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In this paper, we introduce a new slash distribution via the power normal distribution and uniform distribution. (is new
distribution, called the slash power normal distribution, models more appropriately the skewness and kurtosis of data than the
power normal distribution. Moreover, the probability density function and the cumulative distribution function of the slash
power normal distribution are derived and the density function curves with different parameters are given.We also study the basic
properties of the moments, derive the maximum likelihood estimation of the parameters, and substantiate our arguments with
numerical simulations. Finally, we model hourly measurements of sulphur dioxide concentrations of a station in Hong Kong by
the slash power normal distribution, power normal distribution, and skew normal distribution and use the K-S test to evaluate the
model fittings. (e result demonstrates that the slash power normal distribution gives a better fit to the data.

1. Introduction

With the advancement of research in statistics and its ap-
plications, there has been a growing interest in the con-
struction of flexible parametric classes of distributions
exhibiting skewness or heavy-tailed characteristics that are
different from those of the normal distribution. Some
skewed symmetric distributions have been studied, for ex-
ample, by Arnold and Beaver [1], Gupta et al. [2],Wang et al.
[3], Azzalini [4], and Arellano-Valle and Azzalini [5]. (e
motivation originates from the analysis of real-life data,
including financial, environmental, and medical data whose
distributions often do not follow the normal law (see as
reported in Azzalini et al. [6], Bartoletti and Loperfido [7],
Adcock et al. [8], Hossain and Beyene [9], and Cancela and
Pires [10]). It is thus necessary to find and study from the
theoretical and practical points of view distributions that can
better model skewed or heavy-tailed data.

Kafadar [11] introduced the standard slash normal (SN)
distribution which is defined as the distribution of the ratio
X � Z/U1/q of a standard normal random variable Z and an
independent uniform random variable U on the interval
(0,1) raised to the power 1/q, q> 0. We write as X ∼ SN(q).
When q⟶∞, it yields the standard normal distribution.

In fact, straightforward algebra yields the probability
density function (p.d.f.) of a univariate SN distribution
SN(q),

ψ(x; q) � q 
1

0
u

qϕ(xu)du, (1)

and the corresponding cumulative distribution function
(c.d.f.) of the univariate slash normal distribution,

ψ(x; q) � q 
1

0
u

qϕ(xu)du, (2)
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where ϕ and Φ are the standard normal density and dis-
tribution function, respectively. Hence, the expectation and
the variance of the standard SN(q) distribution are E(X) �

0 for q> 1 and Var(X) � q/(q − 2) for q> 2.
A general slash normal distribution is obtained by

performing scale multiplication and location shift of a
standard slash normal random variable (see Rogers and
Tukey [12] and Mosteller and Tukey [13] for further
properties). Wang and Genton [14] generalized Kafadar’s
univariate slash normal distribution to the multivariate slash
normal distribution and investigated its properties. Com-
pared to the standard normal distribution, the standard slash
normal distribution has heavier tails and is symmetric about
the origin. (us, it has been used to simulate heavy-tailed
data (see, for example, Andrew et al. [15] and Gross [16]).

Extensions of the slash normal distribution have been
considered by several authors; among them, Gui [17] in-
troduced a new extension which is not only heavy-tailed but
also unimodal and bimodal via the alpha skew normal
distribution introduced by Elal-Olivero [18]. Furthermore,
the structure of uniform slash and α-slash distributions
under discrete and continuous is explored by Jones and
Higuchi [19].

In this paper, we consider a generalization of the slash
normal distribution, called the slash power normal (SPN)
distribution, via the power normal (PN) distribution in-
troduced by Durrans [20].(e PN(α) distribution is a special
form of fractional order statistical distribution. Formally, we
have X∼PN(α) if the p. d. f. of X is

fPN(x; α) � α[Φ(x)]
α− 1ϕ(x), α> 0, − ∞<x< +∞. (3)

(e main idea of this distribution was introduced in
detail by Lehmann [21]. Gupta and Gupta [22] studied the
fundamental properties of PN distribution. One usual ex-
tension that should be noted is the location-scale version of
PN distributions. If Y∼PN(α), then X� μ +σ Y, where
− ∞< μ < ∞ and σ > 0, has the p.d.f. given by

fPN(x; α, μ, σ) �
α
σ
Φ

x − μ
σ

  
α− 1

ϕ
x − μ
σ

 , (4)

and is denoted by X ∼ PN(α, μ, σ).
We derive the p.d.f. and c.d.f. of the SPN distributions.

