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Information-based pig detection and counting is the trend in smart animal husbandry development. Cameras can e�ciently
collect farm information and combine it with arti�cial intelligence technology to assist breeders in real-time monitoring and
analysis of farming. In order to improve the speed and accuracy of pig detection and counting, an advanced improved YOLO_v5
method for pig detection and counting based on the attention mechanism is proposed.  e model is named as YOLOV5_Plus.
 is article utilizes a series of data augmentation methods, including translation, color augmentation, rescaling, and mosaic.  e
proposed model performs feature extraction on the original image with a backbone network, detects pigs of di�erent sizes with
three detection heads, and counts the detected anchor frames. Di�erent versions of YOLOV5 are compared, and YOLOV5x is
selected as the baselinemodel for the best performance. Attentionmodules are smartly combined with themodel so that themodel
can better handle overlapping and misidenti�cation. YOLOV5_Plus can achieve an accuracy of 0.989, a recall of 0.996, mAP@.50
of 0.994, and mAP@.50:.95 of 0.796, which outperforms all competing models.  e inference time per image during detection is
only 24.1ms. YOLOV5_Plus model achieves real-time pig number and location detection, which is meaningful for promoting
smart animal husbandry and saving labor costs in farming enterprises.

1. Introduction

Pork is one of the most important food sources for humans.
According to the food and Agriculture Organization of the
United Nations (FAO) [1], pork is rich in proteins, amino
acids, and vitamins B6 and B12, which are the main in-
gredients of many traditional diets. In recent years, farm
breeding has been expanding, and more and more farms
want to monitor farm conditions through digital means
accurately. For instance, real-time and accurate monitoring
of the number of pigs can help farmers monitor the feeding
density scienti�cally and rationally. In addition, pig
counting can assist in accurate feeding, avoid feed waste,
improve feed conversion rate, and increase economic
e�ciency.

Pig counting is facing many di�culties in large-scale
agricultural production management.  e traditional pig
counting method relies on the visual observation of the
breeder. Due to the large size of pig herds and overlap,

manual counting of the number of pigs is easy to miss, which
is both time-consuming and costly. Pig counting based on
deep learning also faces several challenges. For instance, light
variations can have an impact on pig detection. Di�erent
conditions such as side light, strong light, and backlight can
cause more intraclass variance.  e varying postures of pigs
also make object detection more challenging. Besides, a large
scale of overlapping can easily result in low recall in the
detection process.

With the rapid development of computer hardware and
related theories, deep learning and deep neural networks
have signi�cantly improved in accuracy and speed in the
past few years. Among them, the progress of target detection
algorithms in deep learning is particularly impressive. It
mainly includes one-stage algorithms and two-stage algo-
rithms. One-stage algorithms include YOLOV1 [2], SSD [3],
YOLOV2 [4], YOLOV3 [5], YOLOV4 [6], YOLOV5, etc.
Two-stage algorithms include R-CNN [7], Fast R-CNN [8],
Faster R-CNN [9], Mask R-CNN [10], etc. Deep learning-
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based target detection algorithms have been widely used in
agriculture and animal husbandry. Many algorithms have
been designed to be applied to target counting, tracking, and
other upper-layer applications. For example, a two-route
convolutional neural network (CNN) was proposed by
Ramin et al. [11] to detect and classify COVID-19 infection
from CT images. To improve classification accuracy, fuzzy
c-means clustering and local directional pattern (LDN)
encoding methods were used to represent the input image,
respectively, to find more complex patterns in the image. In
the area of separation of breast cancer lesions, Jafarzadeh
Ghoushchi et al. [12] designed a well-designed CNN con-
sisting of an autoencoded stacking (SAE) model with a
logistic regression layer at the top of the network to monitor
the flow. *ey applied CNNs, VGGs, and residual networks,
respectively, to the Breast Cancer Database (BCDR-DM),
and the result showed that CNNs outperformed the other
two models. Yu et al. [13] proposed a deep learning network
model based on multi-modules and attention mechanism
(MAN) to realize the counting of cultured fish, which
consists of a feature extraction module, attention module,
and density map estimation module. Among them, the
feature extraction module was composed of three parallel
convolutional networks, which are used to extract the
general featuremap of the image and serve as the input of the
subsequent module. *e density map estimation module
represents the distribution and the number of fishes in the
image. *e experimental results for MAN showed that the
counting accuracy is about 97.12% and the deviation is 3.67.
In the point pattern analysis based on YOLO object de-
tection algorithms, Petso et al. [14] treated each animal as a
point and identified five animal species by the behavioral
pattern of those points. Animal features are harder to detect
at higher altitudes and in the presence of environmental
camouflage, animal occlusion, and shadows. *e point
pattern algorithms produced an F1-score above 96% across
all drone altitudes.

