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�e goal of this study is to use the fast algorithm to solve the Rayleigh–Stokes problem for heated generalized second-grade �uid
(RSP-HGSGF) with Riemann–Liouville time fractional derivative using the fast algorithm.�emodi�ed implicit scheme, which is
formulated by the Riemann–Liouville integral formula and applied to the fractional RSP-HGSGF, is proposed. Numerical
experiments will be carried out to demonstrate that the scheme is simple to implement, and the results will reveal the best way to
implement the suggested technique. �e proposed scheme’s stability and convergence will be examined using the Fourier series.
�e method is stable, and the approximation solution approaches the exact solution. A numerical demonstration will be provided
to demonstrate the applicability and viability of the suggested strategy.

1. Introduction

�e study and application of arbitrary-order derivatives
and integrals are associated with fractional calculus. �e
use of fractional-order calculus in a variety of �elds of
science and engineering, including geometric phenom-
ena, has sparked a lot of interest in this area [1]. �e �rst
discussion of fractional calculus took place between
Leibniz and L’Hospital at the end of the seventeenth
century [2]. �e great mathematicians Erdelyi, Abel,
Riemann, Laplace, Heaviside, Levy, Liouville, Riesz,
Gunwald, Letnikov, and Fourier worked on it and had
contributed [3]. Fractional-order integrals and derivatives
play an important role in solving some chemical prob-
lems, and this �eld has been paid much attention since
1968. �e most well-known book in the �eld of fractional
calculus, originally written by Ross and Miller and Ross
[4], Spanier and Oldham [5], Podlubny [6], and Samko

et al. [7], explains the underlying theory of fractional
calculus as well as its applications and solutions.

Many researchers have solved fractional-order problems
using various methods. For example, Shivanian and Ja¢er-
abadi [8] used fractional derivatives to �nd the numerical
solution for the RSP-HGSGF using spectral meshless radial
point interpolation. �e time-fractional derivative has been
de�ned in the Riemann–Liouville sense.�e Shape functions
are created by using a point interpolation method and radial
basis functions as basic functions. An e£cient numerical
approach for approximating RSP-HGSGF in a bounded
domain is described by Liu et al. [9]. �ey investigated the
proposed scheme’s stability and convergence. To solve SFP-
HGSGF, Wu [10] used a numerical approach. �e stability,
convergence, and consistency of the INAS for the SFP
HGSGF have been investigated. RSPHGSGF was studied in a
�ow on a heated �at plate and within a heated edge by Shen
et al. [11]. A viscoelastic �uid was described using the
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fractional calculus technique in the constitutive relationship
model. For the exact solution of the velocity and temperature
fields, the Fourier transform on fractional-order Laplace
operator is used. Yu et al. [12] used the Adomian decom-
position method to solve the RSP-HGSGF. In general,
without discretizing the problem, such series solutions
converge quickly and the Adomian decomposition approach
yields very precise numerical solutions. In this study, Chen
et al. [13] presented two numerical methods for solving a
two-dimensional variable-order subdiffusion anomalous
problem. +eir stability, convergence, and solvability were
investigated using Fourier analysis. +e numerical approx-
imation for the Riemann–Liouville fractional-order deriva-
tive for the fractional SFP-HGSGF was studied by Yu et al.
[14]. +ey used the implicit scheme with Riemann–Liouville
fractional derivative to solve the direct and inverse problems.
Lin and Jiang [15] devised a straightforward method for
calculating the fractional derivative of an RSP-HGSG. +ey
created the series of the exact solution to the problem using
kernel theory and established the approximate solution of its
fractional derivative using truncating series, which are
uniformly convergent. Meanwhile, their method includes
error estimation and stability analysis. Chen et al. [16]
proposed the implicit and explicit techniques for solving the
RSP-HGSGF of fractional order. +e convergence, stability,
and solvability of the problem have all been determined. In
recent years, Chen et al. [17] discussed Stokes’ initial chal-
lenge attention.+e variable-order nonlinear RSP-HGSGF is
investigated, and the fourth-order numerical technique is
discussed. +e Fourier approach is used to investigate the
numerical scheme’s theoretical analysis. Dehghan and Abbas
Zadeh [18] developed a numerical solution for 2D fractional-
order RSP-HGSGF on rectangular domains such as circular,
L-shaped, and a unit square with circular holes. +e RL
principle is used to calculate the fractional derivatives. +ey
used the Galerkin FEM to obtain a fully discrete scheme for
the space direction by integrating the equation for the time
variable. Finally, we compare the results of Galerkin FEM to
those of other numerical techniques. +e Rayleigh–Stokes
problem for an edge in a generalized Oldroyd-B fluid was
solved by Nikan and Avazzadeh et al. [19] using the radial
basis function and fractional derivatives. +e temporal de-
rivative terms are discretized using the finite difference
technique, while the spatial derivative terms are discretized
using the local RBF-FD.

