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In order to further improve the accuracy of electric bus energy consumption estimation and reduce the complexity of using data,
the paper proposes a new method for estimating electric bus energy consumption based on a deep learning approach with a data-
driven model. �e method can estimate the single-trip energy consumption of an electric bus by employing CNN (convolutional
neural network) to time series prediction, which takes into account easily accessible trip data of electric buses, including initial
SOC (state of charge), average speed, average temperature. First, we need to convert the raw data into a trip dataset by pre-
processing the collected real-world trip data of an electric bus. �en, the single trip of the bus from the original station to the
terminal station is considered the basic unit for energy consumption estimation, and the trip data are processed in a quasi-time
series. Following that, the trip data were modi�ed so that the subsequent convolutional operations more closely matched the
interactions between adjacent trips, and a time series predictionmethod based on CNNwas used instead of the regression analysis
methods used in traditional data-driven models. Finally, single-trip operation energy consumption estimation of electric buses is
achieved with time series prediction based on CNN, and this method is compared and analysed with the LSTM (long-short term
memory) time series prediction method and multivariate nonlinear regression prediction methods in traditional data-driven
models. �e results show that the energy consumption estimation model for electric buses developed in this paper has a higher
prediction accuracy, which can improve by 3.68 percent over the traditional multivariate nonlinear regression prediction method
and by 1.32 percent over the LSTM time series prediction method.

1. Introduction

By enhancing the precision of pure electric bus energy
consumption and range estimation, it can better handle
problems such as bus vehicle charging cooperative sched-
uling, operation organization optimization, charging pile
design, and building. Currently, there are two primary
mainstream ways of estimating EV energy consumption:
dynamics-based and data-driven.

�e dynamics-based EV energy consumption estimation
model can more accurately describe the EV’s energy con-
sumption process, which typically includes energy con-
sumption of drive, wind resistance, rolling friction, road
slope, air conditioning, and other vehicle factors. Gao et al.
[1] assessed the energy consumption and battery perfor-
mance of an urban electric bus based on bus trip data and

standardized operating circumstances. By modelling the
nonlinear steady-state turning of an urban electric bus,
Beckers and Besselink [2] calculated the proportion of
turning energy to the overall energy consumption. Chen and
Xie [3] developed an energy consumption estimation model
based on the identi�cation of working conditions that
combined fuzzy energy consumption and the Kalman �lter,
and the model’s estimation accuracy was improved by 77%
when compared to the traditional energy consumption es-
timation method. Lian et al. [4] separated real-world
working condition data into segments by analysing the
correlation between SOC and driving range and then de-
veloped an electric vehicle range prediction model based on
battery SOC and driving condition identi�cation. Liu et al.
[5] predicted the vehicle’s energy consumption in the future
period using the link between energy consumption and
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working circumstances, which was produced by determining
the driving energy consumption and accessory energy
consumption, respectively. Zhang and Yao [6] investigated
the energy consumption characteristics of electric cars from
a statistical and physical standpoint and provided a mi-
croscopic modelling framework for predicting the energy
consumption of electric vehicles based on real driving state
data. Al-Wreikat et al. [7] investigated the influence of
variables such as journey distance, ambient temperature, and
road gradient on specific energy consumption in various
drivingmodes. Yin et al. [8] developed a simulationmodel of
an entirely electric vehicle by expressing the typical pa-
rameters of 12 driving circumstances, such as speed and
acceleration, in order to accomplish a simulation estimation
of the entire vehicle’s energy consumption. By dividing
electric vehicle driving power into three categories, motor
power loss, driving resistance loss, and acceleration and
deceleration power, Wu et al. [9] developed an analytical
approach for predicting energy consumption. Xu and Wang
[10] predicted future vehicle speed profiles based on his-
torical data, elevation information, and real-time road
congestion information and developed a mileage con-
sumption estimation model based on travel cycle identifi-
cation and prediction.