Pig detection and counting are essential for accurate and
fast counting of livestock. Ahrendt et al. [15] designed a
computer vision system based on support maps to track
loose housed pigs. It can achieve tracking of at least three
pigs at the same time. Tian et al. [16] proposed a new so-
lution for pig counting on the farm using deep learning. *e
network they designed was based on the combination of
counting CNN and ResNeXt model, which achieved an
improved high accuracy with low computational cost. *e
results demonstrated that in real-world data, this method got
a mean absolute error of 1.67. Riekert et al. [17] used a deep
learning system to detect the position and pose of pigs and
achieved 84% mAP@.50 for the day and 58% mAP@.50 for
the night. Although scholars have studied pig identification,
the accuracy and speed of detection for pig identification are
not satisfactory. In addition, pig detection is the basis of pig
behavior analysis. Based on the detection and tracking of the
pig’s location, it is possible to analyze its behavior. For
example, Kashiha et al. [18] proposed an ellipse fitting al-
gorithm based on image pattern recognition to detect the
position of a pig in a pen and analyze the specific behavior of
the pig. Pigs could be identified with an average accuracy of

88.7%. Although the abovementioned researchers have re-
ported studies on pig identification, the accuracy rate for pig
identification is still below 95%. *erefore, improving the
accuracy of pig identification is still relevant, especially in
highly overlapping pig breeding environments.

However, no researcher has yet used YOLO-based al-
gorithms for pig counting. YOLOV5, the latest generation of
the YOLO family, is an advanced, fast, and accurate detector.
Unlike density map-based counting methods, YOLOV5-
based counting can directly detect the location and size of
each target and then count the number of pigs based on the
identified targets. It allows counting the number of pigs and
annotating the pigs directly in the original image, which can
better visualize the behavior of the pigs and facilitate
movement detection. In recent studies, YOLOV5 has been
used in various target detection tasks. Wang and Yan [19]
used YOLOV5 for leaf detection and verified that the de-
tection speed of YOLOV5 was significantly higher than
Faster R-CNNwith no significant difference in mAPs. Wang
et al. [20] combined YOLOV5 and Siamrpn++ to propose a
high-precision fish detection and tracking algorithm that
achieves 76.7% accuracy and enables real-time tracking.
Dong et al. [21] proposed a novel lightweight YOLOV5
network designed for vehicle detection. A convolutional
block attention module (CBAM) was introduced to the
backbone network to improve the model performance to
select critical information, and CIoU_Loss was applied to
the bounding box regression loss function to accelerate the
bounding box regression rate. *e proposed model achieved
considerably better results compared to relevant methods.
Given the excellent performance of YOLOV5 in terms of
detection accuracy and speed, we decided to transfer
YOLOV5 to the field of pig detection.

*e rest of this article is organized as follows: Section 2
describes the data and algorithms used in the article, in-
cluding data enhancement, the YOLO series of target de-
tection algorithms, and the attention mechanism. Section 3
shows the model comparison results and validates the
performance of the improved algorithm-YOLOV5_Plus.
Section 4 discusses the advantages and limitations of the
model. Section 5 summarizes the whole article and provides
an outlook on prospects. *e main contributions of this
study are as follows:

(1) Color augmentation, translation, shear, rescaling,
and mosaic processing for images taken in a pig
feeding environment.

(2) To improve an improved YOLOV5 network archi-
tecture based on a convolutional block attention
module (CBAM) for the problem of pig aggregation,
which tends to lead to poor pig recognition accuracy.

2. Materials and Methods

2.1. Data Description. *e dataset used in this experiment is
public [22]. *e original data files include 700 images in JPG
format, and each photo contains multiple images of one
pigpen. *e annotation files include 700 files in JSON
format. *e annotation files and the photos are one-to-one
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correspondence. *e annotation information includes the
coordinates of each pig’s top left and bottom right corners of
the box rectangle in the picture and the corresponding
picture name. Figure 1 shows the samples of annotated
pictures. *e experiment randomly divided the dataset into
training and validation sets of 549 and 151 images, re-
spectively. *e test set contains 220 images without anno-
tation information. Compared with the training set, the test
set includes more objects than pigs, mainly feeders, troughs,
and light cords.

We convert the annotation information of the training
set from json format to txt format.*e converted annotation
format is <id>, <center x>, <center y>, <width>, and
<height>.

*ere are roughly 20 pigs in each image. All annotations
were carefully checked manually to mark all pigs in the
images.

2.2. ImageAugmentation. Data augmentation can artificially
expand the dataset, increase the diversity of the data, and
improve the robustness of the model [23]. In recent years, it
has been widely used in various research fields. Common
data augmentation methods include geometric transfor-
mations such as cropping [24, 25], flipping [24–26], rotating
[25, 26], scaling [24, 25], and warping [24, 25], as well as
pixel scrambling [27], adding noise [25], illumination ad-
justment [25, 26], and contrast adjustment [25, 26]. Mosaic
was first applied to YOLOV4 and can significantly improve
the average precision (mAP). It stitches four images into one
mosaic image, which can show more detection of target
objects, speed up the effect of training the model, and im-
prove the generalization of the model. Figure 2 shows the
results of some augmented images. During the training
process of this study, all data enhancement methods are
turned on probabilistically.

2.3. Detection Principle

2.3.1. &e Development of YOLO. YOLO was firstly pro-
posed in 2016. Before that, two-stage algorithms usually
consisted of two parts: (1) generating candidate regions and
(2) classifying the candidate regions using a classification
network. Although the two-stage algorithm can achieve high
accuracy, the model is often complicated and large with low
speed, which makes it hard to enable deployment on mobile
devices. *e YOLO algorithm transforms the target detec-
tion problem into a regression problem. *e images are first
divided into S × S grids, predicting B bounding boxes. Each
grid point predicts the target whose centroid lies at that grid
point, its confidence score, and C conditional category
probabilities pr(classi|object). *e confidence equation is as
follows:

Confidence � Pr classi|object(  × Pr(object) × IOU
truth
pred

Pr(object) ∈ 0, 1{ }
,

(1)

where Pr(object) is equal to 1 only if the grid contains one
object.

