation are met then
(M1, M2, success)�DecomposeOnWall (M, buffer)

(9) If success��TRUE then
Remove the molecule of M from the container while adding the molecules of M1 and M2,

(10) end if
(11) else

InefectiveOnWall (M, buffer)
(12) end if
(13) else

Select the molecules of M1 and M2 from the container
(14) If the conditions of combination are met then

(M, success)� SynthesisInter (M1, M2)
(15) If success��TRUE then

Remove the molecules of M1 and M2 from the container and add the molecule of M at the same time
(16) end if
(17) else

InefectiveInter (M1, M2)
(18) end if
(19) end if

Determine whether the potential energy of the new molecule is the lowest and preserve the globally optimal molecule
(20) end while
(21) Output the structure and potential energy value of the global optimal molecular, that is the global optimal solution and the

objective function value

ALGORITHM 1: Te optimization algorithm of CNCRO.

Table 1: Te parameter settings of each algorithm.

Algorithms Parameters setting Reference
PSO ω � 0.7, c1 � c2 � 1.494, Vmax � 0.2 × Range [22]

PGA Crossover probability� 0.8, mutation probability� 0.6, maximum number of iterations� 1500, initial population
size� 120 [23]

SAGA Initial population size� 100, evolutionary algebra� 200, crossover probability� 0.85, mutation probability� 0.15,
annealing bad solution probability� 0.95, attenuation coefcient� 0.85 [24]

ACA Maximum number of iterations� 1000, maximum number of ants� 25, ρ � 0.9, α � 1, β � 1 [25]
CRO popsize� 25, initialKE � 0, loss rate� 0.2, Molecoll� 30 [26]CNCRO popsize� 25, initialKE � 0, loss rate� 0.2, Molecoll� 20
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Table 2: 8 test functions used in the experiment.

Test functions Search range Initialization range fm Accept Name

f1(x) � 
n
i�1 x2

i [−100, 100] [50, 100] 0 10− 6 Sphere
f2(x) � 

n−1
i�1 [100(xi− 1 − x2

i )2 + (xi − 1)2] [−30, 30] [15, 30] 0 100 Rosenbrock
f3(x) � 

n−1
i�1 [x2

i − 10 cos(2πxi) + 10] [−6, 6] [3, 5] 0 10− 6 Rastrigin
f4(x) � 1

4000 
n−1
i�1 [x2

i − 
n
i�1 cos(xi/

�
i

√
) + 1] [−500, 500] [300, 500] 0 10− 6 Griewangk

f5(x) � 
n
i�1 |xi| + 

n
i�1 |xi| [−10, 10] [5, 10] 0 10− 6 Schwefel 2.2

f6(x) � 
n
i�1 ix4

i + r and [0, 1] [−1.2, 1.2] [0.64, 1.28] 0 10− 6 Noise
f7(x) � −20 exp(−0.2

���
1/n

√


n

i�1
x
2
i )−

exp(1/n) 

n

i�1
cos(2πxi) + 20 + e

[−32, 32] [16, 32] 0 10− 6 Ackley

f8(x) � 
n
i�1 |xi sin(xi) + 0.1xi| [−10, 10] [5, 10] 0 10− 6 Alpine

Table 3: Te simulation results of CRO, ACA, SAGA, PGA, PSO, and CNCRO.

Problem Optimal SAGA PSO ACA CRO PGA CNCRO

f1 0 Mean 1.50E− 01 1.32E− 01 1.15E− 01 1.30E+ 00 0.65E− 01 0.40E − 01
Std 1.62E+ 04 1.50E+ 04 1.47E+ 03 0.01E+ 00 0.01E+ 00 0.01E+ 00

f2 0 Mean 2.30E+ 03 2.20E+ 03 2.59E+ 03 2.20E+ 03 1. 0E + 03 0.86E+ 03
Std 2.20E+ 02 3.00E+ 02 6.50E+ 01 2.00E+ 01 0.00E + 00 0.00E+ 00

f3 0 Mean 6.10E+ 02 6.13E+ 02 6.48E+ 02 4.10E+ 02 10.0E+ 01 3.25E + 01
Std 7.45E+ 07 1.10E+ 08 7.70E+ 02 0.00E+ 00 2.10E− 01 2.50E − 01