,e data-driven EV energy consumption estimation
model examines the elements that influence energy con-
sumption and employs statistical regression analysis and
machine learning to obtain electric vehicle energy con-
sumption estimates. Hu and Gao [11] proposed an energy
consumption model based on temperature stratification to
extract energy consumption influencing factors from an
electric cab model’s operational data. Chen et al. [12]
employed a neural network prediction model to estimate
energy consumption or recovery values and a data parti-
tioning approach to distinguish between charging and
discharging modes. Fukushima et al. [13] developed a
transfer learning-based energy consumption estimation
approach to accomplish energy consumption estimation for
novel electric vehicle models that are based on common
electric vehicle models. Yang et al. [14] used a weighted type
II fuzzy set model to estimate electric bus energy con-
sumption based on the obtained pure electric bus position
data and energy consumption-related data. Vatanparvar
et al. [15] estimated electric vehicle energy consumption
using the NARX neural network and driving behaviour. Fan
et al. [16] employed observed and state data such as oper-
ating voltage and battery SOC to enhance the forecast ac-
curacy of electric cars, using recursive least squares
calibration of model parameters in conjunction with the
ampere-time integration approach and EKF algorithm.
Cauwer et al. [17] employed a data-driven method to esti-
mate the energy consumption of an EV for a given road on a
road network based on neural networks and multiple linear
regression models, which combine microscopic driving
parameters with external environmental parameters.

,e dynamics-based method for estimating the energy
consumption of an EV has high data type requirements,
which means more road conditions and real-time weather
data (e.g., road slope, friction coefficient, wind speed, wind

direction) are required. Data-driven energy consumption
estimation approaches may be assessed using more easily
available data, but they frequently suffer from a lack of
estimation accuracy. Applying CNN to data-driven models
can solve the higher requirement of data types in dynamics-
based models and the insufficient accuracy in data-driven
models. In this research, we employ CNN for time series
prediction of electric bus trip data. ,e trip data are pro-
cessed in a quasi-time series by considering a single bus trip
from origin to destination as the fundamental unit for es-
timating energy consumption. Finally, a real trip data set of
many electric buses in the city of Jilin Province is selected to
train, validate, and test the CNNmodel to achieve the single-
trip energy consumption estimation of electric buses.

2. CNN-Based Model Development

Even though it reduces the required data types and allows for
the use of readily available data as input variables, the data-
driven energy consumption estimating approach has in-
sufficient estimation accuracy. Deep learning may effectively
tackle the problem of insufficient estimation accuracy of
typical data-driven models since it reflects the nonlinear and
stochastic properties of data and has significant robustness.

First, an electric bus energy consumption estimation
model based on CNN is developed, followed by pre-
processing and adapting the collected electric bus trip data to
the CNN input matrix requirements. Finally, the model is
trained, validated, and analysed using test set data, and its
time cost and prediction accuracy are compared to those of
multiple nonlinear regression models and LSTM time series
prediction methods.,e research idea of this paper is shown
in Figure 1.

2.1. "e CNN Model’s Basic Structure. ,e CNN model
employed in this study is based on the LeNet-5 model, with
changes to the structure and size of each layer. Taking into
account the size of the input matrix, the number of data
processes, and the model’s correctness, two convolutional
layers, one pooling layer and one fully connected layer, are
designed.,e output value is a single value, the loss function
is chosen as MSE (mean squared error), and the step size of
the convolution operation is 1. Figure 2 depicts the CNN’s
structure.

Four 3× 3 convolutional kernels are used for convolu-
tional layer 1 to guarantee that as many data characteristics
as feasible are preserved while lowering the computational
cost. ,e pooling layer employs the maximum pooling
approach, with a 2× 2 pooling area. ,e fully connected
layer employs a full connection to get the output values.

2.2. Quasi-Timing Data Extraction and Multichannel Input
Matrix Construction. When there is no set time interval yet
there is a change in state, quasi-time series analysis is
commonly applied. A quasi-time dataset is created based on
the statistical temporal distribution of the acquired data and
may be utilized for time series forecasting. In this work, the
state is a single electric bus trip, and the change is a change in
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trip data. Hence, the trip data are processed in a quasi-time
series by considering a single bus trip as the fundamental
unit.

