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In this work, we proposed a new method called Laplace-Padé-Caputo fractional reduced differential transform method
(LPCFRDTM) for solving a two-dimensional nonlinear time-fractional damped wave equation subject to the appropriate initial
conditions arising in various physical models. LPCFRDTM is the amalgamation of the Laplace transform method (LTM), Padé
approximant, and the well-known reduced differential transform method (RDTM) in the Caputo fractional derivative senses.
First, the solution to the problem is gained in the convergent power series form with the help of the Caputo fractional-reduced
differential transform method. Then, the Laplace-Padé approximant is applied to enlarge the domain of convergence. The
advantage of this method is that it solves equations simply and directly without requiring enormous amounts of computational
work, perturbations, or linearization, and it expands the convergence domain, leading to the exact answer. To confirm the
effectiveness, accuracy, and convergence of the proposed method, four test-modeling problems from mathematical physics
nonlinear wave equations are considered. The findings and results showed that the proposed approach may be utilized to solve
comparable wave equations with nonlinear damping and source components and to forecast and enrich the internal mechanism

of nonlinearity in nonlinear dynamic events.

1. Introduction

Linear and nonlinear fractional differential equations can
successfully simulate fractional derivatives in a range of
scientific and technical domains, including electrical net-
works, chemical physics, control theory of dynamical sys-
tems, reaction-diffusion, signal processing, and heat
transform [1-7]. Because fractional differential equations
(FDEs) often exist in several fields of engineering and sci-
ence, many researchers focus their efforts on obtaining
exact/approximate solutions to these dynamic fractional
differential equations utilizing a variety of powerful estab-
lished approaches, including the finite difference method
[8], Caputo fractional-reduced differential transform
method [9-11], Padé-Sumudu-Adomian decomposition

method [12], triple Laplace transform method [13-15],
double Sumudu transform iterative method [16], shifted
Chebyshev polynomial-based method [17], Laplace de-
composition method [18, 19], homotopy analysis method
[20], double Laplace transform method [21], homotopy
perturbation method [22, 23], conformable reduced dif-
ferential transform method [24], conformable fractional-
modified homotopy perturbation, Adomian decomposition
method [25], differential transform method [26-28], and the
new function method based on the Jacobi elliptic functions
[29].

Among the approaches listed above, Keskin and Otur-
ance were the first ones to present the Caputo FRDTM,
which has been successfully utilized to solve linear and
nonlinear fractional differential equations [9, 30]. Many
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intellectuals have implemented this method for solving
various sorts of equations in recent years. For example,
Kenea [31] used CFRDM to find closed solutions and ac-
curate solutions to one-dimensional time-fractional diffu-
sion equations with beginning conditions in the form of
infinite fractional power series. CFRDTM offers the benefit
of minimizing the number of computations required and
offering analytic approximations, in many cases exact an-
swers, in the form of a fast-converging power series with
elegantly computed terms [32-35]. Furthermore, CFRDTM
has an alternative plan to solve problems to overcome the
drawbacks of well-known numerical and analytical methods
such as Adomian decomposition, differential transform,
homotopy perturbation, and variational iteration, which
suffer from discretization, linearization, or perturbations
[36-38].

The main purpose of this study is to introduce the
LPCFRDTM, which is a new approach for solving the two-
dimensional time-fractional nonlinear damped wave
equation. The CFRDTM, the Laplace transform method, and
the Padé approximant are all jointly used in this procedure.
The Padé approximation has been used in a variety of do-
mains to approximate rational series solutions; it was
invented by Henri Padé [39] circa 1980. Baker [40] estab-
lished the existence and convergence of subsequences. The
Padé approximant method outperforms other series ap-
proximation methods and is used to manage series con-
vergence. The authors of the paper [41] used the multivariate
Padé approximation method for solving the European va-
nilla call option pricing problem. According to the rela-
tionships of “smaller than” or “greater than” between stock
price and option exercise price, the Padé polynomials have
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appeared in the fractional Black-Scholes equation using the
provided method. Using these polynomials, they applied the
multivariate Padé approximation method and calculated
numerical solutions of the fractional Black-Scholes equation
for both situations. The obtained results reveal that the
multivariate Padé approximation is a very quick and ac-
curate method for the fractional Black-Scholes equation.
The Padé approximants, in other words, heighten the do-
main of convergence of the truncated power series solution
achieved via CFRDTM or other methods, leading to the
exact solutions in many cases [12, 42-45].

The proposed LPCFRDTM technique has been utilized
to solve the problems as follows: The CFRDTM is used to
derive the solution to FDEs in convergent power series form.
Second, even though the CFRDTM solution series has a high
number of terms, it may converge in a narrow area. As a
result, the LPCFRDTM magnifies the truncated power se-
ries’ convergence domain, typically resulting in the exact
solution. We use the Laplace transform to improve the
solution of convergent series generated by the CFRDTM and
then form its Padé approximant to turn the transformed
series into a meromorphic function. Finally, to achieve the
approximate analytical solution, we use the inverse Laplace
transform of the Padé approximant function. The capacity to
widen the domain of convergence of solutions or include
discovering exact answers is a major benefit of using this
method. Also, the LPCFRDTM can obtain exact solutions
without any perturbation parameters like HPM [27, 46, 47].

The generalized two-dimensional dynamical time-frac-
tional nonlinear damped wave equation with a source term
in the Caputo fractional derivative operator is taken into
account in this article [48]:

thZ“u (x, y,t) + ﬁOCD':u(x, y,t) = y(Diu(x, y,t) + Diu(x, v, t)) +h(x, y,t,u), (x,y) € Q, £ =20, (1)

where Q = {(x, y): a<x<b,c<y<d}.
The initial condition associated with equation (1) is given

by

x,y €,

1wm%m=%uwx )

OCD;XM(X, s 0) = s (x, y), x,y€Q, ’

where u(x, y,t) is the scalar variable, ¢ is the time, and the
parameters yand § are supposed to be real numbers with
y, 3=0.f3 is the alleged dissipative term. When 8 = 0, Equation
(1) reduces to the undamped wave equation, while 3 > 0 to the
damped one. The known functions ¢, (x, y) and ¢, (x, y)
represent wave kinks or modes and velocity, respectively.
The remainder of this work is divided into the following
sections. The fundamental definitions of fractional calculus
are provided in Section 2. CFRDTM is introduced in Section
3 along with definitions and its convergence analysis in
subsection 3.1. The main idea behind the Padé approximant
is explained in Section 4. Section 5 explains the underlying
premise of the Laplace-Padé resummation method. In
Section 6, we demonstrate the proposed method’s reliability,

convergence, and efficiency using four illustrative instances.
Approximate analytical answers and numerical simulations
are presented in tables and graphs in Sections 6.1 and 6.2,
respectively. In Section 7, we have a quick discussion. Fi-
nally, a conclusion is formed in section 8.

2. Preliminaries

In this section, we will go over some essential fractional
calculus definitions, which we will use in the present in-
vestigation (see [49-53]).

Definition 1. The Riemann-Liouville fractional derivative
operator of f (x) is given by

X

Rya _; _ pym—a-1
DL 0 = gy ], o (0 G

-m—-1<as<mmeN,

where the gamma function I' (z) is simply a generalization of
the factorial real arguments and defined by
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I'(z) = J e 't z>o. (4)

0

Definition 2. The Riemann-Liouville fractional integral of
order a > 0 for a function f € C", withm —1<a<m,m e N
and is defined as

a>0,t>0,

o« _L x _ -1
S ) = s jo (x — " F (1),

(5)
Jof (%) = f (x).

When trying to describe real-world issues with fractional
differential equations, the Riemann-Liouville derivative has
several drawbacks because it necessitates the definition of
fractional order beginning conditions, which have yet to be
physically explained. In their work on the theory of visco-
elasticity, Caputo and Mainardi [52] suggested a modified
fractional differentiation operator D to address this mismatch.
With the Caputo fractional derivative, which has unambiguous
physical implications, initial and boundary conditions in-
volving integer-order derivatives can be employed.