*e loss function calculates the sum of the position,
width, height, and confidence errors of the prediction box
with respect to the ground truth using the mean square
error. *e non-maximum suppression (NMS) is used to
select the best bounding box if multiple bounding boxes
detect the same target when detection is performed.
YOLOV2 introduces the anchor mechanism, which uses
k-means clustering to generate the width and height of the
anchor to better match objects of different sizes. *e
backbone network of YOLOV2 is DarkNet-19, which is
quite fast with fewer parameters. YOLOV3 makes some
incremental improvements based on YOLOV2. It uses
DarkNet-53 as the backbone network, extracting the most
advanced techniques for target detection at that time, such as
ResNet, DenseNet, and FPN. Compared with ResNet-152,
DarkNet-53 has a faster speed (78 FPS compared to 37 FPS
in ImageNet) and similar accuracy. YOLOV3 sets nine
prediction boxes at each grid point and uses logistic re-
gression to calculate the object score for each bounding box,
ignoring the IOU samples more enormous than the
threshold but not the best, which can significantly reduce the
computational effort.

In YOLOV4, a new backbone network, CSPDarkNet53,
is adopted, and the Mish activation function is used instead
of LeakyReLU. In the neck network, PANet (path aggre-
gation network) is used for feature fusion instead of FPN.
Moreover, the spatial attention module (SAM), an attention
mechanism, is introduced. In terms of data augmentation.
YOLOV4 proposes the mosaic for the first time, where
several images are cropped and stitched together to form
new training set elements. *ese methods made YOLOV4
the state-of-the-art target detection algorithm at that time.

2.3.2. YOLOV5. *e structure of YOLOV5 is similar to that
of YOLOV4. It contains four main parts: input, backbone,
neck, and head.*e YOLOV5 used in this article is YOLOV5
v6.0, released on 12 October 2021. *e structure of
YOLOV5s is shown in Figure 3.

*e input end includes mosaic data enhancement, image
size processing, and adaptive anchor box calculation. Mosaic
data enhancement enriches the background and the number
of small objects in the dataset by combining four images.
Image size processing adaptively adds minimum black
borders to the original images of different lengths and widths
and uniformly scales them to a standard size. *e adaptive
anchor box calculation compares the output predicted boxes
with the real boxes based on the initial anchor boxes, cal-
culates the gap, and then updates it in reverse, continuously
iterating the parameters to obtain the most suitable anchor
box value.

*e backbone network of YOLOV5 mainly consists of
BottleneckCSP(C3), Focus, and SPP (SPPF) modules. *e
original CSPNet [28] (Cross Stage Partial Network) splits the
feature map into two parts. One part is convolved directly,
and the other part goes through the dense block. *en the
two parts are concatenated together. With CSPNet,
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Figure 1: Annotation of pigs in the images.

(a) (b) (c)

(d) (e)

Figure 2: Continued.
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(f )

Figure 2: Examples of image augmentation. (a) Translate. (b) Color augmentation. (c) Rescaling. (d) Flip up-down. (e) Flip right-left.
(f ) Mosaic augmentation.
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Figure 3: *e structure of YOLOV5s.
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computational costs can be greatly reduced, and accuracy can
be improved to a certain extent. In the latest YOLOV5, the C3
module is mainly applied instead of BottleneckCSP. Com-
pared with BottleneckCSP, C3 contains only three convo-
lutions except for the Bottleneck part. It is simpler, faster, and
lightweight with similar performance to BottleneckCSP. *e
bottleneck is one of the components of BottleneckCSP(C3).
YOLOV5 uses two different bottlenecks in the backbone and
neck: Bottleneck_1 and Bottleneck_2. *e structure of both
bottlenecks is shown in Figure 3. *e structure of Bot-
tleneckCSP and C3 is shown in Figures 4 and 5, respectively.

*e Focus module divides the input image data into four
pieces. *e four pieces are generated by changing the width
and height to 1/2 of the original input data and the number
of channels to four times, obtaining the two-fold down-
sampling feature map without information loss. *e Focus
module is usually located at the beginning of the backbone
network.*ese four pieces of data are spliced together in the
channel dimension and then convolved to obtain a binary
downsampled feature map without information loss. *e
Focus module realizes downsampling while increasing the
channel dimension, reducing FLOPs, and increasing speed.
*e operation of the focus slice is shown in Figure 6.

*e SPP module is located at the end of the backbone.
*e spatial pyramid pooling module executes the maximum
pooling with different kernel sizes and fuses the features by
concatenating them. It combines different resolutions into
the features by pooling the images with different sizes
(kernel size� 5, 9, 13). A more lightweight structure SPPF is
used in YOLOV5 v6.0 with all kernels of size 5.*e structure
of SPP and SPPF is shown in Figures 7 and 8, respectively.

YOLOV5 adopts the FPN and PAN structure in the
neck. FPN is top-down, passing down the strong semantic
features from the top layer to augment the pyramid.
However, FPN only enhances the semantic information, not
the localization information. PAN adds a bottom-up en-
hancement behind FPN.*e feature map at the top layer can
also enjoy the rich location information brought by the
bottom layer, which improves the accuracy of themodel.*e
structure of the neck is shown in Figure 9.

