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We take into account here the stochastic-fractional Broer–Kaup equations (SFBKEs) perturbed by the multiplicative Wiener
process. To get rational, hyperbolic, and elliptic stochastic solutions for SBKEs, we utilize the Jacobi elliptic function method. �e
derived solutions are signi�cantly more useful and e�ective in comprehending various important challenging physical phe-
nomena due to the important of SFBKEs in describing the propagation of shallow water waves. Also, we use theMATLAB Package
to create 2D and 3D graphs for certain solutions of SFBKEs in order to discuss the impact of fractional order and the Wiener
process on the solutions of SFBKEs.

1. Introduction

Partial di�erential equations (PDEs) have become increas-
ingly popular due to their wide range of applications in
nonlinear science such as engineering [1], civil engineering
[2], quantum mechanics [3], thermoelasticity [4], soil me-
chanics [5], statistical mechanics [6], population ecology
[7, 8], economics [9], and biology [10, 11]. As a result, it is vital
to �nd accurate solutions in order to have a better under-
standing of nonlinear phenomena. Many approaches, such as
Darboux transformation [12], Hirota’s function [13], sine-
cosine [14, 15], (G′/G)-expansion [16–18], perturbation [19,
20], Riccati-Bernoulli sub-ODE [21], exp(− ϕ(ς))-expansion
[22], tanh-sech [23, 24], and the Jacobi elliptic function
[25, 26], have been employed to determine analytical solu-
tions of these equations.

Until the 1950s, deterministic models of di�erential
equations were commonly utilized in various applications to
describe system dynamics. However, it is obvious that most
natural physical phenomena are not deterministic. On the
other hand, fractional derivatives is used to describe a variety
of physical phenomena in engineering disciplines,

mathematical biology, signal processing, electromagnetic
theory and various scienti�c studies. Because fractional
order integrals and derivatives allow for the representation
of di�erent substances’ memory and heredity properties,
these new fractional-order models are better suited than the
earlier utilized integer-order models. Fractional-order
models have the most signi�cant advantage in compared to
integer-order models, where such e�ects are ignored.

As a result, whenmodeling these phenomena, we need to
take into account certain random ¥uctuations. To achieve a
better level of qualitative agreement, we investigate the
stochastic-fractional BroerKaup equations (SFBKEs).

σUdW + 2UDα
xU + D

α
xV[ ]dt � σ dU W and (1)

dv + D
α
x(UV) + D

α
xU + D

α
xxxU[ ]dt � σV dW, (2)

where the �eld of horizontal velocity is denoted by U(x, t),
V(x, t) is the height that deviate from equilibrium position
of liquid, Dα is the conformable derivative (CD) [27], W(t)
is a standard Wiener process (SWP), and σ is the noise
strength.
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$e Broer–Kaup equations (BKEs) (1-2), with σ � 0, is
used to model the bidirectional propagation of long waves in
shallow water [28]. $e shallow water equations describe the
motion of water bodies wherein the depth is short relative to
the scale of the waves propagating on that body and are
derived from the depth-averaged Navier–Stokes equations
[29]. Due to the significance of BKEs, many researchers have
developed analytical solutions for this system utilizing
various approaches such as improved (G′/G)-expansion
[30], the bifurcation method and qualitative theory of dy-
namical systems [31], exp(− ϕ(ς))-expansion [32],
(G′/G)-expansion method [33, 34], sine-cosine [35], He’s
variational principle [36], and first integral method [37].
While the exact stochastic solutions of SFBKEs (1-2) have
never been investigated before.

$e Jacobi elliptic function approach is used to get a wide
range of solutions, including elliptic, hyperbolic, and ra-
tional functions. $is is the first investigation to get exact
solutions to SFBKEs with combination of a stochastic term
and fractional derivative. Furthermore, we use MATLAB to
create 2D and 3D diagrams for a few of the solutions of the
SFBKEs (1-2) produced in this work to show how the SWP
effects on these solutions.

$e following is the format of this paper: In Section 2, to
establish the wave equation for SFBKEs (1-2), we apply a
powerful wave transformation. In Section 3, the analytic
stochastic-fractional solutions of SFBKEs (1-2) is created
using the Jacobi elliptic function approach. While, the in-
fluence of the SWP and the fractional order on the obtained
solutions is investigated in Section 4. $e paper’s conclusion
is provided in Section 5.