Definition 3. From Caputo’s perspective, the fractional
derivative of f(x) is defined as

Cou m e N,
oD f (x) ={ (6)

m € N.

In particular, if 0 <a <1, then the Caputo fractional
derivative of f is

Cpa _ 1 x Nt
DU =t [[w-trroe @
Lemma 1. If m-1l<a<mmeN, t>0 and
feCl uz -1, then
[ (EO)(ED)f =D f (6 =(FDF) (5 0F) £ (),
C®.Y _ r(1+)’) —a
Othy_—r(Hy—a)ty , £>0,
1 (8)
SDITLf () = f (1), t>0,
m @ 1ot tk
IDGPHF O =03 19O >0

3. Caputo Fractional-Reduced Differential
Transform Method (CFRDTM)

In this section, the fundamental necessary concepts and
operations of the (2+1)- dimensional CFRDTM
[30, 32, 43] are presented. Additionally, the convergence
analysis of the CFRDTM is also presented in subsection 3.1.

Definition 4. If a function u(x, y,t) is analytic and differ-
entiated continuously with respect to the time variable "t "
and space variables (x, y) in the domain of interest, then let

Up(x,y) = 6D u(x, y, t)]t:to, )

1
I'(ka + 1)[
where U, (x, y) is the t-dimensional spectrum function or
the transformed function,§D** = 3/0t** and the param-
eter « indicates the order of the time fractional derivative.
The original function is represented by lowercase u (x, y,t)
in this article, whereas the transformed function is repre-
sented by uppercase Uy (x, y).

Definition 5. The inverse CFRDT of a sequence
{Ug (x, )}2, at initial time variable ¢ = ¢, is provided by
(e8]
u(x, y,t) = Z Uy (6, ) (£ = )™, (10)
=0

Then, combining Equations (8) and (9), we get

[ee)

1 « «
uo 0 = Y oD u el (- 0) D)

Remark 1. The function u (x, y,t) is represented in real life
by an infinite series of Equation (9) about t, = 0 and can be
expressed as i, (x, y,t) = Yo U (x, y)k“ +R,(x, y,1),
where the tail function R, (x, y,t) = Y2, Uy (x, y)t5¢ is
negligibly small.

Moreover, the inverse CFRDT of the set of {U, (x, y)}1_,
yields an approximation solution as follows:

i, (%, y,t) = ) U (x, ), (12)
k=0

where 'n' is the approximate solution’s order. As a result,
the actual answer to the problem is obtained as follows:

u(x, y,t) = nli_r}noo u,(x, y,t) = Z Uy (x, y)tk“
k=0

13
=Uy(x, )+ Uy (x, " + U, (x, y)tz"‘ (13)

+ U, (3, )% + -

From Equation (11), the principle of the CFRDTM can be
determined to be derived from the power series expansion.

Theorem 1 (see [40]). Assume that F) (x, ), G, (x, y), and
Uy (x, y) are the RDT of the functions f(x, y,t),g(x, y,t),
and u(x, y,t) respectively, then we have the following
equations:

() If f(x,y,t) =sinu(x, y,t), then

sinU,, ifk =0,
Fe(x,9) =1 k (14)

z <1 - —I)Gk (6 MU, (x5 ), ifk>1.

g k 1 1

(ii) If g(x, y,t) = cosu(x, y,t), then



4
cosU,, ifk = 0,
Gy (x, y) = k-1
Z(l ——>Fk (% YUy, (x,9), ifk>1.
(15)

Remark 2. The Mittag-Leffler function, which is a gener-
alization of the exponential function, is defined as [54]

0 fk
(16)

a € C, Re(a>0).

Z (k(x)v
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For a=1E, (t) reduces to e and
CFRDT (E, (At%)) = MWFIT (ko + 1).

Theorem 2. (for a = 1,see) Caputo fractional-reduced dif-
ferential transform of the initial condition.

If 0"/ot"u(x, y,0) = ¢(x, y), then
U,(x,y) = ¢(x, y)/T (na + 1).

To validate the fundamental concepts of the CFRDTM,
we consider the nonlinear damping wave equation (1) with
the initial condition (2) by applying the features of CFRDTM
listed in Table 1 and Theorem 8 on both sides of problem (1).

CFRDT(OCDt;‘u (x, y,1) + ﬁthZ (x, 9, t)) = CFRDT(y(Diu (x, y,8) + Diu(x, Vs t)) +h(x, y.t, u)). (17)

The CFRDT of each term in (17) is given as follows.

' 0
CFRDT(§D;“u(x, y,t)) = CFRDT(a

CFRDT (B5D{u(x, y, 1)) = ﬁCFRDT(

Substituting equation (13) into equation (12), we may

construct the following iteration formula:

I'(ak+20+1) I'ka+a+1]
TTlakrn PP AT

(19)

2

Foa 2
Ui (%, y) = <a Uk (2 y) + 5 —Uk(x, y)> + Hy(x, ).

I'ka+a+1]
I'ka+ 1]

T'(ak +1) [

Ukia (6.7) = T(ak +2a+1)

0
at,,,u(x,y,t)) =p

| CFRDT (h(x, y,t,u)) = H,.(x, y), k>0.

d
Jk+1 (x y) + y(a

I'(ak +2a+1)
u(x, y, t)) WUkﬂ (%, ),
Ika+a+1
QUMI (%, ¥),

I'[ka+1] (18)

o’ o
CFRDT(y(Diu (%, y,8) + Diu(x, ¥, t))) = (a Uk (%, y) + TUk (x, y))

Solving for Uy, (x, y), we obtain

2 2

5Uk (x, y) + ay U, (x, y)) +Hk(x,y)]. (20)
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TaBLE 1: The fundamental mathematical operations of CFRDTM [32, 33, 35, 36, 43].

Original function Transformed function
u(x, y,t) Ui (x,y) = UT (ka + 1)[thk“u (%, y, t)]t=t0
w(x, y,t) = au(x, y,t) + fv(x, y,t) Wi (x,y) = aUp (%, y) £ BV (x, y),where aand are constants
1, ifk=p,
w(x, y,1) = X" ytP Wi 3) = x"y"(k = p), where 8(k = p) =1 ' 10 ;,
"YU ,y), k=n,
w(x, y,t) = X" y"tPu(x, y,t) Wi (x,y) = g Y Voep7) elsefl
w(x, p,t) = ulx, y,)v(x, y,t) Wi (3% 3) = 50U, (6 )i, (5,) = X0V, (69U, (%, 9)
w(x, y,t) = oN%/atNy (x, 1) Wi (x,y) =T[ka+ Na+ 1]/T[ka + 1]JU; 5 (x, y)
w(x, y,t) = 0" [0x"u(x, y,t) Wi (x,y) = 0" 0x" U, (x, y)
w(x, y,t) = eM Wix, y) = AK/k!, where A is a constant
w(x, y,t) = sin(ax + By + wt) W, (x, y) = o*/k!sin (kn/2! + ax + By), where a, B, and w are constants
w(x, y,t) = cos(ax + By + wt) Wi(x,y) = wF/k! cos (km/2! + ax + By), where «, f, and w are constants
When we apply the CFRDT to condition (2) according to Using Equation (15) into Equation (14) and solving the
Theorem 2, we get resulting system for k=0,1,2,..., we get the following
{Uo (%, ¥) = ¢ (%, ), on Uksz (%, ) values:
U, (x,9) = ¢, (x, ).
1 Pe 2
U, (x,y) = T2at D) [—ﬂf[oc +1]g, (x, y) + Y(axz% (x, y) + ayz‘Po (x, J’)) +H, (x,y)],
(22)
T(a+1) [  TR2a+1] o o’
U > = - U > ) > -~ > H > >
3(%.) FBa+1) ﬁF[cx+1] 20 7)+y 8x2¢1(x y)+8y2(/)1(x y) )+ Hix)
and so on. In the equation, "n" is the order of approximation
Then, the inverse CFRDT of the set of values solution. Therefore, the exact solution to the considered
{U (x, )}i_, gives the approximate solution: problem can be obtained as follows:
i, (%, y,1) = ) Uy (x, p)™. (23)
k=0
u(x, y,t) = n@lm 2, (3, y, 1) = @y (x, ) + ¢p (x, p)t°
! Tla+1 o o H t*
+m —Plla+ g, (x, ) +y g%(x,y) +a—y2§00(x,y) +Hy(x, y) (24)
Ta+1) [ TRa+1] o’ i 3
- ) - 5 > ) > H ) t ttt.
+F(3a+ 1) [ B [la+1] Vol y)+y axz%(x y)+ay2(pl(x ) Gy |
3.1. Convergence of the Method Definition 6 (see [40, 55]). For k € NU {0}, we define
X U tk+1
Theorem 3 (see [40, 55]). If o, (x, y,t) = U (x, ¥) (t)", then ||90k+1|| 3 H k1 (%65 ) .
the series solution Y po, @i (x, y,t) stated in Equation (9) B k|| > lf”q)k“ #0,
k=0 Pk (%, ¥, q L led uiee | )5
around t, = 0, Yk € NU{0}. Vi = (25)