*e head end outputs a vector with the category
probability of the target object, the object score, and the
position of the bounding box for that object. *e detection
network consists of three detection layers with different size
feature maps used to detect target objects of different sizes.
Each detection layer outputs the corresponding vector and
finally generates the prediction bounding box and category
of the object in the original image and marks it.

YOLOV5 contains four network structures due to dif-
ferent widths and depths: YOLOV5s, YOLO V5m,
YOLOV5l, and YOLOV5x. YOLOV5s have the smallest
width and depth with the fastest speed; YOLOV5x has the
largest width and depth but runs relatively slower.

2.3.3. Convolutional Block Attention Module (CBAM).
CBAM [29] was proposed by Woo et al. in 2018, which
consists of two submodules: the channel attention module
and the spatial attention module.

(1) Channel Attention Module. Channel attention focuses on
exploring the relationship between feature maps of different
channels. To enhance the representational power of the
network, the channel attention module uses both average-
pooled and max-pooled features, which are fed into a shared
MLP with only one hidden layer to generate the channel
attention map MC ∈ RC×1×1. *e final output is obtained by
fusing the two feature vectors through element-wise sum-
mation. *e channel attention formulation is shown in
equation (2). Figure 10 shows the structure of the spatial
attention module

Mc(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

� σ W1W0F
c
avg  + W1W0F

c
max(  .

(2)

(2) Spatial Attention Module. Different from channel at-
tention, spatial attention is mainly concerned with where the
information is concentrated. *e algorithm first performs
the average-pooling and max-pooling operations on the
channel-refined feature in the extended channel direction to
obtain two feature maps with dimensions H × W × 1. *en
these two feature maps are stitched together and performed
a convolution operation to generate a spatial attention map
MS(F) ∈ RH×W.*e formula of spatial attention is presented
in Eq. (3). Figure 11 shows the structure of the spatial at-
tention module.

MS(F) � σ f
7×7

([AvgPool(F);MaxPool(F)]) 

� σ f
7×7

F
S
avg; F

S
max   .

(3)

(3) Arrangement of Attention Modules. Previous research
shows that sequential arrangement of channel attention and
spatial attention modules can perform better than parallel
arrangement. Figure 12 shows the overall structure of CBAM.

2.3.4. &e Improved YOLOV5_Plus. YOLOV5_Plus is an
improved model based on YOLOV5x. Previously, attention
mechanisms have been tried in other fields combined with
YOLOV5. For example, Yan et al. [30] combined the SE
module with YOLOV5 to improve the accuracy of coal-
gangue classification. Qi et al. [31] achieved high-accuracy
recognition of tomato virus disease and improved detection
speed based on a YOLOV5 and SE module model. However,
how the attentionmechanism can be applied to overlapping and
dense target recognition and how it performs in the counting
domain are unknown. Based on this, we combine the attention
mechanism with YOLOV5 and conduct a series of experiments
to find the best solution. YOLOV5_Plus can better extract
channel and spatial features in the feature map by utilizing the
attention mechanism.

*e attention mechanism has been used in various target
detection algorithms to obtain better results. Attention
mechanisms can make models more robust to objects of
different locations and sizes and avoid overfitting problems.
For example, Ranjbarzadeh et al. [32] combined cascaded
convolutional neural network and DWA (distance-wise
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attention) to develop a new brain tumor segmentation ar-
chitecture. *e attention mechanism greatly improved the
performance of the model by applying key location features
of the image to the fully connected layer. *is study carried
out a comprehensive and systematic investigation of how the
attention module was added. We experimented with dif-
ferent attention modules, including CBAM, SE [33], and

CoordAtt [34]. Different ways of adding attention modules
to the model have been investigated. One option is to replace
the CBL module in the backbone with an attention module.
It is also the way chosen by YOLOV5_Plus. Another way is
to replace the CBL module in BottleneckCSP (C3) with the
attention module. Figure 13 shows the improved network
structure. From Figure 13(a), it can be seen that the four

BottleneckCSP_X = CBL
Bottle
neckBottle
neck
Bottle
neck

Conv

Concat

Conv

BN Leaky 
ReLU CBLX * Bottleneck

Figure 4: *e structure of BottleneckCSP_X.
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Figure 5: *e structure of CSP2_X.
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Figure 6: Focus slice operation.
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Figure 7: *e structure of SPP.
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5×5
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Figure 8: *e structure of SPPF.
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CBLs in the backbone are replaced with attention modules
with no increase in the depth of the network. Figure 13(b)
shows our attempt to replace the CBL module in Bot-
tleneckCSP (C3) with an attention module, but this proposal
was not adopted in the end due to poor results. In addition,
the attention module is used to replace CBL modules in the
backbone, head, and the entire network, respectively, ulti-
mately choosing to replace only the CBL in the backbone.

2.3.5. Evaluation Indicators in &is Article. In this article,
the pig detection model uses precision (equation (4)), recall
(equation (5)), average precision (equations (6) and (7)), F1-
score (equation (8)), and mAP as evaluation metrics [35].
*e confusion matrix is introduced first in Table 1.

Among them, TP stands for true positive (there is a pig in
the image, and the algorithmmakes a correct prediction), FP
stands for false positive (there is no pig in the image, but the

Channel -refined
feature [MaxPool, AvgPool]

Conv
layer

σ

Spatial attention

Figure 11: Spatial attention module.