For example, the departure time of an electric bus route
is a set time as stated in Table 1. ,e bus route has 8 and a
half shifts in a day’s operational duty, and each shift has two
round trips.,erefore, each bus on the route makes a total of
17 trips every day.

As shown in Table 2, the departure times of the vehicles
operating on the line are counted and divided into different
time intervals, so that each time interval contains the de-
parture time of only 1 vehicle. ,erefore, a quasi-time series
based on 17 trips per vehicle per day can be constructed, as
shown in Figure 3.

Because each variable’s sequence is not strongly corre-
lated with each other when the input matrix is directly
combined, this paper separates each variable for input to

form a three-channel RGB input matrix similar to that of an
image (as shown in Figure 4). Each variable serves as an
input channel, with each variable being combined into a
three-dimensional matrix that serves as the input matrix.
When the convolution operation is performed in the con-
volution layer, each channel is kept relatively independent.
,e results of each channel’s convolution operation are then
combined, and the output is obtained by adding bias.

2.3. Quasi-Time Series Conversion of TripData Based onGAF.
,is paper employs the gram angular fields (GAF) used in the
study by Modi [18] et al. to implement ascending dimension,
which is to meet the requirements of the input matrix of each
channel in the model while preserving the original time series
relationship of the variables in each channel. GAF turns each
variable’s one-dimensional quasi-time series structure into a

Operation Energy Consumption Estimation Method of
Electric Bus Based on CNN Time Series Prediction
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Figure 1: ,e research idea chart of energy consumption estimation method for electric bus.
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Figure 2: CNN’s structure for operational energy consumption estimation.
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two-dimensional channel structure, preserving the original
time series relationships while reflecting the relationships
between the interactions within the time series data. Gram
angular fields can be divided into two forms, gram angular
summation fields (GASF) and gram angular difference fields
(GADF).,emain idea of GAF is to convert one-dimensional
time series into a polar coordinate system representation,
where the time axis is represented by the radius of the polar
coordinates and the angular values are represented by the
values of the time series and then use trigonometric values
between the different time series taking values to generate the
GAF matrix.

,e GAF’s precise computation procedure is as follows:

(1) Because the angular values of polar coordinates
include a range of values, the time series data are first
normalized to the interval [−1, 1] or [0, 1]. Equations
(1) and (2) show the normalization procedure.

x
i
−1 �

xi − max(X)(  + xi − min(X)( 

max(X) − min(X)
, (1)

orxi
0 �

xi − min(X)

max(X) − min(X)
. (2)

Table 1: Electric bus departure schedule.

Vehicle no Original station
Departure schedule

1 2 3 4 5 6 7 8 9

1 Lei 6:30 7:33 8:51 10:10 11:40 13:08 14:26 15:44 17:00
Jian 7:00 8:08 9:26 10:45 12:15 13:43 15:01 16:19

2 Lei 6:40 7:46 9:04 10:25 11:55 13:21 14:39 15:57 17:10
Jian 7:10 8:21 9:39 11:00 12:30 13:56 15:14 16:32

3 Lei 6:50 7:59 9:17 10:40 12:10 13:34 14:52 16:10 17:20
Jian 7:20 8:34 9:52 11:15 12:45 14:09 15:27 16:45

4 Lei 6:30 7:30 8:47 10:05 11:30 13:00 14:22 15:40 16:58
Jian 7:00 8:12 9:30 10:55 12:25 13:47 15:05 16:23

5 Lei 6:40 7:40 9:00 10:18 11:45 13:15 14:35 15:53 17:10
Jian 7:10 8:25 9:43 11:10 12:40 14:00 15:18 16:36

6 Lei 6:50 7:54 9:13 10:31 12:00 13:30 14:48 16:06 17:20
Jian 7:20 8:38 9:56 11:25 12:55 14:13 15:31 16:46

Table 2: Time intervals for electric buses.