f4 0 Mean 2.40E− 02 1.51E− 02 1.87E− 02 1.80E− 02 1.30E− 02 0. 5E− 02
Std 6.46E+ 01 2.20E+ 02 7.10E+ 03 5.20E+ 03 6.60E− 06 1.58E− 05

f5 0 Mean 5.60E+ 02 1.60E+ 03 4.60E+ 02 4.12E+ 02 0.02E+ 00 0.01E+ 00
Std 1.62E+ 02 2.50E+ 02 2.28E+ 03 0.09E+ 02 1.00E+ 00 0.00E+ 00

f6 0 Mean 1.80 + 01 1.59E+ 01 2.30E+ 01 1.00E+ 01 2. 8E − 06 3.2E− 05
Std 3.45E− 02 3.60E− 02 6.40E+ 02 2.46E+ 01 0.00E + 00 0.01E+ 01

f7 0 Mean 4.30E+ 02 1.32E+ 03 2.06E+ 02 1.61E+ 01 0.01E + 00 0.00E+ 00
Std 5.19E+ 01 1.02E+ 02 1.56E+ 02 1.26E+ 01 0.00E + 00 0.00E+ 00

f8 0 Mean 3.10E+ 08 1.01E+ 09 5.10E+ 08 3.38E+ 06 1.47E+ 02 1.30E+ 00
Std 2.10E+ 08 4.54E+ 08 1.90E+ 08 1.09E+ 07 5.30E− 06 4. 0E− 05

Table 4: Te survival probability (1− Qik).

Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9 Ta10
Ua1 0.8923 0.8622 0.8735 0.8147 0.8532 0.8112 0.8209 0.8856 0.8135 0.8326
Ua2 0.8081 0.8576 0.8062 0.8169 0.8682 0.8492 0.8562 0.8775 0.8035 0.8463
Ua3 0.8112 0.8735 0.8862 0.8031 0.8483 0.8855 0.8641 0.8521 0.8940 0.8646
Ua4 0.8132 0.8933 0.8937 0.8625 0.8528 0.8863 0.8422 0.8167 0.8321 0.8031
Ua5 0.8155 0.8618 0.8972 0.8281 0.8437 0.8271 0.8205 0.8389 0.8293 0.8835

Table 5: Te killing probability (Pik).

Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9 Ta10
Ua1 0.7326 0.7321 0.8815 0.8117 0.7352 0.8972 0.7821 0.7367 0.8791 0.7026
Ua2 0.7718 0.7416 0.7206 0.8705 0.8322 0.8081 0.8935 0.8195 0.7132 0.8793
Ua3 0.8112 0.8810 0.8482 0.8686 0.7661 0.8412 0.8531 0.7603 0.7465 0.8383
Ua4 0.8033 0.8342 0.8462 0.7881 0.8785 0.8988 0.8625 0.7258 0.7110 0.7165
Ua5 0.7662 0.8941 0.8131 0.8106 0.7235 0.7563 0.8211 0.7431 0.7883 0.8613
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the comprehensive analysis results after each algorithm has
been run for 25 times are shown in Table 9.

It can be seen from Figure 2 that PGA converges to the
best solution after 40 iterations, ACA converges after 81
iterations, CRO converges after 110 iterations, and PSO and
SAGA converge after 85 and 83 iterations, respectively, while
the CNCRO algorithm in this paper converges to the best
solution after 28 iterations. Tat is to say, CNCRO method
has faster convergence speed and better real-time
performance.

In Table 9, the ftness value of the objective function of
CNCRO is the highest. Based on the maximum overall gain,
the minimum loss, and the minimum fight range, compared
with other algorithms, CNCRO can obtain greater benefts
than other algorithms, and its global optimization ability is
stronger which can ensure that the optimal solution is
obtained in a short time. Finally, obtain the scheme of target
decision-making with the value of ftness function of 302 by
using CNCRO, which is shown in Figure 3.

Comprehensively analyze the allocation strategy given
in Figure 3. First, by comparing the allocation processes of
Ua3 and Ua4 to the target of Ta7 and considering the killing
probability of Ta7, Ua4 is slightly better than Ua3, but the
diference is small (Ua3 is 0.8531, and Ua4 is 0.8625).
Considering the survival probability, Ua3 has a large
survival probability (Ua3 is 0.8641, and Ua4 is 0.8422). In
addition, in terms of the fight range, Ua3 also has great
advantages (20) over Ua4 (36), and the value of attack
aircraft of Ua4 (100) is far greater than that of Ua3 (80).
Terefore, the algorithm allocates Ta7 to Ua3, to ensure the
integrity of high-value aircraft of Ua4, avoid its loss, and
keep the path shortest. Tis allocation scheme is reasonable
and efective.