To maintain a constant number of nodes, they evaluate
the distribution of data nodes within the local support area.
+e stability and convergence of the proposed method are
also investigated. +e RBF-FD results are compared to those
of previous approaches on irregular domains, demonstrating
the novel methodology’s viability and efficiency. RSP-
HGSGF flow was investigated by Zhai et al. [20] on a heated
flat plate and within a heated edge. To describe such a
viscoelastic fluid, a fractional calculus methodology was used
in the constitutive relationship model. +e velocity and
temperature fields were solved in closed form using the
Fourier transform and the fractional Laplace operator.
Another study looked at the same model to describe a
viscoelastic fluid [21, 22]. For the finite difference/finite

element technique, Guan et al. [23] provided an enhanced
version of a nonlinear source term with a fractional RSP.+e
backward difference formula and second-order
Grünwald–Letnikov derivative are used to discretize the
first-order time derivative. +ey use the Galerkin finite el-
ement approach to define a fully discrete strategy for the
fractional RSP-HGSGF with a nonlinear source term in the
space direction. A novel analytical technique is used to
calculate the level of accuracy in the L2 norm in great detail.
For the 2D modified anomalous fractional subdiffusion
equation, Ali et al. [24] used a modified implicit difference
approximation. +e proposed scheme’s convergence and
stability are investigated using the Fourier series approach. It
is shown that the scheme is unconditionally stable, and that
the approximate solution converges to the exact solution.
Bazhlekova et al. [25] investigated the RSP-HGSGF in time
using the RL fractional derivative, and the problem was
analysed in space using semidiscrete, continuous, and
completely discrete formulations. Mohebbi et al. [26]
compared the meshless approach to a fourth-order ap-
proximation for 2D fractional RSP and generated a com-
pletely discrete implicit scheme. Sun et al [27] contributed a
review article on important fractional calculus information.
+ey talked about the most important real-world applica-
tions as well as powerful mathematical tools. +e numerical
solution of a nonlinear fractional-order reaction-sub-
diffusion model was investigated by Nikan et al. [28]. For
spatial discretization, they used the radial base function-
finite difference method, and for time discretization, they
used a weighted discrete scheme. +ey discussed theoretical
analysis and tested two numerical examples for the com-
putational efficiency of the proposed scheme, which yielded
accurate results. In a separate study [29], the author pro-
posed a meshless scheme for the fractional-order diffusion
model. +ey eliminated the time derivative by integrating
both sides of the proposed model and used local hybrid-
ization of cubic and radial basis functions for space deriv-
atives. Nikan et al. [30] investigated the local hybrid kernel
meshless approach for fractional-order model approxima-
tion. To approximate the time and space directions, they
used the central difference approximation and Gaussian
kernels, respectively. +ey verified the validity of the pro-
posed method using numerical examples that are both ac-
curate and efficient. Liu et al. [31] discussed the fractional
dynamics modelled from the fractional-order PDEs. Frac-
tional-order systems have importance in the field of elec-
trochemistry, chaotic systems, biology etc. Ahmad et al. [32]
formulated a new methodology named as variational iter-
ation method I and successfully applied to a nonlinear
model. +ey explained the compactness of the method and
compared their results with the existed literature and found
that the proposed method is more productive and reliable
than others. Khan et al. [33] considered the numerical
approach based on the collocation method for the inverse
heat source problem and tasted the method both on regular
and irregular domain. Different researchers discussed var-
ious numerical approaches for time and space fractional-
order models in the research [27, 30, 34–38]. +e goal of this
research is to propose a new scheme for this model modified
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implicit scheme for fractional-order RSP-HGSGF. It lowers
the computational cost and allows for easy theoretical
analysis using any method for the final scheme. In the
procedure, the discretized form of the Riemann–Liouville
integral operator is used to replace the Riemann–Liouville
derivative with the first-order time derivative. +e partial
derivative with respect to time is then eliminated using
backward difference approximation. Additionally, we use
the Fourier series method to investigate the established
method’s stability and convergence criterion. Finally, nu-
merical examples are presented and solved using the pro-
posed method to verify the method’s accuracy and
feasibility. Maple 15 is used to code the numerical examples.