2. Wave Equation for SFBKEs

$e following wave transformation is applied:

U(x, t) � u(ξ)e
σW(t)− 1/2σ2t( ),

V(x, t) � v(ξ)e
σW(t)− 1/2σ2t( ),

ξ �
1
α

x
α

+ λt.

(3)

To get the wave equation of SFBKEs (1-2), where λ is a
constant and u and v are deterministic functions. Putting
(3) into equations (1) and (2) and using the following
equations:

dU � λu′dt + σu dW􏼂 􏼃e
σW(t)− 1/2σ2t( ),

dV � λv′dt + σv dW􏼂 􏼃e
σW(t)− 1/2σ2t( ),

D
α
xU � u′e σW(t)− 1/2σ2t( ),D

α
xV � v′e σW(t)− 1/2σ2t( ),

D
α
xxxU � u′′′e σW(t)− 1/2σ2t( ),D

α
x(UV) � (uv)′e σW(t)− 1/2σ2t( ),

(4)

we attain the following equations:

λu′ + 2uu′e σW(t)− 1/2σ2t( ) + v′ � 0 and (5)

λv′ +(uv)′e σW(t)− 1/2σ2t( ) + u′ + u′′′ � 0. (6)

Taking expectation E(·) for equations (5) and (6), we get
the following equations:

λu′ + 2uu′e− 1/2σ2t
E e

σW(t)
􏼐 􏼑 + v′ � 0 and (7)

λv′ +(uv)′e− 1/2σ2t
E e

σW(t)
􏼐 􏼑 + u′ + u′′′ � 0. (8)

Since W(t) is a normal distribution, then
E(eσW(t)) � eσ

2/2t. Now equations (7) and (8) take the type of
the following equations:

λu′ + 2uu′ + v′ � 0 and (9)

λv′ +(uv)′ + u′ + u′′′ � 0. (10)

Integrating equations (9) and (10) and putting the
constants of integration equal zero, we get the following
equations:

v � − λu − u
2 and (11)

λv +(uv) + u + u′′ � 0. (12)

Plugging equations (11) into (12), we obtain the fol-
lowing equation:

u′′ − u
3

− 2λu
2

− λ2 − 1􏼐 􏼑u � 0. (13)

3. Exact Solutions of SFBKEs

We are using the Jacobi elliptic functions approach [38] to
get the solutions to equation (13). As a consequence, we can
find the exact solution of SFBKEs (1-2).

3.1. Jacobi Elliptic Functions Method. We assume that the
solutions to equation (13) is as follows:

u(ξ) � 􏽘
M

i�1
aiH

i
, (14)

where H solves

H′ �

��������������
1
2

pH
4

+ qH
2

+ r

􏽲

, (15)

where p, q, and r are real parameters.
We notice that equation (15) has a variety of solutions

depending on p, q, and r (See Table 1). where sn(ξ) �

sn(ξ, m), cn(ξ) � cn(ξ, m), and dn(ξ, m) � dn(ξ, m) are the
Jacobi elliptic functions (JEFs) for 0<m< 1. When m⟶ 1,
the JEFs are converted into the hyperbolic functions shown
below.
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cn(ξ)⟶ sech(ξ), sn(ξ)⟶ tanh(ξ), cs(ξ)⟶ csch(ξ),

ds ⟶ csch(ξ), dn(ξ)⟶ sech(ξ).

(16)

3.2. Solutions of SFBKEs. Now, let us determine the pa-
rameter M by balancing u′′ with u3 in equation (13) as
follows:

M + 2 � 3M⇒M � 1. (17)

Rewriting equation (14) with M � 1 as follows:

u � a0 + a1H. (18)

Differentiating equation (18) twice, we have, by using
(15),

u′′ � a1qH + a1pH
3
. (19)

Plugging equations (18) and (19) into equation (13) we
have the following equation:

a1p − 8a
3
1􏼐 􏼑H

3
− 24a0a

2
1 + 12λa

2
1􏼐 􏼑H

2

+ a1q − 24a
2
0a1 − 24λa0a1 − 4λ2a1􏼐 􏼑H

− 8a
3
0 + 12λa

2
0 + 4λ2a0􏼐 􏼑 � 0.