Input feature

Channel attention
module

Spatial attention
module

Refined feature

Figure 12: *e overview of CBAM.
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Figure 9: *e structure of FPN and PAN.
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algorithm detects one), and FN stands for false negative (the
algorithm fails to detect the pig in the image). Objects whose
IOU with ground truth (e.g., IOU� 0.5) is greater than the
threshold are considered TP in the algorithm. Objects with
IOU less than the threshold are considered FP; those not
correctly identified are considered FN.

Precision represents the proportion of positive samples
to those predicted to be positive. *e recall represents the
proportion of detected positive samples to all positive
samples. Average–Precision (AP) refers to the Precision-
Recall (PR) curve area. It is relatively difficult to calculate AP
with integration, so the interpolation method is commonly
used as an alternative. AP@.50 represents the average pre-
cision when IOU� 0.5. Similarly, AP@.55 represents the
average precision when IOU� 0.55. AP@.50: 95 represents
the average of AP@.50, AP@.55, . . ., AP@.95. F1-score is the
harmonic mean of accuracy and recall. *e mAP is the
average AP of all classes of objects.

precision �
TP

TP + FP
, (4)

recall �
TP

TP + FN
, (5)

AP � 
1

0
P(R)dR, (6)

AP50:95 �
1
10

AP50 + AP55 + · · · + AP90 + AP95( ,

(7)

F1 − score � 2 ×
P × R

P + R
. (8)

3. Results

*e model is mainly trained on Google Colaboratory with a
Tesla P100 GPU, and the hyperparameters of the model are
based on scratch.yaml. Table 2 records some necessary
parameter settings of the model.

3.1. Experimental Configuration. In the model’s training
process, 541 images are used in the training set, and 149

images are used in the validation set. *e model parameters
are divided into three groups for optimization: weights, bias,
and batch-norm. *e optimizer uses stochastic gradient
descent (SGD) by default. One-cycle learning rate optimi-
zation strategy is used during training [36]. In the initial
three epochs, the algorithm performs warmup epochs with a
larger learning rate (0.01). *e learning rate becomes 1/10 of
the original one at the end of the warmup epochs.*e weight
decay ratio is 0.0005. In consideration of the limitedmemory
of the GPU, the batch size is set to 16 in most cases. All
algorithms are expected to execute 1000 epochs. However,
the algorithm will be stopped immediately if the mAP does
not rise within 100 rounds.*e formula for mAP calculation
here is given in equation (9). To avoid the influence of the
pretrained model on the results, the pretrained YOLOV5x
model on the MS COCO dataset was not used in the
experiments.

mAP � 0.1 × mAP50 + 0.9 × mAP50:95. (9)

3.2. Model Selection. *e model selection approach is taken
to explore the best solution. A suitable deep learning model
is selected from the alternatives. By comparing the perfor-
mance of different models, we choose the model with the
best performance in each metric as the final one.
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Backbone
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Attention
Modules
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Attention
Modules
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Attention
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Attention
Modules
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(b)

Figure 13: Two methods of combining attention modules with YOLOV5. (a) CBLs in the backbone are replaced by attention modules (our
proposed model architecture.). (b) CBLs in BottleneckCSP (C3) are replaced by attention modules.

Table 1: Confusion matrix.

Labeled positive Labeled negative
Predicted positive TP FP
Predicted negative FN TN

Table 2: *e settings of hyperparameters in training.

Parameters Value
Optimization algorithm SGD
Epoch 1000
Patience 100
Learning rate 0.01
weight_decay 0.0005
Image size 640
Batch 16 for YOLOV5x and 32 for YOLOV5s
Loss function BCE loss
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In this section, we first compare different versions of
YOLOV5 and compare the effects of different hyper-
parameters, including data augmentation and learning rate,
on the performance of YOLOV5. *e best-performing
version of the YOLOV5 model is selected as the baseline
model, and it is combined with the attention mechanism to
design a new attention mechanism-based YOLOV5 model.
We name this model as YOLO_Plus and explore its
performance.

First, the four YOLOV5 models were compared.
Complex models are generally considered more effective for
feature extraction and more susceptible to overfitting.
Different versions of YOLOV5 have different depth-multiple
and width-multiple to control the width and depth of the
network. YOLOV5 has several versions, such as YOLOV5s,
YOLOV5l, YOLOV5x, and YOLOV5m. According to the
official figures, each model’s performance on MS COCO is
shown in Table 3.

Table 4 shows the results of YOLOV5s, YOLOV5l, and
YOLOV5x on the test images. All models are trained based
on scratch.yaml, using SGD as the optimizer and a batch
size of 16. It can be seen from the table that YOLOV5x
achieves an mAP@.50:.95 of 0.764, outperforming
YOLOV5s and YOLOV5l, which are 0.757 and 0.761, re-
spectively. Figure 14 shows the samples of YOLOV5s,
YOLOV5l, and YOLOV5x on the same data. All models
show good detection performance and can detect most pigs,
which confirms the effectiveness of YOLOV5. However,
there are still some misses in the detector. For example, in
Figure 14(a), YOLOV5s missed two pigs in the top left
corner of the image and two pigs in the bottom left corner
of the image; in Figure 14(b), one pig in the top left corner
of the image was missed by YOLOV5l. Overall, YOLOV5x
achieves the best results: it makes fewer mistakes and
achieves a high confidence score for the bounding box
produced by the same pig. In a nutshell, YOLOV5x can be
considered the best model and thus is chosen as the baseline
model. Although YOLOV5s have the fastest inference
speed of 5.5ms, their accuracy does not meet the appli-
cation requirements.