(i) It is convergent if 3JA,0<A<1, such that .
0, if =0,
191l <lpgl lod

(ii) It is divergent if A > 1, such that |1l = M@, |-



and then, the series solution Y 2, ¢y (x, y,t) converges to the
exact solution u(x, y,t) when 0<y, <1 for k=0,1,2,....

4. Pade Approximate

In numerical mathematics, Padé approximation [56] is
believed to be the best approximation of a function by ra-
tional functions of a given order. Under this technique, the
approximate power series agrees with the power series of the
function it is approximating. The Padé approximant often
gives a better approximation of the function than truncating
its Taylor series, and it may still work where the Taylor series
does not converge and also enlarges the domain of con-
vergence of the truncated power series solution. For such
reasons, Padé approximants are often used in many fields of
computations.

Let u(x, y,t) be an analytical function with Maclaurin’s
expansion.
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Then, the Padé approximant to u(x, y,t) of order [K/L],
which is denoted as [K/L],(x, y,t), is defined as follows
[40, 42]:

K + it + Pttt prtt
[f] (x, 1) = PotPit+ P, ; PKL ) 27)
u Qo+ it + @pt” + -+ qpt

where we considered g, = 1, and the numerator and de-
nominator have no common factors. The numerator and the
denominator in equation (19) are built in such a way that
u(x, y,t), [K/L], (x, y,t), and their derivatives agree att = 0
up to K + L. That is,

< + Pyt Pyt e+ prtt
Zuk(x,y,t)tk=p0 P P22 PKL +O(tK+L+1). (28)
=0 1+qit+qyt™+---+qpt

By cross multiplying, we find that

(0]
u(xy,t) =Y w (6 y, 0%, 0<t<T, (26)
k=0
(ug+uyt +upt’ + )Lk qut + @ot® + -+ qpt") = po+ pit + pyt® + -+ pyt’ + O ), (29)
Equating the coefficients of tX*1,¢K+2  #K*L from  Remark 3. For afixed value of K + L + 1, error equation (20)
(29), we find is the smallest when the numerator and denominator of

((Ugq) tUggy T Ugaqs o0 H Uk 0 = Uy
Ugqr T Ugoqy T Ugs3qgs T H Uk 14041 = ~Ukyo

Ugi2q1 T Ug3dy T Ugaqs T H Uk 14391 = ~Ukyss
i (30)

Ugir-191 T Ukip292 T Ukyp-393 T+ Ugqp = —Ugyg-

Comparing the equal power of "t " on both sides of (29),
we get

Po = Up»
Py = Uy +upqy,
Py = Uy +uq) + Uy,

] Ps = Uy g, g, +Uyqs, (31)

Px =ug tUg1q; t Ug g, t Ug 343 + -+ + U]k

Moreover, from Equation (22), first, we calculate all the
coefficients g,,1<n<L, and then, we determine the coef-
ficients p,,0<n<K from Equation (23).

Equation (14) have the same degree or when the numerator
has one degree higher than the denominator.

5. Laplace-Pade Resummation Method

The LPCFRDTM, which is a combination of the CFRDTM
and the Laplace-Padé resummation method, is described as
follows:

(i) By means of CFRDTM, we first find the series
solution of the given equation that is similar to
series (16)

(ii) Second, power series (16) is transformed using the
Laplace transformation

(iii) Next, we replace s by 1/t in the resulting equation

(iv) The series produced from (3) is then transformed
into a meromorphic function by constructing its
Padé approximant of order [K/L], where K and L
are chosen at random but should be smaller than the
series’ order

(v) After that, in the resulting equation, we substitute ¢
by 1/s

(vi) As a final point, we obtain the precise or approx-
imate answer by applying the inverse Laplace s
transformation
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6. Illustrative Examples

We offer four examples to establish the validity and effi-
ciency of the suggested strategy. These cases’ solutions are
also compared with exact solutions.

6.1. Analytical Solution to Illustrative Examples

Example 1. Consider the following (2 + 1)-dimensional
hyperbolic time-fractional telegraph equation in the region
Q = [0,2]? as follows:

ng'xu(x, y,t) + ZOCD‘;u (%, y,t) = D2u(x, y,t)
+ Diu (x, y,t) — > + (B, (-2t%))

— 2" (E, (-2tY)),
(32)

B I'lka +a+1]

['[ka +1]
I'(ak+1)

Va8 = ok 2a 4 1)

k

Under the initial condition, we get
u(x) Vs 0) = ex+}”
u(x,y,0) =

T(a+ 1)ex K (33)

CnNyx
ODt

Applying the properties of CFRDT listed in Table 1 on
both sides of Equation (24), we obtain

2 2

0 0
Ui (x5 9) + —Uk (x, y) + —Uk (x,9)
ox oy

; (34)

~ 2 U (U (6, 9) + 5P YV, (6 9V (3, 9) = 265

r=0

where V| (x, y) is the Caputo fractional-reduced transform
of E, (-2t%), and it is obtained by using Remark 2.

When the CFRDT is applied to initial condition (25) in
view of Theorem 2, it produces

Uy (x,y) =€,

k (_2)k
< T(ka+1)

We get the following U, (x, y) values for k =0,1,2,...
using Equation (27) into Equation (26), recursively.

For k =0, using the values of U, (x, y) and U, (x, y)
from (35) into Equation (26), we get

5 (35)
Uisn) =r e
[ INa+1 o o’
- [ ]Ul (%, ) + —=U (%, y) + =—=U (%, p)
r(1) I'(1) Ox dy
V252 = 1001y -2’
X X _2
~U, (%, U, (%, y) + €V (x, y)V, (x, ) — 2¢¢ *”(m)
[ - o o
T 1 xty Y oxty Y xty (36)
1 (a+ )F(“+1)e +ax2(e )+ay2(e )
Tard (-2 (-2)° (-2)°
(XY x+y 2(x+y) -2 -2 _ (x+y) -2
| HEDE) T Ty % (ru))
- - [4ex+y + 26x+y _ e2(x+y) + eZ(x+y) _ ze(ery)] _ #exﬂv
I(2a+1) Fa+1)
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for k =1, using the values of U, (x, y) and U,(x,y) in
Equation (26), we obtain