Trip Time intervals Trip Time intervals Trip Time intervals Trip Time intervals
1 6:30–6:55 6 9:25–10:00 11 12:58–13:40 16 16:16–16:50
2 7:00–7:25 7 10:05–10:43 12 13:41–14:15 17 16:55–17:30
3 7:30–8:00 8 10:44–11:27 13 14:16–14:55 —
4 8:05–8:40 9 11:28–12:13 14 15:00–15:35 —
5 8:45–9:20 10 12:14–12:57 15 15:36–16:15 —
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Figure 3: Electric bus quasi-time series data construction schematic diagram.
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xi is the i-th observation value of time series set X �

x1, x2, . . . xn , and xi
−1 and xi

0 are the corresponding
value normalized to [−1, 1] and [0, 1].

(2) ,e time series data are reconstructed based on the
polar coordinate system. ,e calculation method is
shown in the following equation:

ϕ � arccos xi( , −1≤ xi ≤ 1, xi ∈ X,

r �
ti

N
, ti ∈ N.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

xi is the i-th value of time series set X which after
normalized, ti is the corresponding timestamp, N is
the constant used to regularize the span of the polar
coordinate system, (ϕ, r) forms the curve function of
the polar coordinate system.
It should be noted that when using [0, 1] normali-
zation for the time series, the range of values of ϕ is
[0, π/2]. And the range of values of ϕ is [0, π] when
using [−1, 1] normalization.

(3) ,e construction of GAF is inspired by Gram’s
matrix, and the angular sum or difference of trigo-
nometric functions can be utilized to evaluate the
data correlation between multiple time series points,
as shown in the following equations:

GASF � cos ϕi + ϕj   � X′ · X −

������

I − X′2


·

������

I − X
2



, (4)

GADF � sin ϕi − ϕj   �

������

I − X′2


· X − X′ ·
������

I − X
2



. (5)

ϕi and ϕj(i, j � 1, 2, 3, . . . , n) are the angular values
of the two time series points, which can be converted
to Cartesian coordinate form by the sum and dif-
ference product formula. I is the unit row vector. X

and X are two standardized time series matrices.

Taking GASF as an example, its matrix representation is
shown in the following equation:

GASF �

cos ϕ1 + ϕ1(  cos ϕ1 + ϕ2(  · · · cos ϕ1 + ϕn( 

cos ϕ2 + ϕ1(  cos ϕ2 + ϕ2(  · · · cos ϕ2 + ϕn( 

⋮ ⋮ ⋱ ⋮

cos ϕn + ϕ1(  cos ϕn + ϕ2(  · · · cos ϕn + ϕn( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

3. Energy Consumption Estimation
Model Training

3.1. Base Data Collection for Model Training. In this paper, a
data-driven model is used to estimate the energy con-
sumption of electric buses. ,e data collection site was
chosen in Jilin Province, and real-time operation data of
relevant vehicles were acquired using an online onboard
networking platform while taking data collection expenses
into account.

,e data collected includes the following: (1) the number
of people getting on and off the bus at each stop along a
predetermined route journey, as well as arrival and depar-
ture times based on data from in-bus surveillance cameras,
(2) real-time vehicle position, state of charge, energy con-
sumption, total mileage, and air conditioning switch data for
specified routes based on an electric bus vehicle networking
platform, (3) hourly temperature changes are observed and
recorded hour by hour based on national surface weather
stations. Some of the telematics platform’s raw recorded data
are shown in Table 3.

3.2. Preprocessing of Base Data for Model Training.
Because this study only addresses the change in energy
consumption during the operation of electric buses, and the
gathered real-time data of electric buses may not be in the

+b

Convolutional Kernel

Step=1

Input matrix

Output

Channel 3

Channel 2

Channel 1

x3
11 x3

12 x3
13 x3

14

x3
21 x3

22 x3
23 x3

24

x3
31 x3

32 x3
33 x3

34

x3
41 x3

42 x3
43 x3

44

x2
11 x2

12 x2
13 x2

14

x2
21 x2

22 x2
23 x2

24

x2
31 x2

32 x2
33 x2

34

x2
41 x2

42 x2
43 x2

44

x1
13 x2

14x1
11 x1

12

x1
21 x1

22
w1

11 w1
12

w1
21 w1

22

w2
11 w2

12

w2
21 w2

22

w3
11 w3

12

w3
21 w3

22

x1
23 x1

24

x1
31 x1

32 x1
33 x1

34

x1
41 x1

42 x1
43 x1

44

z13z11 z12

z21 z22 z23

z31 z32 z33

Figure 4: Computational structure for multichannel input convolutional layers.