Next, the allocation processes of Ua4 and Ua5 to the
target of Ta2 are compared. Compared with other aircraft,
Ua4 has the best position to target Ta2; that is, it has a higher
survival probability (0.8933), and Ua5 is slightly worse than

Ua4 (0.8618). However, Ua5 has ammunition advantages;
that is, Ua5 has the largest killing probability to Ta2 (0.8941),
which is obviously superior to Ua4 (0.8342), and Ta2 has a
relatively high value (60). In addition, the fight ranges of
Ua4 and Ua5 to the target Ta2 are 30 and 20, respectively. In
order to ensure that the aircraft has high survivability, the
fight range is as short as possible, and attack the high-value
target with the maximum killing probability, Ta2 is allocated
to Ua5, to ensure the principle of using superior frepower to

Table 6: Te fight range (Dik).

Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9 Ta10
Ua1 20 40 40 30 30 38 28 30 20 40
Ua2 35 35 30 45 29 35 25 20 36 33
Ua3 30 35 26 40 38 45 20 36 32 25
Ua4 25 30 20 20 23 25 36 29 25 30
Ua5 40 25 45 25 35 30 38 25 40 24

Table 7: Te value of target (Ek).

Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9 Ta10
15 60 25 15 80 30 50 65 68 72

Table 8: Te value of attack aircraft (Vi).

Ua1 Ua2 Ua3 Ua4 Ua5
70 90 80 100 60

0 80 90 10070605040302010
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Figure 2: Te comparison of the average performance of each
algorithm.

Table 9: Te performance comparison of the algorithms.

Algorithm
Te value of ftness

function Te time consumption(s)

Optimum Average Maximum Minimum Average
CRO 297 291 4.6 2.9 3.2
ACA 290 288 3.5 2.2 2.6
SAGA 289 281 3.1 2 2.5
PGA 295 290 2.3 1.4 1.8
PSO 288 284 3.3 2 2.8
CNCRO 302 293 2.2 1.3 1.5

Target
Ta8 Ta9 Ta10Ta7Ta6Ta5Ta4Ta3Ta2Ta1

Ua1

Ua2

Ua3

Ua4

Ua5

A
tta

ck
 ai

rc
ra

ft

Figure 3:Te target allocation strategy (the optimal value of ftness
function is 302).
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attack the target and avoid the high-risk UAV attacking the
high-value target at the same time. Tat is to say, the attack
aircraft with the advantages of position and ammunition will
be preferentially allocated to high-value targets to increase
the attack income. Meanwhile, the targets with the greater
threat should be avoided from being allocated to high-value
attack aircraft, which is conducive to the self-preservation of
the attack aircraft, and can reduce the loss. On the whole, the
CNCRO algorithm can provide a better scheme of coop-
erative target allocation.

4.2.3. Te Infuence of Weight Coefcient on UCAV Target
Allocation. In the function of UCAV target allocation, three
factors will afect the fnal optimization result, the overall
gain, the overall loss, and the total fight range. In order to
study the control ability of diferent factors on the
target allocation, the weight coefcients of the overall in-
come, the overall loss, and the total fight range are inves-
tigated. Te control law of the parameters can guide the
determination of the task assignment scheme with diferent
emphases. Tis part has completed the following three ex-
periments. Te parameters of the algorithm are shown in
Table 1, and the target allocation parameters of UCAV are
shown in Tables 4–8.

(1) To investigate the infuence of a single factor, the
weight coefcients are set as ω1 � 1,ω2 � ω3 � 0 (in
consideration of the maximum ftness function).
ω1 � 0,ω2 � 1,ω3 � 0 (in consideration of the ab-
solute minimum ftness function). ω1 � ω2 � 0,ω3 �

1 (in consideration of the absolute minimum ftness
function). Te experimental results are shown in
Tables 10–12.