I[2a+1] 0’ o
-2 mUz (.X', y) + @Ul (X, y) + a—yzUl (x, y)
T'(a+1)
Us(%,y) =
r(3a+1) . 1 1
—ZU (x, U, (x y)+e2(x+y)ZV (% )V, (x, y) — 2 (=2)
= r\7 1-r \7 & r\ 1-r \©» r(a + 1)
[ TRa+1] (-2)° -2 : -2 :
INa+1] TQRa+1) T'(ae+1) ox T'(a+1) oy
_ I'(a+1) (37)
T'(a+2a+1) 2!
x x -2
i —2U, (x, MU, (%, y) + 282V (x, p)V, (x, ) — 26" +y)<1"(oc " 1)>
r 73 x+y x+y 2(x+y) (x+y)
_ I'(a+1) (-2) S g e 4 e _4e 4 e
F(a+2a+1) [Tla+1] I'(a+1) T'(ax+1) I'a+1) T(ax+1)
~ (_2)36x+y
TT(a+2a+1)
Continuing in the same manner for k> 2, we obtain Then, using the inverse CFRDT (9) as a definition, we
2" . et
_ Xty
Vst ) = miga s
(38)
_ (_2)5 x+y _ (_2)k x+y
Us(x,y)—me ,...,Uk(x,y)—me
< k
u(x, y,t) = ) Up(x, y) (1)
k=0
B X+y (_z)tot (_2)2t2¢x (_2)3t30( (_2)4t40t (_2)5t5(x +
- T(@+1) TQa+1) TGa+1l) T(da+1) T(Gatl) (39)
=& <§ (_z)k (t)ka >
paard I'(ka+1)
In this situation, the truncated series is approximated After that, we apply the Laplace transform to both sides

using the Laplace-Padé approximant up to n" order of  of (40), and we get

perturbation. That is,
n

_ ey [ (20 _ . (-2)*
i, (x,y,t)=e y(%r(kou—l)) (40) L(i,(x, y,t)) =e y(Z o | (41)

k=0
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For straightforwardness, we write 1/¢ in the place of s in
Equation (31), and we get

L(di, (x, y,t)) = " < i (—2)Fkert )
k=0

Now, we convert transformed series (32) into a mero-
morphic function by forming its Padé approximant of [K/L]
with k>1,L>1and K+ L= 7(k=3,L =4).

— ex+y(t _ 2to¢+1 + 22t2zx+1 _ 231‘30¢+1 (42)
+24t4o¢+1 _ 25t50c+1 + )
K atl | ~2,2001 53,3041 |, A4 dat]  A5,50+1 | o6 6a+1 potpit+ Pzta+1 +P3tzwrl
[I](t—Zt + 22 2R 20 ) = e (43)
+qit + ot + g5t + qut
We obtain uy =0,u; = L,u, = -2,u; =4,u, = -8,us = Solving for p and ¢, we obtain p,=0,
16,us = —32,u, = 64. pr=Lp,=0,p3=1,9,=2,9,=1,93 =2, andg, = 0.
Using (23) and (22), we get Then, we obtain
Po =1ty =0, 49, - 29, + g3 + 0 =38,
=1 an -84, +49, —2q; + 94 = -16,
Py =-2+4q; 16q, — 8q, + 4q5 — 2q, = 32,
p3=4-2q, +q, —32q, +16q, — 8q; + 4q, = —64.
(44)
K " +_t2a+1
[7] (t Z ol | 922001 | 533041 | b darl _ o5 Sarl 26t6a+1) _ - -
L 1+2t+t" +2t
(45)
t
T1+20)"
a—1
1 s
Therefore, all [K/L]Padé approximants of the eqaution u(x, y,t) =L l‘lm} =" E, (-2t%). (48)
with L>1, K>1and K+ L < n give
[ K] ( ) &t (46) Putting « = 1 in Equation (35), we obtain
—_(yt)=———
_ 1 _
L1u, 1+2(t) u(x, y ) = VL 1{ +2} e (49)
s

Now, by changing 1/s into t in the equation, we obtain
[K/L]; in terms of s as follows:
x+ysa— 1

K

. Geyt) = —— (47)

[L]:;"(x 7=
Finally, on both sides of Equation (34), using the inverse

Laplace transform, we have the exact solution as follows:

Example 2. Consider the following two-dimensional hy-
perbolic nonlinear time-fractional sine-Gordon equation on
the domain Q = [0,2]%, >0

ng“u (x, y,t) + OCD‘txu(x, y,t) = Diu(x, y,t) + Df,u (x, y,t) = 2sinu

+2sin[E, (-t

— 1 E, (—t%)[

) (1 = cos (7x)) (1 — cos (y))] (50)

cos (mx) + cos(my) — 2 cos (mx)cos (wy)].
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Under the initial condition, we get

u(x, y,0) = (1 - cos(mx)) (1 — cos(my)),

1 (51)
CDfu(x, y,0) = —m (1 = cos(mx)) (1 — cos (my)).
U y) = L@k +D [ Tlka+a+1] i
k210 V) STk v 2a+ 1) | Tlka+ 1]

where Fi(x,y) and Hj(x,y) are transformed forms of
nonlinear term sin(u(x,y,t)) and [[2sin(E,(-t%)
((1 = cos(7x)) (1 = cos (my)))] — n*E,, (—t*) [cos (nx) + cos

(my) —2cos(mx)cos(nmy)]], respectively. Applying the
CFRDT to initial condition (38) in view of Theorem 2, we get

Uy (x,y) = (1 = cos(mx)) (1 — cos(my)),

0 15}
Uy (%, y) + @Uk (x, ) + aT/zUk (x,y) = 2F; (x, y) + Hi (%, ) |,

Mathematical Problems in Engineering

Applying the properties of CFRDT listed in Table 1,
Theorem 1, and Definition 4 on both sides of Equation (37),
we obtain

2
(52)

Substituting Equation (40) into Equation (39) and ap-
plying Theorem 1, Definition 6, and properties of CFRDT
listed in Table 1, we obtain the following successive iterated
values for k(k=0,1,2,...).

For k =0, using the values of U,(x, y) and U, (x, y)
from (53) into (52), we get

) (53)
U,(x,y) = _l"(oc Y (1= cos(mx)) (1 — cos(my)).
) [ Tla+1] o’ o’
UsG6o) = 1y |~ iy U 890 aUo) + 53U (39) = 2o 3 9) 4 Hy (3.
[ T(a+1) -1 o’
1 lix(l) Tar D) (1 = cos(mx)) (1 —cos(ny))+$(l—cos(ﬂx))(l —cos(my)) (54)
TTQa+1) ,
+? (1 —=cos(mx)) (1 —cos(my)) —2F,(x, y) + Hy (x, y)
According to Theorem 1), Using Definition (5), we get
Fy(x,y) =sinU, = sin((1 - cos (7x)) (1 — cos(my))).
1o [2sin(E, (—t*) ((1 = cos (7x)) (1 = cos (y)))]
Hy(x,y) = IIeH) o Dy
(1) —m2E, (—t%) [cos (71x) + cos (my) — 2 cos (mx)cos (my)] |]izo (55)

=[2sin (((1 - cos(mx)) (1 — cos(my)))] — % [cos (7rx) + cos (my) — 2 cos (mx)cos (my)].
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Consequently, we obtain

(1 -cos(mx)) (1 —cos(my)) + 7% [cos (7mx) + cos(my) — 2 cos(mx)co(my)]