Mathematical Problems in Engineering 5



operation period, further data filtering is required to derive
relevant data during the operating period. ,ere is also a
need for further data processing because the raw data ob-
tained via video surveillance and telematics platforms differs
from the needed trip data in terms of data kinds.

3.2.1. Revenue Passenger Kilometre. Beause video surveil-
lance data recording data is instant value, the data such as the
number of people in the car, vehicle position, and driving
speed must be converted to data values during a single trip.
By integrating the curve of the number of passengers across
the mileage throughout one trip, it is possible to reflect the
change in the number of passengers from the whole trip,
which has an impact on the trip energy consumption. ,e
revenue passenger kilometre integral for a single trip is
calculated as shown in the following equation:

PK � 
D

O
P(s)ds. (7)

3.2.2. Raw Data to Single-Trip Data Conversion. In the
original data record of the automobile network platform, the

collected time value is the moment value of the SOC and
other display values dropped. And in the trip data, the value
of each indicator in the time period of a single trip is taken as
a record. As shown in Table 4, converting between the two
types of data requires first determining the start and end
points of the journey in order to calculate data like travel
time and average speed.

3.2.3. Estimated Average Temperature for a Single Trip.
,e hourly air temperature value is used as the initial
moment air temperature value for that hour in the trip
average air temperature calculation, and a time-averaged
linear estimation is performed and rounded to the nearest
whole number, as shown in Table 5.

Figure 5 depicts the problem of estimating the trip’s
average temperature, which necessitates first estimating the
temperature values at the start and end of the journey. A
weighted average estimate of the temperature over the
different time periods is required if the starting and ending
moments are not in the same whole time period. Equation
(8) shows the specific calculation formula.

TOD � TO + ΔT

� TB − TA(  ×
tO − tA

tB − tA

+ TA  +
tB − tO

tD − tO

× TB − TA(  ×
tB − tO

tB − tA

+
tD − tB

tD − tO

× TC − TB(  ×
tD − tB

tC − tB

.

(8)

TOD indicates the average temperature of a single trip to
be estimated. tA, tB, tC indicate time moments for hourly
temperature observation. tO, tD are the start moment and
end moment of the trip, respectively. TO is a median value to
be estimated—temperature value at the start moment of the
trip. ΔT is a median value—value for average temperature
change during a trip; TA, TB, TC are the hourly actual
temperature values.

3.3. Preprocessing of Data Set for Model Training. Trip data
are converted to an electric bus trip data set after processing
is completed. ,en, the data are then split into layers within
each month based on the distribution of the dataset
throughout the dates. Finally, 1291 data points were sepa-
rated in chronological order as the training set, 277 data

points as the validation set, and 278 data points as the test
set. ,e training set and validation set are used to train
models, while the test set is used to compare the method
presented in this paper to other methods.

3.3.1. PCA Downscaling and Normalization of Trip Data

(1) PCA Downscaling. PCA (principal component analysis)
is used to reduce the dimensionality of the input variables in
order to obtain more concise and orthogonalized input
variables, minimize the number of variables to reduce the
number of operations, and enhance the running
performance.

PCA is a multiindicator statistical analysis method that
uses dimensionality reduction to reduce the number of

Table 3: Some of the raw data recorded on the telematics platform.

Time moment SOC (%) Accumulated mileage (km) Energy consumption (kWh) Air conditioning on or off Original or terminal
station

6:54 96.4 60993.0 5.629 0 Original station
6:58 96.0 60994.0 6.254 0
7:02 95.6 60995.2 6.880 0
7:05 95.2 60996.2 7.505 0
7:08 94.8 60997.3 8.131 0
7:11 94.4 60998.6 8.756 0
7:17 94.0 61000.6 9.381 0
7:18 94.0 61000.8 9.381 0 Terminal station
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variables to a minimum. It allows for variable compression,
i.e., replacing the original more indicators with indicators of
fewer dimensions using PCA while keeping the original
indicators’ information so that the new indicators (principal
components) are not connected with each other.