(2) To investigate the infuence of two factors, the weight
coefcients are set as ω1 � ω2 � 1,ω3 � 0,
ω1 � 0,ω2 � ω3 � 1, ω1 � 1,ω2 � 0,ω3 � 1. Te ex-
perimental results are shown in Tables 13–15.

(3) Te infuence of the three factors is investigated. Te
weight coefcients are set as ω1 � 0.5,ω2 � 0.3,ω3 �

0.2. Te experimental results are shown in Table 16.

In order to more intuitively investigate the diversity of
allocation schemes, the ftness and average error of each
experiment are obtained, as shown in Figure 4. Te abscissa
in the fgure represents the target of Ta1–Ta10.

It can be seen from the above charts that when the overall
income, the overall loss, and the total fight range are
considered separately, the target allocation schemes are quite
diferent, and the performance is relatively divergent with
too much diversity. When the two factors are considered at
the same time, although the values of ftness function under
diferent combinations are diferent, the scheme of
target allocation has been relatively determined, the aspects
considered are more comprehensive, and the algorithm
tends to be optimized.When the three factors are considered
at the same time, the allocation result is the optimal selection
in the previous scheme. Specifcally, the allocation schemes
of ω1 � 0,ω2 � ω3 � 1 and ω1 � 1,ω2 � 0,ω3 � 1 in Exper-
iment 2 are the same, and the allocation scheme of ω1 �

ω2 � 1,ω3 � 0 in Experiment 2 is the same as that of ω1 �

0.5,ω2 � 0.3,ω3 � 0.2 in Experiment 3. Te main diference
between the two schemes is the allocation of Ta3.Te former
allocates it to Ua4, and the latter allocates it to Ua5. By
analyzing the given parameters of Ta3, it can be seen that the
killing probability of Ta3 allocated to Ua4 and Ua5 is 0.8462
and 0.8131, respectively, from the perspective of killing
probability, assigning Ta3 to Ua4 is more advantageous. In
addition, the fight ranges of Ua4 and Ua5 are 20 and 45,
respectively. It can be seen that the fight distance of Ua4 is
smaller, and the killing efciency is higher. From the per-
spective of survival probability, Ua4 and Ua5 are 0.8937 and
0.8972, respectively. Since the parameters of Ua4 and Ua5
are close, the impact on the allocation result can be ignored.
In a comprehensive view, the scheme allocated to Ua4 is
more optimized.

So, when the optimization conditions are sufcient,
although some of the distribution schemes are the same,
relatively speaking, the allocation scheme of the three factors
will tend to be optimal and more in line with the reality. In
addition, the above allocation results are also related to the
larger proportion of the total income in the objective
function. In the later practical application process, the pa-
rameters of the total income, the total loss, the total fight
range, and its weight coefcient can be set according to the
specifc situation, so as to obtain a strategy of
target allocation more in line with the actual situation.

4.2.4. Te Comparison between Traditional Constrained
Processing Technology and Unconstrained Multiobjective
Optimization Method. In order to investigate the role of
traditional constraint processing technology and uncon-
strained multiobjective optimization method in the strategy
of UCAV target allocation, the two methods are compared
experimentally. In addition, since the target allocation
scheme of UCAV is closely related to the constraint con-
ditions of Ci (the maximum number of targets that can be
attacked by each UAV) and the total number of target set (N
) adopted, the experiments in this section mainly use
CNCRO algorithm to realize the target allocation based on
traditional constrained processing technology and uncon-
strainedmultiobjective optimization and control the value of
Ci and N, and the performance of the two methods by using
Ci and N with diferent values is investigated. Specifcally, it
includes two experiments, (1) set Ci as 2, 3, 4, 5, respectively,
and the value of the total target number of N is 10, that is,
Ci � 2, 3, 4, 5, N � 10; (2) the total target set is composed of
5, 6, 7, and 8 targets randomly selected from the original
targets, that is, N � 5, 6, 7, 8, Ci � 3. In addition, the value of
the weight coefcient is ω1 � 0.5,ω2 � 0.3,ω3 � 0.2, and the
other specifc parameter settings are the same as above. Te
performances of CNCRO in constrained processing and
unconstrained multiobjective optimization are obtained by
executing 30 times in each case, and the number of times of
obtaining the optimal solution in 30 times is shown in
Table 17.