+e following is how the rest of the paper is organized:
+e methodology of the proposed scheme is discussed in

Section 2, followed by stability and convergence analysis in
Sections 2.1 and 2.2. +e numerical experiments and results
are presented in Section 3 and discussed in Section 4. +e
conclusion is discussed in Section 5 of the report.

+e aim of this study is to propose a modified implicit
scheme for fractional RSP-HGSGF based on the formulated
Riemann–Liouville integral operator. +e partial derivative
w.r.t. time is eliminated by backward difference approxi-
mation. Additionally, we investigate the stability and con-
vergence criterion of the established method by the Fourier
series method.

Here, we consider the following two-dimensional RSP-
HGSGF with fractional derivative [22].
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Initial and boundary conditions are as follows:

Y(x, y, t) � φ(x, y), (2)
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0≤ x, y≤ L, 0≤ t≤T,
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1−β
t Y(x, y, t) represents the fractional-order Rie-

mann–Liouville derivative of order 1 − β.
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2. Methodology of the Proposed Scheme

+e 2D RSP-HGSGF in equations (1)–(3) is solved by the
modified implicit scheme. We utilized the Riemann–Liouville
approximation for time-fractional and central difference for
space derivative and partitioned the bounded domain into
subintervals of lengths Δx and Δy. +e space steps are
xi � iΔx, in the x-direction with i � 1, . . . , M1
−1, Δx � L/M1 , andyj � jΔy, in the y-direction with j �

1, . . . , M2 − 1, Δy � L/M2. +e time step is tm � mτ, m

� 1, . . . , N where τ � T/N. Let Ym
i,j be the numerical ap-

proximation to Y(xi, yj, tm); by applying (2) to (1), we obtain
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Applying Lemma 1 and backward difference approxi-
mation w.r.t. time, we obtain
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where
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+e simplified form of the proposed scheme for 2D RSP-
HGSGF (1)-(3) and the conditions are as follows:
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where i � 1, 2, . . . , M1 − 1 , j � 1, 2, . . . , M2 − 1, and
m � 1, 2, . . . , N − 1.
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2.1. Stability. We find the stability of the proposed scheme
by Fourier technique. Let the approximate solution be Ψm
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+e error initial and boundary conditions are given as
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where ]1 � [4R1 sin α1Δx/2 + 4R2 sin α2Δy/2] and
]2 � [4R3 sin α1Δx/2 + 4R4 sin α2Δy/2].

Proposition 1. If Χm (m � 1, 2, . . . , N) satisfies (20), then
|Χm+1|≤ |Χ0|.

Proof: By using mathematical induction, we take m � 1 in
(20).

Χ1 �
1 + d

(β)
0 ]1􏼐 􏼑Χ0

1 + ]1 + ]2( 􏼁
, (21)
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and as ]1, ]2 ≥ 0, b
(β)
0 � 1, then

Χ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Χ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (22)

Now, assume that

Χn
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Χ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌; n � 1, 2, . . . , m − 1, (23)

and as 0 <β< 1, from (20) and Lemma 2, we obtain

Χm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
Χm− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b
(β)
m−1]1 Χ

0􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ]1 􏽐

m−1
s�1 d

(β)
s−1 − d

(β)
s􏼐 􏼑Χm− s

1 + ]1 + ]2
, ≤

1 + d
(β)
m−1]1 + ]1 􏽐

m−1
s�1 d

(β)
s−1 − d

(β)
s􏼐 􏼑

1 + ]1 + ]2( 􏼁
Χ0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

�
1 + d

(β)
m−1]1 + ]2 1 − d

(β)
m−1􏼐 􏼑

1 + ]1 + ]2( 􏼁
Χ0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

�
1 + ]1

1 + ]1 + ]2
Χ0,

Χm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Χ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(24)

+is completes the proof.
Based on the above proof, it can be summarized that the

solution of (5) satisfies the following inequality:
Χm₂≤Χ0₂.
And, we demonstrated that the proposed scheme is

unconditionally stable. □

2.2. Convergence. Here, we use a similar method to examine
the convergence of the scheme. Let Y(xi, yj, tm) represent
the exact solution; then, the truncation error of the scheme is
obtained as follows: from (3),