,e scikit-learn package for Python can be used to realize
the computation of PCA. ,e training matrix is created by
filtering five factors from the training set data: beginning
SOC, journey time, average speed, average temperature, and
air conditioning on time. ,e initial five variables are re-
duced to four distinctive variables using PCA. Table 6 shows
the percentage variance of each of the four components that
were kept, i.e., the variance contribution of individual
variables.

Based on the variance percentage results, the cumulative
variance contribution of the four principle components was
calculated to be 99.37 percent, which may cover the majority
of the data information. As a result, the five variables can be

transformed into four new principal component variables
using eigenvectors, as illustrated in Table 7.

According to the values of the component coefficients of
the feature vector matrix, it can be found that component 1
mainly contains the information of starting SOC (the ab-
solute value of the component coefficient is greater than 0.8),
component 2 mainly contains the information of average
temperature (the absolute value of the component coefficient
is greater than 0.7), component 3 mainly contains the in-
formation of average temperature and air conditioning on
time (the absolute value of the component coefficient is
greater than 0.6), and component 4 mainly contains the
information of travel time and average speed (the absolute
value of the component coefficient is greater than 0.5).

,e four principal component variables extracted from
the above training set using PCA are used as input variables
in energy consumption estimation using CNN. (9) depicts
the relationship between them and the five initial variables.

p1 � −0.878 × SOCorigin − 0.017 × t + 0.017 × v + 0.071 × T + 0.472 × tAC,

p2 � −0.368 × SOCorigin + 0.061 × t − 0.040 × v − 0.730 × T − 0.571 × tAC,

p3 � 0.296 × SOCorigin + 0.225 × t − 0.133 × v − 0.639 × T + 0.660 × tAC,

p4 � 0.074 × SOCorigin − 0.798 × t + 0.538 × v − 0.230 × T + 0.124 × tAC.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

Table 5: Estimation of average trip temperature using hourly temperature values.

Temperature statistics moment Hourly temperature (°C) Start and end times Average temperature of trip (°C)
6:00 14 6:54

177:00 16 7:18
8:00 19 —

tA tB

tO tD

tC

TA TB TC

TOD?

6:00 7:00 8:00
6:54 7:18

14°C 16°C 19°C

Figure 5: Illustration of the problem of estimating the average temperature for a single trip.

Table 4: Partial data after converting.

Date License plate
number Direction Departure

time
Ending
time

Energy consumption
(kWh)

Initial SOC
(%)

Trip time
(min)

Average speed
(km/h)

2020/
1/6 0151 A 6:30 6:57 4.437 96 27 17.811

2020/
1/6 3112 B 6:30 6:59 4.755 97 29 16.982

2020/
1/6 3123 A 6:40 7:06 3.640 96 26 19.123

2020/
1/6 6929 B 6:40 7:09 4.505 99 29 16.896

2020/
1/6 3157 B 6:50 7:15 4.595 96 25 19.113
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p1, p2, p3, p4 are the values of the 4 principal compo-
nents corresponding to each data, respectively. SOCorigin
indicates the percentage value of the start SOC. t indicates
the trip time, min. v indicates the average speed, km/h. T

indicates the average temperature of trip, °C. tAC indicates
the air conditioning on time during the trip, min.

(2) Normalization. Before performing the CNN operation,
the input data must be normalized to unify the magnitudes
of the input variables and preserve the range of fluctuation of
each variable within the interval of [−1, 1] (as required by
GAF). Equation (10) shows the specific calculation formula.

p′ �
p − pmax(  + p − pmin( 

pmax − pmin
. (10)

p′ indicates the value after the normalization process, p

is the original value, pmax and pmin indicate the maximum
and minimum values of the set where variable p is located.