It can be seen from Table 17, on the one hand, from the
maximum number of targets (Ci), which is a constraint
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condition of the objective function, and it is closely related to
the optimization process. Te larger the value of Ci, the
broader the conditions for controlling the allocation process,
the simpler the implementation, the greater the possibility of

obtaining the optimal solution, and the shorter the execution
time. However, when the maximum number of targets is
reached, the processing efect and performance will ap-
proach saturation or bottleneck. For example, the number of

Table 10: Te target assignment scheme and ftness function value (ω1 � 1,ω2 � ω3 � 0).

UCAV Ua1 Ua2 Ua3 Ua4 Ua5
Target Ta3, Ta9 Ta4, Ta7, Ta8, Ta10 Ta1 Ta5, Ta6 Ta2
Optimal ftness 22.0375, 59.7788 13.0575, 44.675, 53.2675, 63.3696 12.168 70.28, 26.964 53.646
Total ftness 419.2439

Table 11: Te target assignment scheme and ftness function value (ω1 � 0,ω2 � 1,ω3 � 0).

UCAV Ua1 Ua2 Ua3 Ua4 Ua5
Target Ta1, Ta8 Ta5 Ta7, Ta9 Ta2, Ta4, Ta6 Ta3, Ta10
Optimal ftness −7.539, −8.008 −11.862 −10.872, −8.48 −10.67, −13.75, −11.37 −6.168, −6.99
Total ftness −95.709

Table 12: Te target assignment scheme and ftness function value (ω1 � ω2 � 0,ω3 � 1).

UCAV Ua1 Ua2 Ua3 Ua4 Ua5
Target Ta1, Ta9 Ta8 Ta7 Ta3, Ta4, Ta5, Ta6 Ta2, Ta10
Optimal ftness −20, −20 −20 −20 −20, −20, −23, −20 −25, −24
Total ftness −200

Table 13: Te target assignment scheme and ftness function value (ω1 � ω2 � 1,ω3 � 0).

UCAV Ua1 Ua2 Ua3 Ua4 Ua5
Target Ta1, Ta9 Ta8 Ta7 Ta3, Ta4, Ta5, Ta6 Ta2, Ta10
Optimal ftness 2.461, 46.7238 42.2425 31.783 14.1595, −1.9285, 55.56, 15.594 45.354, 55.0236
Total ftness 306.9729

Table 14: Te target assignment scheme and ftness function value (ω1 � 0,ω2 � ω3 � 1).

UCAV Ua1 Ua2 Ua3 Ua4 Ua5
Target Ta1, Ta9 Ta8 Ta7 Ta4, Ta5, Ta6 Ta2, Ta3, Ta10
Optimal ftness −27.539, −33.055 −31.025 −39.872 −33.75, −34.72, −31.37 −28.292, −30.63, −26.99
Total ftness 317.243

Table 15: Te target assignment scheme and ftness function value (ω1 � 1,ω2 � 0,ω3 � 1).

UCAV Ua1 Ua2 Ua3 Ua4 Ua5
Target Ta1, Ta9 Ta8 Ta7 Ta4, Ta5, Ta6 Ta2, Ta3, Ta10
Optimal ftness −9.001, 39.7788 33.2675 22.655 −8.1785, 50.28, 6.964 33.646, 1.155, 42.0136
Total ftness 212.5804

Table 16: Te target assignment scheme and ftness function value (ω1 � 0.5,ω2 � 0.3,ω3 � 0.2).

UCAV Ua1 Ua2 Ua3 Ua4 Ua5
Target Ta1, Ta9 Ta8 Ta7 Ta3, Ta4, Ta5, Ta6 Ta2, Ta10
Optimal ftness 1.36, 25.38 21.45 17.63 8.15, −1.285, 27.96, 7.94 26.34, 26.39
Total ftness 306.9729
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Figure 4: Continued.
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Figure 4: Te ftness and average error of each target allocation strategy. (a) Te overall income. (b) Te overall loss. (c) Te total fight
range. (d)Te overall income and loss. (e)Te overall loss and total fight range. (f )Te overall income and total fight range. (g)Te overall
income, loss, and total fight range.

Table 17: Te performances of CNCRO in constrained processing and unconstrained multiobjective optimization.