T
m
i,j � Y xi, yj, tm􏼐 􏼑 − Y xi, yj, tm−1􏼐 􏼑 − R1 􏽘

m−1

j�o

d
(β)
s δx

2
Y xi, yj, tm−s􏼐 􏼑 − Y xi, yj, tm−s−1􏼐 􏼑􏼐 􏼑,

+ R2 􏽘

k−1

j�o

d
(β)
s δy

2
Y xi, yj, tm−s􏼐 􏼑 − Y xi, yj, tm−s−1􏼐 􏼑􏼐 􏼑 + R3δx

2
Y xi, yj, tm􏼐 􏼑 + R4δy

2
Y xi, yj, tm􏼐 􏼑 − τh xi, yj, tm􏼐 􏼑.

(25)

From (1), we have

T
m
i,j �

Y
m
i,j − Y

m−1
i,j

τ
−

zY xi, yj, tm􏼐 􏼑

zt
+

z
2
Y xi, yj, tm􏼐 􏼑

zx
2

⎛⎝ ⎞⎠ − R1 􏽘

m−1

s�0
d

(β)
s δx

2
Y

m−s
i,j − Y

m−s−1
i,j􏼐 􏼑 +

z
2
Y xi, yj, tm􏼐 􏼑

zy
2

⎛⎝ ⎞⎠

− R2 􏽘

m−1

s�0
b

(β)
s δy

2
Y

m−s
i,j − Y

m−s−1
i,j􏼐 􏼑 +

z
2
Y xi, yj, tm􏼐 􏼑

zx
2

⎛⎝ ⎞⎠ − R3δx
2

Y
m
i,j􏼐 􏼑 +

z
2
Y xi, yj, tm􏼐 􏼑

zx
2

⎛⎝ ⎞⎠ − R4δy
2

Y
m
i,j􏼐 􏼑

� O(τ +(τ(Δx)) + τ(Δy)).

(26)

Since i, j, an d m are finite, there is a positive constant
C1, for all i, j , an d m , which then have

T
m
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C1(τ + τ(Δx)) +τ(Δy)). (27)

+e error is defined as

ϕm
i,j � Y xi , yj, tm􏼐 􏼑 − Y

m
i,j. (28)

From (25), we have
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Y xi, yj, tm􏼐 􏼑 � Y xi, yj, tm−1􏼐 􏼑 + R1 Y xi, yj, tm􏼐 􏼑 − 2Y xi, yj, tm􏼐 􏼑 + Y xi, yj, tm􏼐 􏼑􏼐 􏼑−

R1d
(β)
m−1 Y xi+1, yj, t0􏼐 􏼑􏼐􏼐 − 2Y xi, yj, t0􏼐 􏼑 + Y xi−1, yj, t0􏼐 􏼑−

R1 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 Y xi+1, yj, tm−s􏼐 􏼑 − 2Y xi, yj, tm−s􏼐 􏼑 − Y xi−1, yj, tm−s􏼐 􏼑􏼐 􏼑

+ R2 Y xi, yj+1, tm􏼐 􏼑􏼐 − 2Y xi, yj, tm􏼐 􏼑 + Y xi, yj−1, tm􏼐 􏼑−

R2d
(β)
m−1 Y xi, yj+1, tm􏼐 􏼑􏼐􏼐 − 2Y xi, yj, tm􏼐 􏼑 + Y xi, yj−1, tm􏼐 􏼑

− R2 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 Y xi, yj+1, tm−s􏼐 􏼑 − 2Y xi, yj, tm−s􏼐 􏼑 + Y xi, yj−1, tm−s􏼐 􏼑􏼐 􏼑

+ R3 Y xi+1, yj+1, tm􏼐 􏼑 − 2Y xi, yj+1, tm􏼐 􏼑 + Y xi−1, yj+1, tm􏼐 􏼑􏼐 􏼑

+ R4 Y xi, yj+1, tm􏼐 􏼑 − 2Y xi, yj+1, tm􏼐 􏼑 + Y xi, yj−1, tm􏼐 􏼑􏼐 􏼑 + τh xi, yj, tm􏼐 􏼑.