3.3.2. Input Sequence Construction and GAF Transformation.
,e symmetric quasi-time series generation approach, based
on the input matrix and output structure of the convolu-
tional neural network, is designed to match the electrical
consumption values of more trip data and extract the data
correlation between each surrounding trip. In Figure 6, the
relevant component values of the sequence corresponding to
the output energy consumption variables are placed in the
proposed timing median, and the quasi-time data before and
after them are ordered according to the time period during
which the trip is made. Missing trip value variables are
replaced by the overall average of the time series.

,e results of the constructed symmetric quasi-time
series data are shown in Table 8. ,e data for each variable
under the associated trip are in one row with the energy
consumption, and the other rows are the created symmetric
suggested time series data. As a result, each energy con-
sumption data corresponds to the four component factors of
its own trip, as well as information on the component
variables of nearby journeys, allowing for a more accurate
representation of the influence of surrounding trip data.

,e GASF method is employed to convert the one-di-
mensional proposed time-series data into a two-dimensional
matrix. Figure 7 depicts the four-component channel dia-
gram (from left to right, components 1 to 4) for generating
GAF using the first trip of a road electric bus as an example.

Figure 7 shows that the pictures of the first three principal
components have a centralized distribution, with the excep-
tion of component 4, which has a more uniform distribution
of values at each point, implying that the component variables
have a greater influence.,e corresponding time period trip of
each vehicle on each survey day is used as an input matrix, and
the matrix of each input component variable of the same
vehicle on the same day is set as a channel matrix, which is
merged into a three-dimensional input matrix.

,is experimental environment’s software platform is Py-
thon 3.8.6, and the running environment is an Intel (R) Cor-
eTM i5-4200M CPU @ 2.50GHz. ,e input matrix (GAF
quasi-time matrix), the designed CNN model, and the opti-
mizer (RMSProp, which is chosen to achieve a faster and more
globalized gradient descent) are input into the experimental
environment, and the data of different bus routes in the training
set are trained separately to obtain the CNN model for energy
consumption estimation applicable to different bus routes.

4. Validation Analysis of Model

,e test set data consist of 278 trip data separated in chro-
nological order from the electric bus trip data set. Substitute
the test set into the CNN model for energy consumption
estimation after the model training is completed. ,e multiple
nonlinear regression prediction method and the LSTM time
series prediction method are also used to predict the test set
data, and the test results are compared with the prediction
results of the CNN time series predictionmethod in this paper.

,e LSTM model structure for the LSTM time series
prediction method includes two LSTM layers (each layer has
100 neurons), one fully connected layer, the ReLU function
for activation, the MSE function for loss, and the RMSprop
method for optimization. (11) displays the model relations
obtained by the multiple nonlinear regression prediction
approaches.

Table 6: Individual variable contribution to variance.

Component Component 1 Component 2 Component 3 Component 4
Variance ratio 0.57022 0.22562 0.14755 0.05033
Feature value 267.07475 105.67153 69.10991 23.57421

Table 7: ,e feature vector matrix of PCA.

Feature vector Initial SOC (%) Trip time (min) Average speed (km/h) Average temperature (°C) Air conditioning on time (min)
Component 1 −0.87821 −0.01717 0.01696 0.07094 0.47238
Component 2 −0.36805 0.06081 −0.04010 −0.73025 −0.57093
Component 3 0.29630 0.22515 −0.13290 −0.63914 0.65981
Component 4 0.07415 −0.79793 0.53789 −0.23040 0.12414
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W � −0.116 × ln
1 − SOCorigin

100
  + 0.149 × t − 0.009 × v

2
+ 0.574 × v − 0.001 × t

2
AC + 0.075 × tAC − 7.585. (11)

In this paper, the program running time of the CNN
time series prediction method is approximately 24% lower
than that of the LSTM time series prediction method when
using electric bus data for model training and testing.

In order to observe more intuitively the prediction ac-
curacy of each prediction method in energy consumption
estimation, two electric buses with license plate numbers
3123 and 3338 from different bus routes in the test set were
selected, and their energy consumption estimation results
for all single trips in a day were compared and analysed.