U,(x,y) = F(go(cl-z D —2sin ((1 — cos (7x) (1 — cos (y))) + 2 sin (((1 — cos (7x) (1 — cos (y)))
—* [cos (7rx) + cos (my) — 2 cos (mmx)cos (my)] (56)
_ (1 —cos(mx)) (1 — cos(my))
- [(2a+1)
for k = 1, using the values of U, (x, y) and U, (x, y) in (52),
we get
Tla+1] [ T[2a+1 o 0’
I'[2a + 1] 1
) I Tlatr1] TQatD) (1 = cos(mx)) (1 — cos(my)) (57)
"T(Ba+1)
_F(oc " 1)7-[2 [cos(mx) + cos(my) — 2 cos (mx)cos(my)] — 2F, (x, y) + H, (x, y)
According to Theorem (1), we get
F,(x,y) = Gy(x, »)U, (x, ¥) = cos (U, (x, ))U, (x, y)
1 (58)
= _F(oc ey cos ((1 — cos(mx)) (1 — cos (y))) (1 — cos (7x)) (1 — cos (7 y)).
Using Definition (5), we get
1 .. [2sin(E, (=t*) ((1 = cos (7x)) (1 = cos (ny)))]
H,(x,y) = T(a+ D0
(a+1) —-m2E, (—t%) [cos (71x) + cos (my) — 2 cos (mx)cos (my)] |1,zo
(59)
1 l 7* (cos (mx) + cos (my) — 2 cos (mx)cos (1y)) jl
Tla+) —2cos((1 = cos(mx)) (1 — cos(my))) (1 — cos(mx)) (1 — cos (my)) ‘
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Consequently, we obtain

[ (1 - cos(nx))(1 - cos(my)) 2 ]
Tlo+ 1] - Tar D) [cos (mx) + cos(my) — 2 cos (mx)cos(my)]
+# cos ((1 — cos(mx)) (1 — cos(my))) (1 — cos(mx)) (1 — cos(my))
I'a+1)
0.y - e 11
T TBa 1) s
+$ [cos (mx) + cos(my) — 2 cos (mx)cos(my)] (60)
2
i _F((x ey cos ((1 — cos(mx)) (1 — cos(my))) (1 — cos(mx)) (1 — cos(my)) ]
1
= —m (1 = cos(mx)) (1 — cos(my)).
Continuing in the same manner for k >2, we obtain
U,(x )—;(l—cos(ﬂx))(l—cos(nx)) U, (x )—(_—l)k(l—cos(ﬂx))(l—cos(r[ ) (61)
Y S T 4ar 1) PRV T T a1 1) 7))
Then, by using inverse CRDT (9), we get
u(x, y,t) = Y Uy (x, ) (t - o)
k=0
~ (1 ( )) (1 ( ) . th tZ(x t3o¢ t4o¢ tSoc
= (L= cos(me) (1 =cos(my)| 1= L ¥ T aasr 1) TGasrl) T@arl) TGarl) (62)
~ 0 (_1)k (t)koc
=(1-cos(mx))(1 - cos(ny))(l;)m)
The Laplace-Padé approximant is used to approximate Then, on both sides of (63), we use the Laplace transform

the truncated series up to n'" order of perturbation in this  to get
case. That is,

no(_1\k
" (L1 (o L (i, (x, y,1)) = (1 - cos (mx)) (1 - cos(rry))(Z (akﬂ)l ) (64)
1, (%, y,t) = (1 — cos(nx)) (1 - cos(ny))(Z m) (63) k=0 S

0 For effortlessness, we write 1/t instead of s in Eq., and we

get

L(#@, (x, y,t)) = (1 = cos (71x)) (1 — cos(ny))(i (—1)"#‘““)

k=0 (65)

— (1 _ Cos(n_x))(l _ COS(ﬂy))(t _ t¢x+1 + t20¢+1 _ t31x+1 + t40£+1 _ t50£+1 + t60£+1 +.. .)‘
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Now, we convert transformed series (45) into a mero-
morphic function by forming its Padé approximant of [K/L]
withand K+ L= 7(k=3,L=4).
K + pyt+ pyt*t 4 pat?t!
[f] (t _ ol ekl el darl Skl | g6akl) 1 Pot P a+IPz 2“+Il)3 — (66)
+qit+ gt + g5t + gt
We obtain uy =0,u; = L,u, = -2,u; =4,u, = -8,us = By means of (23) and (22), we get
16,ug = =32, u, = 64.
Po =1ty =0, G- tqg=1
=1, -1t —qz+q4 =1,
P and A t4q, 93+ 49, (67)
pr=-1+gq 9 -Gtq3—ds =1
p3=1-q, +q,, —q1+q,—q3+q, = -L

Solving for p and g, we get p, =0,p;, =1,p, =0,p; =
1,q,=1,9,=1,9;=1,andq, = 0.

Then, [K/L] (t _ ta+1 + t2¢x+1 _ t3a+1 + t4rx+1 _ t5a+1
) =t 21 4t 4t 1 2 = 11+t

Therefore, all [K/L] Padé approximants of the equation
with L>1,K>1 and K + L<n give

(1 = cos(mx)) (1 — cos(my))t

68
1+¢* (68)

[g]a () =

Now, by changing 1/s into t in the equation, we obtain
[K/L]> in terms of s as follows:

(1 = cos (x)) (1 = cos (my))s* ™"

; (69)
s +1

[%]an(x’ 7=

Finally, on both sides of Equation (47), using the inverse
Laplace transform, we have the exact solution as follows:

SD*u(x, y,t) — uSDfu(x, y,t) - u(Diu(x, y,t) + Diu(x, ¥, t)) —(1 + xz)F —(1 + yz)
x

a-1
u(x,}’,t):(1—cos(nx))(l—cos(ﬂy))L—1{ S }
s +1 (70)

= (1 - cos(nx)) (1 — cos(my))E, (—t).

Putting « = 1 in Equation (48), we have

u(x, y,t) = (1 - cos(nx)) (1 - coS(ﬂy))Lﬂ{L}

s+1 (71)

=e (1 -cos(mx))(1 - cos (my)).
This finding is in perfect accord with the one obtained in

the previous study as shown in [35, 48].

Example 3. Consider the following (2 + 1)—dimensional
hyperbolic nonlinear time-fractional telegraph equation
with variable coefficients in the area Q = [0, 7]? as follows:

o’u o’u

oy’ (72)

= (Ea (~t%) (cosh (x)cosh (y) - sinh (x + y)) = 1 - x* — yz) X E, (—t")cosh (x)cosh (y),

with the initial condition
u(x, y,0) = cosh (x)cosh (y),

(73)

SDfu(x,y,0) = — cosh (x)cosh (y).

1
T(ax+1)

Applying the properties of CFRDT and the related rules
in Table 1 on both sides of Equation (50), we obtain
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K Tlka+ o+ 1]
yerar

4 Tlka+1]

I'(ak+1)

Va0 = ok v 2a 4 1)

r=0

G
L I'(ka+1)

where V| (x,y) is the fractional reduced transform of
E, (-t%).

Applying the CFRDT to initial condition (51) according
to Theorem 10, we get

U, (x, ¥) = cosh (x)cosh (y),

k
9]
Ut (6 Wi, (5, 9) + ) = U, (56 U, (3, )
r=0
+iiU (x, MU, (x y)+(1+x2)a—U (x y)+(1+y2)a—U (x, y)
r=an r\M k—r \7> axz k \* ayz kA

k
+ Z V,(x, Vi , (x,9) [cosh2 (x)cosh? (y) — sinh (x + y)cosh (x)cosh (y)]

0
U, (x, »)Uy (x, p) + an (x, YUy (x, y)

Mathematical Problems in Engineering

2 2

, (74)

(1 +x7+ yz)cosh(x)COSh(}’)

Now, taking the values of k(k =0,1,2,---) and using
Equation (53) into equation (52), we obtain the following
successive iterative values.