Proper hyperparameter settings are critical to the ef-
fectiveness of training. *ere are more than 30 hyper-
parameters in YOLOV5 for different training settings,
including learning rate, optimizer, loss function, data aug-
mentation, etc. YOLOV5 provides different hyper-
parameters such as hyp.scratch.yaml, hyp.finetune.yaml, and
hyp.finetune_objects365.yaml. hyp.scratch.yaml is the de-
fault parameter of YOLOV5 and is optimized for training
from scratch on the MS COCO dataset. hyp.finetune.yaml is
based on a genetic algorithm evolving 306 generations on the
COCO dataset. Table 5 shows the results of the model with
different hyperparameters of YOLOV5x. It can be seen from
the table that the model trained with hyp.scratch.yaml as
hyperparameter outperforms hyp.finetune.yaml in terms of
recall, precision, mAP@ .50, and mAP@ .50:.95. *ese
differences are significant. It verifies the great influence of
the choice of hyperparameters on the results of the exper-
iments. hyp.scratch.yaml is used for subsequent
experiments.

Although YOLOV5x has achieved a high level of pre-
cision and recall and can accurately identify pigs, there are
still some issues in dealing with specific situations. *ese
problems can be divided into three main categories, as
shown in Figure 15. Category A is overlapping, where
multiple pigs are not identified due to clustering and
stacking. Category B is missing detection mainly caused by
the diversity of light conditions and target size. Category C
detects backgrounds such as light ropes, feeders, and walls.
In general, categories A and C are the most common errors
in detection.

According to our conjecture, the primary reason for
errors A and B is that the model fails to extract sufficient
features with insufficient learning ability. For error C, the
main reason is that the model learns mostly color infor-
mation but not the shape of the pigs. *erefore, it is easy to
misidentify the troughs and feeders which share similar
colors. It is also challenging to deal with many pigs being
stacked together.

Different attention mechanisms have been combined
with YOLOV5x to address the above problems, including
CBAM, SE, and CoordAtt. Attention mechanisms can
emphasize the important information of the object and
suppress some irrelevant details, thus better handling the
stacking and misidentification cases. Table 6 shows the re-
sults of adding different attentions to the model. *e CBAM
attention module replaces the CBL module in the backbone
network. *e SE attention is added at the end of the
backbone, and the CoordAtt is located in front of the C3
module in the backbone network. As can be seen from the
table, in most cases model combined with the attention
mechanism can achieve better performance. *e best results
for all metrics are obtained using YOLOV5x+CBAM. *e
recall, precision, and mAP@.50:.95 are 0.4%, 0.7%, and 3.2%
higher than that of YOLOV5x, respectively.

We name the model as YOLOV5_Plus. Figure 16 shows
the changes in the relevant metrics during the training
process. To better compare the performance of
YOLOV5_Plus and YOLOV5x, the samples of detection
images obtained using YOLOV5_Plus and YOLOV5x are
visualized, as shown in Figure 17. It can be seen that
YOLOV5_Plus has made significant improvements in de-
tection capabilities, greatly reducing the number of missed
and false detections. *e default detection image size by
YOLOV5 is 640. However, during the detection process, we
found that resizing the image size to 960 can better avoid the
false detection of troughs at the edge of the image. Figure 18
shows the sample images after adjusting the image size. In
general, the performance of YOLOV5_Plusimg_size� 960 is
so impressive. Compared with YOLOV5x, YOLOV5_Plus
achieved higher accuracy and recall. By resizing the image to
960 at detection time, the resolution of the image is in-
creased, so it is more effective in detecting overlapping
objects and can better avoid false detection of troughs lo-
cated at the edge of the image. *e study attempted to use
larger or smaller resolutions for training or detection, but it
did not work well. One possible reason is that too large or too
small resolutions do not match the preset anchor sizes in
YOLOV5x.

10 Mathematical Problems in Engineering



However, an interesting phenomenon can be found in
Table 6.*e combination of YOLOV5x +CoordAtt is shown
a decline in performance on almost all metrics. *e reason
may lie in the potential limitation that the design of the
attention mechanism changes with different data structures,
and it may be difficult to couple between two different types
of attention mechanisms [37].

Table 7 shows the experimental results when the CBAM
modules are added to different locations in the YOLOV5x.
*e attention module replaces the CBL module in the
backbone, head, and the whole network of YOLOV5x. *e
table shows that the best results are obtained when only the
CBAM module is applied to the backbone. After adding the
attention module to head and backbone + head, the mAP@
.50:.95 drops to 0.753 and 0.763, respectively.

We use the CBAMmodule to replace the CBL module in
the backbone and C3 module, respectively, for comparison.
*e results are shown in Table 8. It can be seen from the table
that using the CBAM module to replace the CBL module in
the backbone gives better performance and faster inference
speed.

Table 9 shows the experimental training results using
YOLOV5x pretrained on MS COCO. *e results indicate
that transfer datasets can significantly improve the per-
formance of the model, with 0.2%, 0.4%, and 3.1% im-
provement in recall, precision, and mAP@.50: 95,
respectively. *e results were only slightly lower than those
of the untrained YOLOV5_Plus. However, we could not
pretrain our model onMS COCO due to limited computing
power and time.