(29)

To obtain the error equation, subtract (29) from (5) to
obtain

ϕm
i,j − ϕm−1

i,j � R1 ϕm
i+1,j − 2ϕm−1

i,j + ϕm
i−1,j􏼐 􏼑 − R1d

(β)
m−1 ϕm

i+1,j􏼐 − 2ϕm−1
i,j + ϕm

i−1,j − R1 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 ϕm

i+1,j − 2ϕm−1
i,j + ϕm

i−1,j􏼐 􏼑

+ R2 ϕm
i,j − 2ϕm−1

i,j + ϕm
i,j􏼐 􏼑−

R2d
(β)
m−1 ϕ0i,j+1 − 2ϕ0i,j + ϕ0i,j−1􏼐 􏼑 − R2 􏽘

m−1

s�1
d

(β)
s−1 − d

(β)
s􏼐 􏼑 ϕm−s

i,j+12 − ϕm−s
i,j + ϕm−s

i,j−1􏼐 􏼑 + R3 ϕm
i+1,j − 2ϕm−1

i,j + ϕm
i−1,j􏼐 􏼑

+ R4 ϕm−s
i,j+1 − 2ϕm−s

i,j + ϕm−s
i,j−1􏼐 􏼑 + τT

m
i,j.

(30)

With error boundary conditions,

ϕm
0,j � ϕm

M1 ,j � ϕm
0,j � ϕm

i,M2
� 0, m � 1, 2, . . . , N. (31)

And, the initial condition

ϕ0
i,j � 0, i � 1, 2, . . . , M1 − 1, j � 1, 2, . . . , M2 − 1. (32)

Next, we define the following grid functions for
m � 1, 2, . . . , N:

ϕm
(x, y) �

ϕm
i,j , when x

i−
Δx
2

<x≤x
i+
Δx
2

, y
j−
Δy
2

〈 y≤y
j+
Δy
2

,

0, when 0≤ x≤
Δx
2

or L −
Δx
2
≤x≤L,

0, when0 ≤y≤
Δy
2

or L −
Δy
2
≤y≤L.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (33)
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T
m

(x, y) �

T
m
i,j, whenx

i−
Δx
2

< x≤x
i+
Δx
2

, y
j−
Δy
2

<y≤y
j+
Δy
2

,

0, when 0≤ x≤
Δx
2

or L −
Δx
2
≤x≤L,

0, when 0≤y≤
Δy
2

or L −
Δy
2
≤y≤L.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (34)

Here, the ϕm(x, y) an d Tm(x, y) can be expanded in
Fourier series such as

ϕm
(x, y) � 􏽘

α

l1 ,l2�−α
ζm

l1, l2( 􏼁e
2

��
− 1

√
π l1x/L+l2y/L( ), m � 1, 2, . . . , N,

T
m

(x, y) � 􏽘
α

l1 ,l2�−α
φm

l1, l2( 􏼁e
2

��
− 1

√
π l1x/L+l2y/L( ), m � 1, 2, . . . , N,

(35)

where

ζm
l1, l2( 􏼁 �

1
L

􏽚
L

0
􏽚

L

0
ϕm

(x, y)e
2

��
− 1

√
π

l1x

L
+

l2y

L
􏼠 􏼡

dxdy,

(36)

φm
l1, l2( 􏼁 �

1
L

􏽚
L

0
􏽚

L

0
ϕm

(x, y)e
2

��
− 1

√
π l1x/L+l2y/L( )dxdy.

(37)

From the definition of l2 norm and the Parseval equality,
we have

ϕm
����

����
2
l2� 􏽘

M1−1

i�1
􏽘

M2−1

j�1
ΔxΔy e

m
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌� 􏽘
α

l1 ,l2�−α
ρm

l1, l2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
, (38)

T
m2

l2� 􏽘

M1−1

i�1
􏽘

M2−1

j�1
ΔxΔy e

m
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌� 􏽘
α

l1 ,l2�−α
φm

l1, l2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
. (39)

Based on the previous equations, suppose that

φm
i � ζm

e
��
− 1

√
α1iΔx+α2iΔy( ), (40)

T
m
i � φm

e
��
− 1

√
α1iΔx+α2iΔy( ). (41)

Respectively, we have α1 � 2πl1/L and α2 � 2πl2/L;
substitute (40) and (41) into (30) and we getζm

e
��
− 1

√
(α1iΔx+α2jΔy) − ζm

e
��
− 1

√
(α1iΔx+α2jΔy) � R1 (ζm

e
��
− 1

√
(α1(i+1)

Δx + α2jΔy) − 2ζm
e

��
− 1

√
(α1iΔx+α2jΔy) + ζm

e
��
− 1

√
(α1(i− 1)Δx+α2

jΔy)) − R1 d
(β)
m−1(ζ

m
e

��
−1

√
(α1(i+1)Δx+α2jΔy) − 2ζm

e
��
−1

√
(α1iΔx+α2j

Δy) + ζm
e

��
−1

√
(α1(i−1)Δx+α2jΔy)) − R1 􏽐

m−1
s�1 (d

(β)
s−1 − d

(β)
s )(ζm

e��
−1

√
(α1(i+1)Δx+α2jΔy) − 2ζm

e
��
−1

√
(α1iΔx+α2jΔy) + ζm

e
��
−1

√
(α1(i−1)