For k =0, using the values of U, (x, y) and U, (x, y)
from (75) into (74), we get

2

0 0 0
+$U0 (x, YU, (x, ¥) +(1 + xz) QUO (x, ) +(1 + yz) a_y2U° (x, )

+V o (o, IV (%, y) [cosh2 (x)cosh? (y) — sinh (x + y)cosh (x)cosh (y)]

() (1 +x°+ yz)cosh(x)cosh(y) ]

[ ~Tla+1] r;cosh (xx)cosh (y)cosh (x)cosh (y) + sinh (x)cosh (x)cosh® (») ]

+sinh (y)cosh (y)cosh2 (x) +(1 + xz)cosh (x)cosh(y) +(1 + yz)cosh (x)cosh(y)

_+cosh2 (x)cosh? (y) — sinh (x + y)cosh (x)cosh(y) —(1 +x°+ yz)cosh(x)cosh(y) ]

—cosh? (x)cosh® (») + sinh (x)cosh (x)cosh? (») + sinh (y)cosh (y)cosh2 (x)

+cosh? (x)cosh? (y) — sinh (x)cosh (x)cosh? (y) — sinh (y)cosh (y)cosh2 (x)

(75)
U,(x,y) = _F(oc ey cosh (x)cosh ().
I'fa+1]
I[1]
2
RNe))
Uy(x,y) = m
(=
(a+1)
_ 1
TTQa+1)
_ 1
"TQa+1)

_+(1 +xt yz)cosh (x)cosh () + cosh(x)cosh (y) —(1 +xt yz)cosh (x)cosh (y)

= _ cosh (x)cosh (y).

IrCa+1)

(76)
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For k = 1, using the values of U, (x, y) and U, (x, y) in

(74), we get

3 T(ax+1)

Us(x, ) —m

r=0

1

2

r=0

1
d o o
+;0@Ur (x5 Uy, (x, ) +(1+ x )@U1 () +(1+y )aT;ZUl (% )

1
+ Z V, (e, MV i_(x,9) [cosh2 (x)cosh® () — sinh (x + y)cosh (x)cosh (y)]

T'(a+

I'[2a+ 1]

1
0
mUz (6 U (x, 9) + ;aUr (x, Y)U,_, (x, 9)

2 2

1
T E;? D (1 +x°+ yz)cosh (x)cosh(y) ]

1)coshz (x)cosh? (») - ﬁ sinh (x)cosh (x)cosh? (»)

cosh (x)cosh ( y)sinh2 (x)

2
I'(ax+

1)

_T(a+1)

" TBa+1)

1
I'la+

1)

cosh (x)cosh (y) +

1
I'a+1)

2
I'a+1)

| T(a+1)

= _m cosh (x)cosh ().

Continuing in the same manner for k >2, we obtain

U o
0V =i

Then, by (9), we get

u(x, y,t) = ZUk (%, 3) (t = 1)
k=0

o

t t

2
cosh? (x)cosh? () + r—+1)

2a

cosh (x)cosh (y), ..., U (x, y)

t

(a

" T(ka+1)

3a

(1 +x7 + yz)cosh(X)COSh )

sinh (x)cosh (x)cosh? (»

+# cosh (x)cosh(y)sinh2 (x) - ﬁ (1 +x7 + yz)cosh (x)cosh(y)

k
1) cosh (x)cosh ().

4o S5a

t t

= cosh (x)cosh (y) [ 1

0 1\k ka
= cosh(x)cosh(y)(Z %)

k=0

“T(a+1) T(2a+1) TGa+l) T@a+l) TGatl

15

(77)

(78)

(79)
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Here, the Laplace-Padé approximant is applied to the
truncated series up to n™ order of perturbation, that is,

_ B O
o, (x, y,t) = cosh(x)cosh(y)(k;m) (80)

Applying the Laplace transform on both sides of (80)
yields

k=0

Mathematical Problems in Engineering

n k
L(@, (x, y,t)) = cosh (x)cosh(y)<z i;k1+)1 > (81)

k=0

For simplicity, we write 1/t instead of s i equation (57),
we get

L(ﬁn(x, s t)) = cosh(x)cosh(y)<i (_l)ktka+1> "
82

= cosh (x)cosh (y)(t — 1y

Now, we convert transformed series (58) into a mero-
morphic function by forming its Padé approximant of [K/L]
with k>1,L>1,and K+ L =7(k = 3,L = 4).

2a+1 _ t30¢+1 + t4(x+l _ t5a+1 + t6(x+l . )

K + pot+ pt™th 4 py et
[7] (t _porl el | Barl | darl | Sarl t6o¢+1) __ Potp a+sz 2a+1173 — (83)
L L+ gt +gut™ +qst™ +qut
K cosh (x)cosh (y)s**
We obtain u, =0,u, = 1,u, = -2,u; =4,u, = -8, u: = —- (% p,t) = a z - (86)
0 1 2 3 4 5 L 1
u

16, g = —32,u; = 64.
Using (23) and (22), we get

Do =14y =0, 4 -4 +4q3=1

=1, —q+ gy — Gy +qy =1,
P and Dt —9stq, C(34)
p.=-1+4; 49 —-4+q93-4q.=1
p3=1-q,+4q, —q1+4q,—q3+q,=-L

Solving for p and g, we get p, =0,p; =1,p, =0,p; =
l,q,=1,9,=1,9;=1,andq, = 0.

Then, [K/L] (t _ ta+1 + t2¢x+1 _ t3a+1 + t4oc+1 _ t5a+1
+£09 1y = ¢ 4 2011 op 4 po¥ D g 2051 = /] 4 ¢ Therefore,
all [K/L] Padé approximants of equation (58) with
L>1,K>1 and K + L<n give

[ﬂ~“wﬂ=9iﬁﬂﬁﬂg

L 1+¢t* (85)

U,

Now, by changing 1/s into t in equation (59, we obtain
[K/L]; in terms of s as follows:

thZ“u(x, y,t) + ng‘u(x, y,t) = D2u(x, y,t) + Diu(x, y,t) + 277w + 27sin 7 (x + y)JtE, (=(x + y)t%)

n

Finally, applying the inverse Laplace transform on both
sides of (86), we have the exact solution as follows:

a—1
u(x, y,t) = cosh(x)cosh (y)L~ 1{ i }

s +1 (87)
= cosh (x)cosh (y)E, (-t%).
Putting « = 1 in the (87), we have
u(x, y,t) = cosh(x)cosh (y)L~ ! {L}
s+1 (88)

= e ‘cosh (x)cosh ().
The obtained result is the same as obtained by Hafez [57].
Example 4. Consider the following (2 + 1)—dimensional

hyperbolic time-fractional differential equation in the area
Q = [0,1]? as follows:

(89)

+[ (x + y)2 —(x+ y)]sin(nx)sin(ﬂy)Ea ((x+ ") -2 sin(ﬂx)sin(ny)tzEa (=(x + y)t%).
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With the initial condition, we obtain Applying the CFRDT to initial condition (63) according

u(x, y,0) = sin (7x)sin (1), to Theorem 2, we obtain

(x+7) e
u xX+y) . .
thlx(x, ¥,0) = _F(oc D sin (7rx)sin (7 y).
QRALCELL) RPN L
r[k(x+1] k1% Y axz k(%Y ayz k(%Y
U ey - T (ak +1) +2712Uk(x, y) +2msin[m(x + )]V (x, ) o1
k20 Y " TI'(ak+2a+1) . ’
2 . . (—(x +y))
+[ (x+y) —(x+ y)]sm(nx)sm(ny)m
| =2 sin (7x)sin (my)W (x, y) )
where V (x, y) and W (x, y) are the transformed forms of Substituting equation (66) into equation (65) and ap-
tE, (= (x + y)t*) and £2E, (- (x + y)t%). plying Definition 9, we obtain the following successive

Applying the CRDT to initial condition (64), we get Uy (x, y) values for k=0,1,2,.. ..
U, (x, y) = sin (nx)sin (7 y),

(x+y) ©2)
U,(x,y) = _F((x +yl) sin (7x)sin (7).
[ Pla+1], aZU aZU 20 7
R 1(x,y)+$ o(x>y)+a72 o(x,¥)+21°U,(x, y)
I (1)
Uy, y) == - 0
20 FQa+1)| 427 sin[m(x + ¥)IV,(x, ) + [ (x + y)2 —(x+ y)]sin(ﬂx)sin(ny)%
! —2sin (mx)sin (my)W (x, y) |
r(1) [ (x + y)sin (mx)sin (y) — 27 sin (7x)sin (7y) + 27° sin (mx)sin (7 y)
[(2a+1) i +(x + y)2 sin (7x)sin (7y) (x + y)sin (7x)sin (7y)
C(x+ y)2