(20)

Balancing each coefficient of Hk to zero, we get for
k � 0, 1, 2, 3

a1p − a
3
1 � 0,

− 3a0a
2
1 − 2λa

2
1 � 0,

a1q − 3a
2
0a1 − 4λa0a1 − λ2 − 1􏼐 􏼑a1 � 0,

(21)

and

a
3
0 + 2λa

2
0 + λ2 − 1􏼐 􏼑a0 � 0. (22)

Solving these equations, we get for q≤ 0 and p≥ 0,

Set I : a0 � −
���
− q

√
,

a1 �
��
p

􏽰
,

λ � +
3
2

���
− q

√
,

(23)

and

Set II : a0 �
���
− q

√
,

a1 � −
��
p

􏽰
,

λ � −
3
2

���
− q

√
.

(24)

For the first Set I: the solution of (13), for p≥ 0 and q≤ 0,
is as follows:

u(ξ) � −
���
− q

√
+

��
p

􏽰
H(ξ). (25)

As a result, by using (3) and (11), the solution of the
SFBKEs (2-1) reads as follows:

U(x, t) � [−
���
− q

√
+

��
p

􏽰
H]e

σW(t)− 1/2σ2t( ),

V(x, t) �
5
2

q +
5
2

����
− pq

􏽰
H − pH

2
􏼔 􏼕e

σW(t)− 1/2σ2t( ).

(26)

By using the previous table, there are many cases for
p≥ 0, q≤ 0, and r as follows.

3.2.1. First Case. If P � 2m2, q � − (1 + m2), and r � 1, then
H(ξ) � sn(ξ). So, the solution of the SFBKEs (1-2), using
(26), is as follows:

U(x, t) � −
���
− q

√
+

��
p

􏽰
sn

1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼔 􏼕e

σW(t)− 1/2σ2t( ) and

(27)

V(x, t) �
5q

2
+
5
2

����
− pq

􏽰
sn

1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼔

− psn
2 1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓e

σW(t)− 1/2σ2t( )􏼕.

(28)

Table 1

Case p q r H

1 2m2 − (1 + m2) 1 sn(ξ)
2 2 2m2 − 1 − m2(1 + m2) ds(ξ)
3 2 2 − m2 (1 + m2) cs(ξ)

4 − 2m2 2m2 − 1 (1 + m2) cn(ξ)

5 − 2 2 − m2 (m2 − 1) dn(ξ)
6 m2/2 (m2 − 2)/2 1/4 sn(ξ)/1 ± dn(ξ)
7 m2/2 (m2 − 2)/2 m2/4 sn(ξ)/1 ± dn(ξ)
8 − 1/2 (m2 + 1)/2 − (1 − m2)2/4 mcn(ξ) ± dn(ξ)
9 (m2 − 1)/2 (m2 + 1)/2 (m2 − 1)/4 dn(ξ)/1 ± sn(ξ)
10 (1 − m2)/2 (1 − m2)/2 (1 − m2)/4 cn(ξ)/1 ± sn(ξ)
11 (1 − m2)2/2 (1 − m2)2/2 1/4 sn(ξ)/1 ± sn(ξ)
12 2 0 0 c/ξ
13 0 1 0 ceξ

Mathematical Problems in Engineering 3



If m⟶ 1, then equations (27) and (28) degenerates as
follows:

U(x, t) � −
���
− q

√
+

��
p

􏽰
tanh

1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼔 􏼕 and

V(x, t) �
5q

2
+
5
2

����
− pq

􏽰
tanh

1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼔

− ptanh2
1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼕e

σW(t)− 1/2σ2t( ).

(29)

3.2.2. Second Case. If P � 2, q � 2m2 − 1, and r � − m2(1 −

m2) for m≤ 1/
�
2

√
, then H(ξ) � ds(ξ). $us, the solution of

the SFBKEs (1-2), using (26), is as follows:

U(x, t) � −
���
− q

√
+

��
p

􏽰
ds

1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼔 􏼕e

σW(t)− 1/2σ2t( ) and

(30)

V(x, t) �
5q

2
+
5
2

����
− pq

􏽰
ds

1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼔

− p ds
2 1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓e

σW(t)− 1/2σ2t( ).