Δx + α2jΔy)) + R2(ζ
m

e
��
−1

√
(α1iΔx+α2(j+1)Δy) − 2ζm

e
��
−1

√
(α1iΔx+

α2jΔy) + ζm
e

��
−1

√
(α1iΔx+α2(j−1)Δy) + R2d

(β)
m−1 (ζm

e
��
−1

√
(α1iΔx+

α2jΔy) − 2ζm
e

��
−1

√
(α1iΔx+α2jΔy) + ζm

e
��
−1

√
(α1iΔx+α2jΔy)) − R2

􏽐
m−1
s�1 (d

(β)
s−1 − d

(β)
s ) (ζm

e
��
−1

√
(α1iΔx+α2(j+1)Δy) − 2ζm

e
��
−1

√
(α1iΔx+

α2jΔy) + ζm
e

��
−1

√
(α1iΔx+α2(j−1)Δy)) + R3(ζ

m
e

��
−1

√
(α1(i+1)

Δx + α2jΔy) − 2ζm
e

��
−1

√
(α1iΔx+α2jΔy) + ζm

e
��
−1

√
(α1(i−1)Δx+α2j

Δy)) + R4(ζ
m

e
��
−1

√
(α1iΔx+α2(j+1)Δy) − 2ζm

e
��
−1

√
(α1iΔx+α2jΔy) +

ζm
e

��
−1

√
(α1iΔx+α2(j−1)Δy)) + τ(φme

��
−1

√
(α1iΔx+α2jΔy)),

Simplifying the previous equation, we obtain

ζm
�
ζm− 1

+ ζ0b(β)
m−1]1 + ]1 􏽐

m−1
s�1 d

(β)
s−1 − d

(β)
s􏼐 􏼑ζm− s

1 + ]1 + ]2􏼂 􏼃
, (42)

where

]1 �4R1 sin
α1Δx
2

+ 4R2 sin
α2Δy
2

􏼣,

]2 �4R3 sin
α1Δx
2

+ 4R4 sin
α2Δy
2

􏼣.

(43)

Proposition 2. Let ζm
(m � 1, 2, . . . , N) be the solution of

(42); then, there is a positive constant C2 so that

|ζm
|≤C2mτ|φ1|.

Proof: From ϕ0 � 0 and (36), we have

ζo
� ζo

l1, l2( 􏼁 � 0. (44)

From (37) and (39), then there is a positive constant C2,
such that

φm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C2 φ
1

l1, l2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (45)

Usingmathematical induction, for m � 1, then from (42)
and (44), we obtain

ζ1 � 1/1 + ]1 + ]2 τφ1
􏼐 􏼑. (46)

Since ]1, ]2 ≥ 0, from (45), we get

ζ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ τ φ1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤C2τ φ

1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (47)

Now, suppose that

ζm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C2mτ φ1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, n � 1, 2, . . . , m − 1. (48)

As 0 <β< 1, ]1, ]2 ≥ 0.
From (41) and (44) and Lemma 2, we have
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ζm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
|ζ|

m− 1
+ ]1 􏽐

m−1
s�1 d

β
s−1 − d

β
s􏼐 􏼑|ζ|

m− s
+ τ|φ|

m

1 + ]1 + ]2( 􏼁
,

ζm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
C2(m − 1)τ|φ|

1
+ ]1 􏽐

m−1
s�1 d

β
s−1 − d

β
s􏼐 􏼑C2(m − s)τ|φ|

1
+ C2τ|φ|

1

1 + ]1 + ]2( 􏼁
,

≤
(m − 1) + ]1(m − 1) 􏽐

m−1
s�1 b

β
s−1 − b

β
s􏼐 􏼑 + 1

1 + ]1 + ]2( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦C2τ|φ|

1
,

�
m + ]1(m − 1) 􏽐

m−1
s�1 b

β
s−1 − b

β
s􏼐 􏼑 + 1

1 + ]1 + ]2( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦C2τ|φ|

1
,

�
m + ]1(m − 1) + 1 − b

(β)
m−1􏼐 􏼑

1 + ]1 + ]2( 􏼁
⎡⎢⎢⎣ ⎤⎥⎥⎦C2τ|φ|

1
,

≤mC2τ φ
1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(49)

+e proof is completed via the induction method. □

Theorem 1. �e modified implicit difference scheme l2 is
convergent, and the order of convergence is
O(τ + τ(Δx)2 + τ(Δy)2).