= msin(mc)sin(ﬂy).
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2 2

[ TRt Uy o+ U )+ LU, ()|
Tla+1] 20X 271y 9y? 1%y

T(a+1) +2712U1 (x, y) + 2msin[n(x + )]V, (x, y)
“TTGat 1)

Us (x,y)

(—(x+ )

+[ (x+ y)z —(x+ y)]sin(nx)sin(ﬂy) Tt D)

=2 sin (nx)sin ()W, (x, y)

[ TRa+1] (x+y)° 7 (x+y)

Flat1] TQas ) n0msinty) =25 10

sin (7x)sin (7 y)

& @y
ayz F(oc + 1)

sin (7rx)sin (7 y)

_T(a+1)

T TBa+1l) _2ﬂ21“(zca++yl)) sin (7rx)sin (y) + 2z sin[n (x + ¥)]V, (x, y)

(93)

1
+[ (x+ y)2 —(x+ y)]sin(nx)sjn(ny)%

=2 sin (nx)sin (7y)W, (x, )

[ (x+y)2

27 cos(nx)sin(my) 2msin(nx)cos (ny) |
Tla+1] -

T(a+1) F(a+1)

sin (nrx)sin (y) —

) (x+y)
T(a+1)

(x+y)

21
I'(a+1)

sin (7rx)sin (y) — 27 sin (7rx)sin (7 y)
_T(a+1)

T TBa+1)

 2mcos (mx)sin(my) 27 sin(mx)cos (my)
T(x+1) I(a+1)

(x+ y)3 . . (x + )’)2
_F(zx y sin (7x)sin (7y) + Tlas 1]

sin (mrx)sin (7 y)

_ (x+y)
C T(Ba+1)

sin (7rx)sin (7 y).
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Continuing in the same manner for k >2, we obtain Then, by using inverse CFRDT (9), we get
(x+ )" .
U,(x,y) = I,(Tfl)sm(nx)sm(ﬂy), L U(x, ),
(94)
k
K (x+y) .
= (- .
(-1) (ko + D) sin (7x)sin (7y)
N k
u(x, y,1) = Y Uy (x,y) (t =)™
k=0
. _ (x+9) o (x+9)° (x+y)’" (x+ 0 (x+ )t
= 1- t - -
Sm(”x)sm(”y)[ T@+1) @ TQa+1l) TQGBa+l)  T(a+1l) T(a+tl) (99)

S (=D (x+ p) )™

= sin (7rx)sin (1 y) < Z

&7 Tkat1)

Here, the Laplace-Padé approximant is applied to the
truncated series up to #n'™ order of perturbation, that is,

n k k ko
i, (x, y,t) = sin(ﬂx)sin(ny)(Z W) (96)

k=0

Applying the Laplace transform on both sides of (96)
yields

k=0

L(ﬁn(x, Y t)) = sin(nx)sin(;w)(i (—l)k (x +y)ktka+1>

= sin(nx)sin(ﬂy)(t —(x+ )t

Now, we convert transformed series (71) into a mero-
morphic function by forming its Padé approximant of [K/L]
with k>1,L>1and K+ L=7(k=3,L =4).

[%] (t —(x+ P (x4 )P = (o )t

3a+1

k=0

n k k
L(5,(x, y,1)) = sin(nx)sin(ﬂy)(Z W) (97)

For simplicity, we write 1/t instead of s in equation (70),
we get

(98)
at+l + (X + y)2t2u+l _ (x + y)3t3(x+1 + )
+ (x + y)4t401+1 _ (x + y)5t50£+1 + (x + y)t6a+1)
(99)
Po+ pit+ pyt™ !+ put™!
1+ qlt + qztotJrl + q3t2a+1 + q4t3¢x+1’
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We obtain uy =0,u; = L,u, = -2,u; =4,u, = -8,u; = By using (30) and (31), we get

16,uy = =32, u, = 64.

Po =4y =0,

=1

pr=—(x+y)+q,
p3:(x+y)2—(x+y)q1+q2,

, 3 (100)
(x+9)°q —(x+y)q; +95 = (x+ ),
~(x+)°q + (x + ))'qy = (x4 )3 + g4 = ~(x + )",
(e + )" q) = (x+9)°qy + (x + )5 = (x + y)gy = (x + ),
—(x+ y)sq1 +(x+ )/)4q2 —(x+ )/)3q3 +(x+ y)zq4 =—(x+ y)é.

Solving for p and g, we get p, =0,p; =1,p, =0,p; = Then, we obtain
Lg=(x+y),9 =149 = (x+ylandq, =0.
[%](t St T (ot ) ek )P0 (x4 ) T (1 ) 4 (x4 y)6t6¢x+l)
(101)
t+ t20¢+1 ¢

T+ (x+ )t + 5+ (x + p)2*H! T14(x+ IO

Therefore, all [K/L] Padé approximants of equation (84)
with L>1,K>1 and K + L<n give

To conclude, applying the inverse Laplace transform on
both sides of (103), we have the exact solution as follows:

K] sin (mrx)sin (7 y)t e
—|. (% pt) = — (102) o b) = si ; !
[L , 1+ (x+ y)t u(x, y,t) = sin (nx)in(wy) T (xty) (00
Now, by changing 1/s into t in equation (72), we obtain o . _ a

[K/L]~ in terms of s as follows: = sin (mx)sin (my)E, (~(x + y)t%).

K (.9, sin (72x)sin (7y)s*”" (103 Putting « = 1 in Equation (74), we have

[f]’ﬁn U S (x+y)

1
u(x, y,t) = sin (7x)sin (7y)L~" {m} — o sin (7x)sin (7). (105)

The obtained result is the same as obtained by Li et al.
[48].

6.2. Numerical Simulation to Illustrative Examples. In this
subsection, the numerical simulation of the considered
problems was depicted using tables and figures. Mathe-
matica software or program has been used to create all 3D
figures in this manuscript.

Numerical results corresponding to Example 1 are
depicted in Table 2 and Figures 1 and 2.

Numerical results corresponding to Example 2 are
depicted in Table 3 and Figures 3 and 4.

Numerical results corresponding to Example 3 are de-
scribed in Table 4 and Figures 5 and 6.

Numerical results corresponding to Example 4 are
depicted in Table 5 and Figures 7 and 8.

7. Discussion

In this article, we showed how to solve the two-dimensional
fractional wave equation using the LPCFRDTM. The
CFRDTM changed the FPDEs into an easily solvable linear
algebraic recursion system for the coefficient functions of the
power series solution for each of the fundamental problems
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TABLE 2: Six-term approximate solution by CFRDTM of Example 1 for different values of fractional order « and the absolute error

E= |uexact - ua:l"

t a =04 a=0.6 a=0.8 a=1 Exact Absolute error |tpy,q — Uge |
0.1 3.929068380 4.495655507 5.323423644 6.049647483 6.049647464 1.83E-08
0.2 4.520577171 3.660230488 4.243334181 4.953034711 4.953032424 2.29E-06
0.3 6.787035081 3.250098689 3.503035478 4.055238123 4.055199967 3.82E-05
0.4 10.98900747 3.182933190 2.966904408 3.320396166 3.320116923 2.79E-04
0.5 17.41731027 3.529929773 2.580183554 2.719583148 2.718281828 1.30E-03
0.6 26.34658866 4.433247113 2.327164227 2.230099888 2.225540928 4.56E-03
0.7 38.03163409 6.083851847 2.220121150 1.835237269 1.822118800 1.31 E-02
0.8 52.70928676 8.712722834 2.296598614 1.524512682 1.491824698 3.27 E-02
0.9 70.60093054 12.58639461 2.619848680 1.294379380 1.221402758 7.30 E-02
1 91.9147090 18.00426917 3.280692948 1.149408727 1 1.49 E-01

u(xyt)

u(xyt)