Table 3: Performance of YOLOV5s, YOLOV5m, YOLOV5l, and YOLOV5x.

Model Size (pixels) mAP(Val) 0.5:0.95 mAP(Val) 0.5 Speed V100 b32 (ms) Params (M) FLOPs @640(B)
YOLOV5s 640 37.2 56 0.9 7.2 16.5
YOLOV5m 640 45.2 63.9 1.7 21.2 49
YOLOV5l 640 48.8 67.2 2.7 46.5 109.1
YOLOV5x 640 50.7 68.9 4.8 86.7 205.7

Table 4: Performance metrics for the test images using YOLOV5s, YOLOV5x, and YOLOV5l.

Metric YOLOV5s YOLOV5x YOLOV5l
Recall 0.99 0.992 0.994
Precision 0.981 0.982 0.98
mAP .50 0.993 0.993 0.993
mAP .50:.95 0.757 0.764 0.761
F1-score 0.985 0.987 0.987
Inference speed (ms) 5.5 24.1 13

(a) (b) (c)

Figure 14: Examples of pig detection by YOLOV5s, V5l, and V5x with confidence threshold� 0.85. *e pigs detected are marked with red
boxes, and those not detected or incorrectly detected are marked with green boxes. (a) YOLOV5s. (b) YOLOV5l. (c) YOLOV5x.

Table 5: Performance metrics for the test images using hyp.scratch.yaml and hyp.finetune.yaml.

Metric hyp.scratch.yaml hyp.finetune.yaml
Recall 0.992 0.984
Precision 0.982 0.973
mAP .50 0.993 0.991
mAP .50:.95 0.764 0.704
F1-score 0.987 0.978
Inference speed 24.1ms 23.7ms
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Other methods, including focal loss and soft-NMS, have
been experimented with but have not yielded good results.

3.3. Comparison of Target Detection Algorithms. We compare
our YOLOV5_Plus model with YOLOV3 and YOLOV4.
Table 10 shows the performance of the above three algo-
rithms. From the table, we can see that YOLOV5_Plus
achieves the best results in all metrics. In particular, for the
mAP@.50: 95, YOLOV5_Plus achieves a result of 0.796,
which improves by 7.1% and 7.9% compared to YOLOV3
and YOLOV4, respectively. *ese improvements are mainly
attributed to innovative modules in YOLOV5, such as
Bottleneck_1, Bottleneck_2, Focus, and FPN+PAN for
better feature fusion. As a result, YOLOV5 can achieve more
efficient information extraction at a very fast speed.

4. Analysis and Discussion

4.1. Findings. Pig detection is an important part of smart
animal husbandry. Fast and accurate counting can help
farmers improve feeding efficiency and avoid feed waste.

However, lighting changes, shooting perspectives, large scale
of overlapping, and varying postures of pigs pose many
challenges for pig detection. Our results show that using
YOLOV5 combined with the attention mechanism can
improve accuracy and recall. Overlapping pigs can be better
detected, and misidentified backgrounds can be avoided as
much as possible.

Before deep learning, counting livestock usually relied
on traditional machine learning methods such as RF and
SVM. However, deep learning outperformed other methods
in most recent cases and showed great potential [38]. Few
papers have applied some of the current state-of-the-art
detectors to the field. *erefore, our study can be seen as a
new attempt at pig detection.

We chose YOLOV5x as the most suitable baseline model
for our task in model selection. It outperforms YOLOV5s
and YOLOV5l by 0.7% and 0.3%, respectively, in mAP@.50:
.95. It is shown that the scale and complexity of YOLOV5x
match the task.

Hyperparameters play an essential role in model per-
formance. Inappropriate hyperparameter selection can
cause up to 6% degradation in mAP. We suppose that the

(a) (b)

(c)

Figure 15: *ree typical errors in pig detection by YOLOV5x. (a) Overlap. (b) False negative. (c) False positive.

Table 6: Comparison of different attention modules combined with YOLOV5x.

Algorithms Recall Precision mAP@.50 mAP@.50: 95 F1-score Inference speed (ms)
YOLOV5x 0.992 0.982 0.993 0.764 0.987 24.1
YOLOV5x +CBAM (YOLOV5_Plus) 0.996 0.989 0.994 0.796 0.992 24.1
YOLOV5x + SE 0.996 0.985 0.994 0.779 0.99 21.6
YOLOV5x +CoordAtt 0.995 0.982 0.994 0.762 0.988 24.9
YOLOV5x +CBAM+SE 0.996 0.988 0.994 0.778 0.992 25.2
*e bold values indicate that the best results for all metrics are obtained using YOLOV5x +CBAM.
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degradation of mAP is mainly attributed to the difference in
data augmentation. *erefore, appropriate data augmenta-
tion is of great importance for the target detection task.

Attention mechanisms can improve the performance of
CNNs and YOLO [39].We tried popular attentionmechanisms,
including CBAM, SE, and CoordAtt.*e results show that most
of attention mechanisms can enhance the performance of the
model.*e experimental results show that themAP@.50:.95 can
be improved up to 3.2% by attention mechanisms.

Pretrainingmodels are widely used in NLP and other AI-
related fields. *e AI community has become a consensus to
use pretrained models instead of training models from
scratch [40]. We compared models pretrained onMS COCO
with models without pretraining. *e results show that
pretraining can substantially improve mAP by approxi-
mately +3%.