Proof: From (27) and (39), we obtain

T
k ≤

������
MxΔx

􏽰 ������
MyΔy

􏽱
C1 τ + τ(Δx)

2
+ τ(Δy)

2
􏼐 􏼑 � LC1 τ + τ(Δx)

2
+ τ(Δy)

2
􏼐 􏼑

φk
l2 ≤ kC2τT

1 ≤C1C2kτL τ + τ Δx2
􏼐 􏼑 + τ Δy2

􏼐 􏼑􏼐 􏼑.

(50)

As kτ ≤T, thus

φk
l2 ≤C1C2kτL τ + τ Δx2

􏼐 􏼑 + τ Δy2
􏼐 􏼑􏼐 􏼑, (51)

where C � C1C2TL. □

3. Numerical Experiment

Example 1. Consider the following two-dimensional Ray-
leigh–Stokes problem for heated generalized second-grade
fluid with the fractional derivative [22]:

zY(x, y, t)

zt
� 0D

1−β
t

z
2
Y(x, y, t)

zx
2 +

zY(x, y, t

zy
2􏼠 􏼡 +

z
2
Y(x, y, t)

zx
2 +

z
2
Y(x, y, t)

zy
2 + h(x, y, t), 0≤ β≤ 1, 0≤ t≤T, (52)

with initial and boundary conditions

Y(x, y, 0) � 0, 0≤x, y≤ 1,

Y(0, y, t) � e
y
t
1+β

, Y(1, y, t)

� e
1+y

t
1+β

,

Y(x, 0, t)) � e
x
t
1+β

, Y(x, 1, t)

� e
1+x

t
1+β

, 0≤ t≤T.

(53)

Here, h(x, y, t) � ((1 + β)tβ − 2Γ(2 + β)/Γ(1 + 2β)t2β

−2t1+β)ex+y and the exact solution of (52) is given by

Y(x, y, t) � e
x+y

t
1+β

. (54)

+e error between the numerical solution and exact
solution is defined as follows:

E∞ � max
0≤i,j≤M,0≤m≤N

Y xi, yj, tm􏼐 􏼑 − Y
m
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (55)

And, the rate of convergence for space variable can be
defined as

� −order � log2
E∞(16τ, 2Δx)

����
����

E∞(τ, Δx)
����

����
􏼠 􏼡. (56)
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+e developed modified implicit scheme is applied to
problems (52) to (54).

Tables 1–4 show the errors E∞ for values of space step
size (Δx,Δy) and τ. Here, time step τ is defined by τ � T/N.

Tables 1–4 indicate that, as we reduce the time and space
step size τ and (Δx,Δy), the error decreases for a fixed value

of c.+is shows that the method converges to the exact
solution.

Example 2. Consider the following Cable equation:

zY(x, t)

zt
� 0D

1−ρ1
t K

z
2
Y(x, t)

zx
2􏼠 􏼡 − μ20D

1−ρ2
t Y(x, t) + 2 t +

π2
t
1+ρ1

Γ 2 + ρ1( 􏼁
+

t
1+ρ2

Γ 2 + ρ2( 􏼁
􏼠 􏼡sin(πx), (57)

with initial and boundary conditions

Y(x, 0) � 0, 0≤x≤ L,

Y(0, t) � t
2 sin( πx), Y(L, t) � β2(t) , 0〈 t≤T.

(58)

+e exact solution is Y(x, t) � t2 sin(πx).

4. Results and Discussion

A modified implicit scheme is developed and applied on
RSP-HGSGF. Numerical example is given to support the-
oretical study. +e error between the exact and numerical

solution is calculated using different values of N and M.
Also, at different values of c, Tables 1–4 are created to show
the comparison of the numerical scheme with the exact
solution in terms of maximum error. In example 2, we solved
the fractional-order Cable equation, and the numerical re-
sults are shown in Table 5 for various values of space and
time step size. +e values of ρ1 and ρ2 are also changed, and
the obtained results are converging with reduced step sizes.
Here, the error is calculated using Maple15 software with the
increase in the number of space and time steps. Figures 1–3
are plotted for different values of M and N, and fractional
order c shows good agreement with the exact solution.