Ci

Constrained processing Unconstrained multiobjective optimization
Ci � 2 Ci � 3 Ci � 4 Ci � 5 Ci � 2 Ci � 3 Ci � 4 Ci � 5

Optimal times 20 22 26 26 24 26 29 28
N N � 5 N � 6 N � 7 N � 8 N � 5 N � 6 N � 7 N � 8
Optimal times 25 23 20 19 28 26 26 25

4.1

3.3
3

2.42.5
2

1.5 1.3

0

1

2

3

4

5

2 3 4 5
Ci

Constrained processing
Unconstrained multi-objective optimization

Ti
m

e c
on

su
m

pt
io

n 
(s

)

(a)

Constrained processing
Unconstrained multi-objective optimization

1.9

2.5

2.9
3.2

1.1
1.3 1.3 1.4

0

0.5

1

1.5

2

2.5

3

3.5

5 6 7 8
N

Ti
m

e c
on

su
m

pt
io

n 
(s

)

(b)

Figure 5: Continued.

Mathematical Problems in Engineering 13



times of obtaining optimal solutions is very close for Ci � 4
and Ci � 5 (26 times for constrained processing and 29 and
28 times for unconstrained multiobjective optimization). On
the other hand, from the perspective of the total number of
sets (N), the larger value of N will lead to greater difculty in
the implementation process and longer execution time.
Terefore, the number of times to obtain optimization will
become smaller, which is mainly related to the difculty of
the problem. However, compared with the constrained
processing method, the proportion of optimization results
obtained by unconstrained multiobjective method will
greatly increase.

In addition, the consumption time and the average value
of the objective function of the two methods are obtained, as
shown in Figure 5.

It can be seen from Figure 5 that the processing time of
the unconstrained multiobjective optimization method is
shorter than that of the constrained processing method.
Te main reason is that its optimization process does not
need to detect the constraint conditions, and the processing
is simpler, more reliable, and with shorter time con-
sumption. In addition, just as the above analysis, the larger
the number of maximum targets (Ci), the simpler the
implementation process, and the shorter the execution
time, while the larger the number of target set (N), the
greater the optimization difculty, and the longer the ex-
ecution time. As for the value of objective function, on the
one hand, the larger the value of Ci, the broader the al-
location conditions, the more likely it is to obtain the
optimal solution. It also can be seen from Figure 5 that the
value of objective function is gradually increased except for
isolated cases, which is related to the specifc allocation
scheme; in addition, when it reaches a certain degree, the
processing efect is close to saturation, which is also one of
the reasons. However, in general, compared to the con-
strained processing method, the value of objective function
obtained by unconstrained multiobjective optimization

method is better, and its allocation process is more rea-
sonable. On the other hand, the larger the number of set (N
), the greater the optimization difculty. Generally
speaking, except for isolated cases, both methods show that
the value of objective function gradually decreases with the
gradual increase of N, and the optimization difculty
gradually increases.

5. Conclusion

Te main innovations of this paper are as follows: (1) by
transforming multiple complex constraint conditions into
optimization objectives, the constrained optimization
problem of UCAV cooperative objective allocation is
transformed into a multiobjective optimization problem
including allocation objectives and constraint objectives; (2)
the energy-reserved chemical reaction algorithm (CNCRO)
is proposed. Te environmental energy-reserved variable of
buffer is introduced into the inefective collision, combi-
nation or splitting reaction between single and multiple
molecules of CNCRO to supplement energy for low kinetic
energy molecules, to reduce the molecular kinetic energy
while inefective collisions have occurred between mole-
cules. At the same time, the splitting reaction is inspired, to
greatly change the molecular structure and promote its
search for more solution space, and the global optimization
ability is improved; (3) the energy-reserved chemical reac-
tion algorithm (CNCRO) is applied to the process of UCAV
cooperative target allocation, the infuence of the weight
coefcients (ω1, ω2, ω3) of the overall income, the overall
loss, and the total fight range in the objective function of
UCAV on the allocation scheme is studied, and the infuence
laws of the maximum number of attack targets (Ci) and the
total number of targets (N) on the allocation scheme are
obtained, which can lay a foundation for the subsequent
implementation of target allocation based on diferent
emphases.
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Figure 5: Te performance comparison of CNCRO in constrained processing and unconstrained multiobjective optimization. (a) Average
time consumption (diferent Ci). (b) Average time consumption (diferent N). (c) Average value of objective function (diferent Ci). (d)
Average value of objective function (diferent N).
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