In addition, the inference speed of our model takes only
24.1ms per image, which means that we can achieve
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Figure 16: Changes in relevant metrics of training YOLOV5_Plus.

(a) (b) (c)

(d) (e) (f )

Figure 17: Examples of pig detection by YOLOV5x and YOLOV5_Plus.*e first row shows the pictures detected by YOLOV5x.*e second
row shows the pictures detected by YOLOV5_Plus.*e two pictures in the same column are the same.*e pigs detected aremarked with red
boxes, and those not detected or incorrectly detected are marked with green boxes. (a) YOLOV5x_1. (b) YOLOV5x_2. (c) YOLOV5x_3.
(d) YOLOV5_Plus_1. (e) YOLOV5_Plus_2. (f ) YOLOV5_Plus_3.
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detection speeds of over 40Fps, perfectly meeting the needs
of farm applications.

4.2. Limitations. Our work still has some limitations. First,
although our model combined with the attention mecha-
nism has significantly improved in handling overlap

situations, it still has difficulty handling test images where
types of objects are not presented in the training set, such as
feeders and troughs. However, since the objective frames
identified by YOLOV5_Plus generally have a higher con-
fidence score, we can screen out most of the troughs by
raising the confidence threshold and resizing the test images.

(a) (b) (c)

(d) (e) (f)

Figure 18: Examples of pig detection by YOLOV5x, YOLOV5_Plus, and YOLOV5_Plus img_size� 960 with a confidence threshold of 0.85.
*e pigs detected are marked with red boxes, and those not detected or incorrectly detected are marked with green boxes. Top row:
compared with YOLOV5x and YOLOV5_Plus, YOLOV5_Plus img_size� 960 has fewer false positive and false negative errors. Bottom row:
20 pigs are detected by YOLOV5x, 22 by YOLOV5_Plus, and 24 by YOLOV5_Plus img_size� 960. (a) YOLOV5x. (b) YOLOV5_Plus.
(c) YOLOV5_Plus img_size� 960. (d) YOLOV5x. (e) YOLOV5_Plus. (f ) YOLOV5_Plus img_size� 960.

Table 7: Comparison of adding CBAM in different parts of YOLOV5x.

Algorithms Recall Precision mAP@.50 mAP@.50:.95 F1-score Inference speed (ms)
YOLOV5x 0.992 0.982 0.993 0.764 0.987 24.1
YOLOV5x +CBAMbackbone (YOLOV5_Plus) 0.996 0.989 0.994 0.796 0.992 24.1
YOLOV5x +CBAMhead 0.993 0.98 0.993 0.753 0.986 24.4
YOLOV5x +CBAMbackbone + head 0.996 0.983 0.994 0.763 0.989 24.2

Table 8: Comparison of YOLOV5x with different modules replaced by CBAM.

Algorithms Recall Precision mAP@.50 mAP@.50: 95 F1-score Inference speed (ms)
YOLOV5x 0.992 0.982 0.993 0.764 0.987 24.1
YOLOV5x +CBAMCBL (YOLOV5_Plus) 0.996 0.989 0.994 0.796 0.992 24.1
YOLOV5x +CBAMC3 0.994 0.987 0.994 0.791 0.99 26.7

Table 9: Comparison of transfer models using MS COCO transfer dataset with original YOLOV5x.

Algorithms Recall Precision mAP@.50 mAP@.50:.95 F1-score Inference speed (ms)
YOLOV5x 0.992 0.982 0.993 0.764 0.987 24.1
YOLOV5x transfer models 0.994 0.986 0.994 0.795 0.99 23.0

Table 10: Comparison of recall, precision, mAP@.50, and mAP@.50:.95 in methods.

Algorithms Recall Precision mAP@.50 mAP@.50:.95 F1-score
YOLOV3 0.971 0.989 0.992 0.725 0.980
YOLOV4 0.988 0.835 0.992 0.717 0.905
YOLOV5x_Plus 0.996 0.989 0.994 0.796 0.992

14 Mathematical Problems in Engineering



However, there are still some troughs and feeders that
cannot be eliminated. We believe this is because the model
tends to emphasize the color of the target rather than the
shape. *e similar posture of pigs and feeders is also one of
the possible reasons.

Second, we failed to pretrain our model on MS COCO
due to limited computing power and time. *e prior
knowledge of the pretraining parameters could help our
model be trained better and faster. We demonstrated the
effectiveness of pretraining using the YOLOV5x model
pretrained on MS COCO provided by GitHub.

5. Conclusion

*is study presents a deep learning method for pig detection
on farms. *e YOLOV5_Plus model is a lightweight and
efficient model with high accuracy, which is mainly built by
combining YOLOV5 and the attention mechanism. *e
results show that the model can achieve 98.9% recall, 99.6%
accuracy, and 79.6%mAP@.50:.95, which are the best results
among the competing models. In addition, the size of the
detected image can be increased from 640 to 960, which is
very effective in avoiding the false detection of troughs. It is
worth mentioning that the attention mechanism enables
YOLOV5_Plus to improve a lot compared to other algo-
rithms when dealing with dense pigs and falling pigs.
Compared with YOLOV3 and YOLOV4, our proposed
model achieves higher precision, recall, and mAP. More data
augmentation methods will be explored in future research to
improve image quality. Meanwhile, detection heads of
different scales can be added to meet the difficulties caused
by different degrees of overlapping and relatively small
images, increasing the generalizability and robustness of the
model.
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