Table 1: +e error table for different values at τ,Δx,Δy, and c.

τ Δx � Δy c � 0.5 c � 0.6 c � 0.7 c � 0.8 c � 0.9
1/4 1/2 2.180E− 2 1.316E− 2 1.601E− 2 1.889E− 2 2.481E− 2
1/16 1/4 4.573E− 3 5.267E− 3 5.934E− 3 6.606E− 2 7.312E− 2
1/64 1/8 1.330E− 3 1.484E− 3 1.634E− 3 1.789E− 3 1.958E− 3
1/128 1/10 7.701E− 4 8.426E− 4 9.141E− 4 9.898E− 4 1.073E− 4

Table 2: +e error table for different values at τ,Δx,Δy, and c.

τ � Δx � Δy c � 0.35 c � 0.65 c � 0.85
1/2 7.9899E− 3 2.4671E− 2 3.8181E− 2
¼ 4.5383E− 3 1.4258E− 2 2.1050E− 2
1/6 3.3873E− 3 9.9350E− 3 1.4272E− 2
1/8 2.8140E− 3 7.7703E− 3 1.0965E− 2
1/10 2.4289E− 3 6.3977E− 3 8.9159E− 3

Table 3: +e error table for different values at τ,Δx,Δy, and c.

τ Δx � Δy c � 0.5 c � 0.6 c � 0.7 c � 0.8 c � 0.9
1/16 1/4 5.0794E− 3 5.9521E− 3 6.7049E− 3 0.00746352 8.2610E− 3
1/8 1/8 1.4043E− 3 1.6387E− 3 8.5596E− 3 1.0150E− 3 1.8575E− 3
1/144 1/12 6.2458E− 4 6.8873E− 4 7.5239E− 4 8.1996E− 4 8.9478E− 4

Table 4: +e error table for different values at τ,Δx, andΔy and at a fixed value of c � 0.25.

N Δx � Δy � 1/5 Δx � Δy � 1/10 Δx � Δy � 1/15 Δx � Δy � 1/20
20 1.9274E− 3 9.5392E− 4 7.6704E− 4 7.0147E− 4
40 1.7467E− 3 1.6060E− 3 5.7985E− 4 4.3020E− 4
60 1.6504E− 3 6.6854E− 4 5.4537E− 4 3.2953E− 4

10 Mathematical Problems in Engineering



Table 5: Numerical results of example 2 of the proposed scheme for various values of ρ1, ρ2, N , and Δx.

Δx N ρ1, ρ2 � 0.25 ρ1, ρ2 � 0.5 ρ1, ρ2 � 0.95

1/10
40 1.173E− 2 8.131E− 2 6.552E− 3
80 8.032E− 3 6.452E− 3 5.762E− 3
110 5.912E− 3 5.528E− 3 5.171E− 3

1/20
40 8.146E− 3 6.312E− 3 3.272E− 3
80 4.537E− 3 2.989E− 3 2.409E− 3
110 2.428E− 3 2.015E− 3 9.146E− 4

1/40
40 7.294E− 3 3.781E− 3 2.491E− 3
80 3.639E− 3 2.173E− 3 1.591E− 3
110 1.578E− 3 1.257E− 3 9.015E− 4

0.3 0.4
x

0.5 0.6 0.7

exact sol
approximate sol

u 
(x

, y
, t

)

4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

2.8

Figure 1: Comparing equations (52) and (54) at M � 4, N � 2, and c � 0.25.
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Figure 2: Comparing equations (52) and (54) at M � 6, N � 6, and c � 0.35.
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5. Conclusion

A modified implicit difference scheme is formulated for
2D RSP-HGSGF, and a derivative of fractional order has
been described in this paper. +e modified scheme has
the improvement of low computational cost and can be
easily applied. +e Fourier technique has been used for
the theoretical analysis stability, and convergence with
order (τ + (Δx) + (Δy)) is unconditionally stable and
convergent. +e numerical experiment for the 2D RSP-
HGSGF and 1D Cable equation is conducted, which
shows that the modified implicit scheme is easy to im-
plement, and the results show good performance of the
proposed schemes [39].

Abbreviations

RSP-
HGSGF:

Rayleigh–Stokes problem for heated
generalized second-grade fluid

SFP: Stokes first problem
INAS: Implicit numerical approximation scheme
RBF-FD: Radial basis function finite difference
FEM: Finite element method
2D: Two-dimensional
RL: Riemann–Liouville.
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