(31)

If m⟶ 1, then equations (30) and (31) degenerates as
follows:

U(x, t) � −
���
− q

√
+

��
p

􏽰
csch

1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼔 􏼕

e
σW(t)− 1/2σ2t( ) and

V(x, t) � −
5q

2
+
5
2

����
− pq

􏽰
csch

1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓􏼔

− pcsch2
1
α

x
α

+
3
2

���
− q

√
t􏼒 􏼓e

σW(t)− 1/2σ2t( ).

(32)

3.2.3. 4ird Case. If p � m2/2, q � (m2 − 2)/2, and r � 1/4
(or r � (m2/4), then H(ξ) � sn(ξ)/1 ± dn(ξ). $us, the
solution of the SFBKEs (1-2), using (26), is as follows:

U(x, t) � −
���
− q

√
+

��
p

􏽰 sn 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

1 ± dn 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

􏼢 􏼣

e
σW(t)− 1/2σ2t( ) and

(33)

V(x, t) �
5q

2
+
5
2

����
− pq

􏽰 sn 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

1 ± dn 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

􏼢

+ − p
sn

2 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

1 ± dn 1/αx
α

+ 3/2
���
− q

√
t( 􏼁( 􏼁

2

e
σW(t)− 1/2σ2t( ).

(34)

If m⟶ 1, then equations (33) and (34) degenerates as
follows:

U(x, t) � −
���
− q

√
+

��
p

􏽰 tanh 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

1 ± sech 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

􏼢 􏼣

e
σW(t)− 1/2σ2t( ) and

V(x, t) �
5q

2
+
5
2

����
− pq

􏽰 tanh 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

1 ± sech 1/αx
α

+ 3/2
���
− q

√
t( 􏼁

􏼢

+ − p
tanh2 1/αx

α
+ 3/2

���
− q

√
t( 􏼁

1 ± sech 1/αx
α

+ 3/2
���
− q

√
t( 􏼁( 􏼁

2e
σW(t)− 1/2σ2t( ).

(35)

3.2.4. Fourth Case. If p � 2, q � 0,and r � 0, then H(ξ) �

C/ξ So, the solution of the SFBKEs (1-2), using (26), is as
follows:

U(x, t) �
�
2

√
αCx

− α
􏽨 􏽩e

σW(t)− 1/2σ2t( ) and

V(x, t) � − 2C
2α2x− 2α

􏽨 􏽩e
σW(t)− 1/2σ2t( ).

(36)

For the second Set II, the solution of equation (13) is as
follows:

u(ξ) � −
���
− q

√
+

��
p

􏽰
H(ξ), forp≥ 0, q≤ 0. (37)

As a result, by using (3) and (11), the solution of the
SFBKEs (2-1) reads as follows:

U(x, t) � [−
���
− q

√
+

��
p

􏽰
H]e

σW(t)− 1/2σ2t( ) and

V(x, t) �
5
2

q +
5
2

����
− pq

􏽰
H − pH

2
􏼔 􏼕e

σW(t)− 1/2σ2t( ).

(38)

By using the previous table, there are many cases for
p≥ 0, q≤ 0 and r as follows.

3.2.5. First Case. If P � 2m2, q � − (1 + m2), and r � 1, then
H(ξ) � sn(ξ). So, the solution of the SFBKEs (1-2), using
(38), is as follows:

U(x, t) �
���
− q

√
−

��
p

􏽰
sn

1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼔 􏼕e

σW(t)− 1/2σ2t( ) and

(39)

V(x, t) �
− q

2
+
1
2

����
− pq

􏽰
sn

1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼔

− psn
2 1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼕e

σW(t)− 1/2σ2t( ).

(40)

If m⟶ 1, then equations (39) and (40) degenerates as
follows:

U(x, t) �
���
− q

√
−

��
p

􏽰
tanh

1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼔 􏼕e

σW(t)− 1/2σ2t( ) and

V(x, t) �
− q

2
+
1
2

����
− pq

􏽰
tanh

1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼔

− p tanh2
1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼕e

σW(t)− 1/2σ2t( ).

(41)
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3.2.6. Second Case. If P � 2, q � 2m2 − 1, and r � − m2(1 −

m2) for m≤ 1/
�
2

√
, then H(ξ) � ds(ξ). $us, the solution of

the SFBKEs (1-2), using (38), is as follows:

U(x, t) � [
���
− q

√
−

�����

− p ds

􏽱 1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓e

σW(t)− 1/2σ2t( ). (42)

V(x, t) �
− q

2
+
1
2

����
− pq

􏽰
ds

1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼔

− p ds
2 1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼕e

σW(t)− 1/2σ2t( ).