(©)

u(xyt)

u(xyt)

(d)

FIGURE 1: 3D view of the solution behaviour of example 1 at t=0.3 when (a) «=0.4, (b) ®=0.6, (c) «=0.8, and (d) a=1.

examined here. The CFRDTM does not require any lengthy
computation, which is a major drawback of perturbation
methods such as HPM. The main benefit of using this
CFRDTM is that it minimizes the computation’s size. As
previously stated, a Laplace-Padé resummation was applied
to the truncated series gained by CFRDTM to increase the
domain of convergence of the CFRDTM power series so-
lution, resulting in the precise solution. It is noted that even
though the Laplace-Padé resummation technique fails to
reach the exact solution of the fractional PDEs under

investigation on occasion, it can provide a fair approxi-
mation in the larger domain of convergence. Figures 1-8
provide the comparison 3D plots of the current solution
with the exact solution as well as their related absolute
errors, for two test examples at ¢ = 0.3 and different values of
a. A comparative study between the approximate solution of
Examples 1-4 for different values of aandt, at x = y =1,
with the exact solutions and their corresponding absolute
errors are given in Tables 2-5. As seen in the tables, the
proposed approach gives small error near t = 0, but the
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FIGURE 2: 3D view of the solution behaviour of example 1 at t=0.3: (a) exact solution and (b) absolute errors.

TaBLE 3: Six-term approximate solutions by CFRDTM of Example 2 for different values of fractional order « and the absolute error
E= |uexact - uazll'

Absolute error

t a=04 a=0.6 a=0.8 a=1 Exact
|uExact - utx:1|
0.1 2.712457137 3.071502969 3.384587183 3.619349672 3.619349672 7.84E-11
0.2 2.451891233 2.713924889 3.002502404 3.274923022 3.274923012 9.91E-09
0.3 2.300136872 2.469524327 2.703546467 2.963273050 2.963272883 1.67E-07
0.4 2.204166941 2.284239259 2.457455204 2.681281422 2.681280184 1.24E-06
0.5 2.146997592 2.137059874 2.249490775 2.426128472 2426122639 5.83E-06
0.6 2.121568455 2.017702072 2.070850624 2.195267200 2.195246544 2.07E-05
0.7 2.124684077 1.920678761 1.915742449 1.986401272 1.986341215 6.01E-05
0.8 2.154954324 1.843076134 1.780166233 1.797467022 1.797315856 1.51E-04
0.9 2.211932736 1.783543934 1.661314910 1.626619450 1.626278639 3.41E-04
1 2.295704441 1.741775712 1.557247954 1.472222222 1.471517765 7.04E-03
2.5 ~
2 4
1.5 4

u(x,yt)
u(x,yt)

FiGgure 3: Continued.
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FIGURE 3: 3D view of the solution behaviour of Example 2 at t=0.3 when (a) =0.4, (b) =0.6, (¢) «=0.8, and (d) a=1.

u(xyt)

x107

Absolute Error

FIGURE 4: 3D view of the solution behaviour of Example 1 at t=0.3: (a) exact solution and (b) absolute errors.
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TABLE 4: Six-term approximate solutions by CFRDTM of Example 3 for different values of fractional order a and the absolute error
E= |uexact T Ug= I

t a=04 a=0.6 a=0.8 a=1 Exact Absolute error |Up, . — Ugey |
0.1 1.614656461 1.828387276 2.014758312 2.154506427 2.154506427 4.67E-11
0.2 1.459548233 1.615530176 1.787313001 1.949478038 1.949478032 5.90E-09
0.3 1.369212737 1.470044764 1.609352167 1.763960769 1.763960669 9.96E-08
0.4 1.312084289 1.359749295 1.462860323 1.596098354 1.596097617 7.37E-07
0.5 1.278052835 1.272137166 1.339064410 1.444212320 1.444208847 3.47E-06
0.6 1.262915519 1.201086514 1.232724490 1.306786500 1.306774204 1.23E-05
0.7 1.264770169 1.143331015 1.140392555 1.182453947 1.182418197 3.58E-05
0.8 1.282789274 1.097136153 1.059687496 1.069986214 1.069896228 9.00E-05
0.9 1.316707068 1.061698154 0.988938338 0.968285017 0.968082141 2.03E-04
1 1.366574224 1.036834599 0.926989937 0.876376290 0.875956945 4.19E-04
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FIGURE 5: 3D view of the solution behaviour of Example 3 at t=0.3 when (a) =0.4, (b) =0.6, (¢) «=0.8, and (d) a=1.
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FIGURE 6: 3D view of the solution behaviour of example 3 at t=0.3: (a) exact solution and (b) absolute errors.
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TABLE 5: Six-term approximate solutions by CFRDTM of Example 4 for different values of fractional order « and the absolute error
E= |uexact - ua:ll'

t a=0.4 a=0.6 a=0.8 a=1 Exact Absolute error |Upy, — Uge |
0.1 7.97E-33 9.12E-33 1.08E-32 1.23E-32 1.23E-32 3.72E-41
0.2 9.18E-33 7.43E-33 8.61E-33 1.01E-32 1.01E-32 4.64E-39
0.3 1.38E-32 6.60E-33 7.11E-33 8.23E-33 8.23E-33 7.74E-38
0.4 2.23E-32 6.46E-33 6.02E-33 6.74E-33 6.74E-33 5.67E-37
0.5 3.54E-32 7.16E-33 5.24E-33 5.52E-33 5.52E-33 2.64E-36
0.6 5.35E-32 9.00E-33 4.72E-33 4.53E-33 4.54E-33 9.25E-36
0.7 7.72E-32 1.23E-32 4.51E-33 3.72E-33 3.70E-33 2.66E-35
0.8 1.07E-31 1.77E-32 4.66E-33 3.09E-33 3.03E-33 6.63E-35
0.9 1.43E-31 2.55E-32 5.34E-33 2.63E-33 2.48E-33 1.48E-34
1 1.87E-31 3.65E-32 6.66E-33 2.33E-33 2.03E-33 3.03E-34
08+ L 08 " -

u(xyt)

() (b)
08~ @_-Q'f”-__  "w, g
0.6 1 064
0.4 1 044

u(xyt)
u(x,yt)

(c) (d)

FIGURE 7: 3D view of the solution behaviour of Example 4 at t=0.3 when (a) =04, (b) =0.6, (c) «=0.8, and (d) a=1.
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FIGURE 8: 3D view of the solution behaviour of example 4 at t=0.3: (a) exact solution and (b) absolute errors.

error increases as |t| grows. This means that a superior
approximation can be achieved for small values of time ¢
whatever the values of x and y are within the domain of
interest.

8. Conclusion

LPCFRDTM, a hybridization of CFRDTM and a resum-
mation method based on Laplace transform and the Padé
approximant, was introduced in this paper. First, CFRDTM
is used to obtain the solution of two-dimensional NLFPDEs
in convergent series form. To extend the domain of con-
vergence of the truncated power series, a post-treatment
combining Laplace transforms and the Padé approximant is
employed. This approach significantly enhances the con-
vergence rate and yields an exact solution. Furthermore,
unlike HPM, CFRDTM is a powerful method because it
calculates solutions without taking any perturbation pa-
rameters into account. It is evident from the outcomes of
instances 1 —4 that the current procedure produces exact
results. As a result, LPCFRDTM is quite valuable, as it allows
us to improve accuracy and efficiency and provides a
mathematical tool for NLFDEs. Finally, in [54, 58], given the
continued use of nonlinear damped differential equations as
models in a variety of domains, it is critical to examine this
method of solving some intriguing problems in every branch
of science and engineering, and we anticipate that this work
is a step in that direction.
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