Figures 8 and 9 represent the predicted energy consumption
results for a single trip of bus 3123 (bus line 1) and bus 3338
(bus line 2) compared to the true values, respectively. ,e
column in the figure represents the real value of single-trip
energy consumption, and the three dotted line plots in black,
red, and blue represent the predicted values of single-trip
energy consumption for the multivariate nonlinear regres-
sion prediction method, the LSTM time series prediction
method, and the CNN time series prediction method,
respectively.

Trip 1 Trip 2 Trip 17Trip 9 Energy
Consumption

of Trip 9

Component 1

Component 2

Trip 9 Trip 8 Trip 9Trip 1 Trip 8
Energy

Consumption
of Trip 1

. . . . . .

. . . . . .

. . . . . .

. . . . . .. . . . . .

. . . . . .. . . . . .

. . . . . .
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1 x3
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1 y1
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1

x4
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14 x1

15 x1
16 x1

17

Figure 6: Construction of a symmetrical quasi-time series.

Table 8: A partial result of symmetrical quasi-time series construction.

Date License plate number Trip Energy consumption (kWh) Component 1 Component 2 Component 3 Component 4
9 −0.35422 0.619025 0.076912 −0.02355
8 −0.40496 0.607718 0.142685 −0.27198
7 −0.49928 0.592006 0.172318 0.013251
6 −0.54854 0.592741 0.213148 0.014618
5 −0.62029 0.557664 0.256781 −0.06034
4 −0.69152 0.538494 0.287084 0.05085
3 −0.79033 0.505036 0.385904 −0.26759
2 −0.8585 0.472341 0.374473 0.065126

1.6 0151 1 4.437 −0.92807 0.428028 0.389912 0.141762
2 −0.8585 0.472341 0.374473 0.065126
3 −0.79033 0.505036 0.385904 −0.26759
4 −0.69152 0.538494 0.287084 0.05085
5 −0.62029 0.557664 0.256781 −0.06034
6 −0.54854 0.592741 0.213148 0.014618
7 −0.49928 0.592006 0.172318 0.013251
8 −0.40496 0.607718 0.142685 −0.27198
9 −0.35422 0.619025 0.076912 −0.02355
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Figure 7: GAF’s diagram of the component variables for the first trip of the electric bus.
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Figure 8: Estimated energy consumption for a single trip of an electric bus with plate number 3123 (bus route 1).
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Figure 9: Estimated energy consumption for a single trip of an electric bus with plate number 3338 (bus route 2).
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According to the calculation results, the trained CNN
model can achieve a prediction accuracy of 88.30% for bus
route 1, which is 2.39% better than the prediction accuracy of
85.91% for the multivariate nonlinear regression prediction
method and 1.21% better than the prediction accuracy of
87.09% for the LSTM time series prediction method.

According to the calculation results, the trained CNN
model can achieve a prediction accuracy of 94.31% for bus
route 2, which is 4.98% better than the prediction accuracy of
89.33% for the multivariate nonlinear regression prediction
method and 1.43% better than the prediction accuracy of
92.88% for the LSTM time series prediction method.

As a result, the prediction accuracy of the trained CNN
model improved by 3.69% compared to the multiple non-
linear regression method and by 1.32% compared to the
LSTM time series prediction method.

5. Conclusion

,is paper proposes a method of time-series prediction for
trip data using CNN, which combines deep learning
methods with data-driven models, to achieve single-trip
energy consumption estimation for electric buses. ,e
prediction accuracy of this method is higher than that of the
LSTM time series prediction method and the multiple
nonlinear regression prediction method, while the method
reduces the requirement for the type of data used by using
data for easy access to trip data, which can provide a new
theoretical basis for rational scheduling and dispatching of
electric buses. However, the quasi-time-series data selected
in this paper in units of trips and the large data granularity
level cannot constitute the real-time series data, which still
has some influence on the accuracy of the electric bus energy
consumption estimation. In a further step, data with lower
data granularity will be selected for study to further improve
the accuracy of the energy consumption estimation model.
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