(43)

If m⟶ 1, then equations (42)and (43) degenerates as
follows:

U(x, t) �
���
− q

√
−

��
p

􏽰
csch

1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼔 􏼕

e
σW(t)− 1/2σ2t( ) and

V(x, t) �
− q

2
+
1
2

����
− pq

􏽰
csch

1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼔

− pcsch2
1
α

x
α

−
3
2

���
− q

√
t􏼒 􏼓􏼕e

σW(t)− 1/2σ2t( ).

(44)

3.2.7. 4ird Case. If p � m2/2, q � (m2 − 2)/2, and r � 1/4
(or r � m2/4, then H(ξ) � sn(ξ)/1 ± dn(ξ). $us, the so-
lution of the SFBKEs (1-2), using (38), is as follows:

U(x, t) �
���
− q

√
−

��
p

􏽰 sn 1/αx
α

− 3/2
���
− q

√
t( 􏼁

1 ± dn 1/αx
α

− 3/2
���
− q

√
t( 􏼁

􏼢 􏼣

e
σW(t)− 1/2σ2t( ) and

(45)

V(x, t) �
− q

2
+
1
2

����
− pq

􏽰 sn 1/αx
α

− 3/2
���
− q

√
t( 􏼁

1 ± dn 1/αx
α

− 3/2
���
− q

√
t( 􏼁

􏼢

+ − p
sn

2 1/αx
α

− 3/2
���
− q

√
t( 􏼁

1 ± dn 1/αx
α

− 3/2
���
− q

√
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2
⎤⎦

e
σW(t)− 1/2σ2t( ).

(46)

If m⟶ 1, then equations (45) and (46) degenerates as
follows:

U(x, t) �
���
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√
−

��
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α
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���
− q

√
t( 􏼁
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���
− q

√
t( 􏼁

􏼢 􏼣

e
σW(t)− 1/2σ2t( ) and
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2
+
1
2

����
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α
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���
− q

√
t( 􏼁
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���
− q

√
t( 􏼁

􏼢

+ − p
tanh2 1/αx

α
− 3/2

���
− q

√
t( 􏼁

1 ± sech 1/αx
α

− 3/2
���
− q

√
t( 􏼁( 􏼁

2
⎤⎦e

σW(t)− 1/2σ2t( ).

(47)

3.2.8. Fourth Case. If p � 2, q � 0, and r � 0, then H(ξ) �

C/ξ So, the solution of the SFBKEs (1-2), using (26), is as
follows:

U(x, t) � − α
�
2

√
Cx

− α
􏽨 􏽩e

σW(t)− 1/2σ2t( ) and

V(x, t) � − 2α2C2
x

− 2α
x

− 2
􏽨 􏽩e

σW(t)− 1/2σ2t( ).
(48)

4. The Impact of Fractional Order and Noise on
the Solutions

$e effect of the noise on the obtained solution of the
SFBKEs (1-2) is discussed. $e MATLAB tools are used to
provide some graphs for different values of σ (noise
strength).

Firstly, from the effect of fractional order in Figures 1
and 2, if σ � 0 and m � 0.4, we can see that the surface
expands when α is increasing:

4.1. Secondly the Effect of Noise. In Figures 3 and 4, when
noise is added, the surface gets much flattered if its strength
is increased σ � 1, 2.

In Figure 5, we introduce 2D plot of the U(x, t) in (33)
with σ � 0, 0.5, 1, 2 and with α � 1, which emphasize the
previous results.
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Figure 1: 3D plot of equation (33) with σ � 0 and different α.
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5. Conclusions

By using the Jacobi elliptic function method, the exact
solutions of the stochastic-fractional Broer–Kaup equations
(1-2) were successfully achieved. $ese obtained solutions

are far more helpful and effective in comprehending several
crucial difficult physical phenomena due to the importance
of SFBKEs in describing the propagation of shallow water
waves. Also, we used MATLAB package to show how the
multiplicative noise influenced the solutions of SFBKEs. In
future work, we may use additive noise to treat the SFBKEs
(1-2) [39].
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