We also study their moments and the maximum likelihood
estimation of their parameters.

(e rest of this paper is organized as follows. In Section
2, we propose a generalized skewed slash distribution to
model heavy-tailed and skewed data and study its properties.
In Section 3, we give the maximum likelihood estimation of
the parameters. We substantiate our theoretical arguments
with a simulation study in Section 4 and a real-life appli-
cation in Section 5.We then conclude our paper in Section 6.

2. Slash Power Normal Distribution

We give formally the definition of a slash power normal
distribution in the stochastic representation by the following
theorem.

2.1. Stochastic Representation. We derive the probability
density function of the slash power normal distribution in
the following theorem.

Theorem 1. Let Y and U be two independent random
variables, where Y ∼ PN(α) and U ∼ U(0, 1). ,en the p.d.f.
of

X �
Y

U
1/q, (5)

is

f(x; α, q) � qα
+∞

− ∞
[Φ(xv)]

α− 1ϕ(xv)v
qdv, (6)

where − ∞<x< +∞ and α, q> 0.

Proof. Let x � y/v
v � u

1/q and the inverse function is y � xv

u � v
q

(e Jacobian determinant is

|J| �

zy

zx

zy

zv

zu

zx

zu

zv





�

v x

0 qv
q− 1




� qv

q
. (7)

We have the joint p.d.f. of X and V

p(x, v) � pY(x, v)pU(v)|J| � α[Φ(xv)]
α− 1ϕ(xv)1[0,1](v)qv

q
.

(8)

Now the marginal p.d.f. of X is given by

f(x) � 
+∞

− ∞
p(x, v)dv � qα

1

0
[Φ(xv)]

α− 1ϕ(xv)v
qdv. (9)

(is completes the proof of the theorem.
Since the p.d.f. in (6) is reduced to the SN distribution for

α � 1, we can say that the distribution given by (6) gener-
alizes the SN distribution. (us, we have the following
definition. □

Definition 1. If the p.d.f. of a random variable X is given by
(6), that is,

f(x; α, q) � qα
1

0
[Φ(xv)]

α− 1ϕ(xv)v
qdv, (10)
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where α, q> 0 are shape parameters, we say that X has the
slash power normal (SPN) distribution, denoted by
X ∼ SPN(α, q). (e c.d.f. of the SPN distribution is given as
follows. (e graph is given in Figure 1.

F(x; α, q) � 
x

− ∞
f(u; α, q)du

� 
1

0


x

− ∞
qα[Φ(uv)]

α− 1φ(uv)v
qdudv

� qα
1

0


x

− ∞
[Φ(uv)]

α− 1
v

q− 1dΦ(uv)dv

� qα
1

0

Φ(xv)

− ∞
w

α− 1
v

q− 1dwdv, w � Φ(uv)

� q 
1

0
v

q− 1
[Φ(xv)]

αdv.

(11)

In different types of statistical analysis, it is common to
study the survival function, the hazard function, and the
inverse risk function. For the SPN, the survival and hazard
functions are given separately by

S(x) � 1 − F(x) � 1 − q 
1

0
[Φ(xv)]

α
v

q− 1dv,

h(x) �
f(x)

S(x)
�

qα
1
0 [Φ(xv)]

α− 1ϕ(xv)v
qdv

1 − q 
1
0 [Φ(xv)]

α
v

q− 1dv
.

(12)

Furthermore, the inverse hazard function is

r(x) �
f(x)

S(x)
�

qα
1
0 [Φ(xv)]

α− 1ϕ(xv)v
qdv

1 − q 
1
0 [Φ(xv)]

α
v

q− 1dv
. (13)

2.2. Density Shape and Special Cases. Similar to the power
normal distribution, we graphically show a typical p.d.f. of
the SPN distributions with various combinations of
parameters.

By the graphical presentation in Figure 2, the p.d.f. of the
SPN distribution has heavier tail and lower peak than the PN
distribution.

For the ordinary slash normal distribution, it is well
known that the thickness of the tail increases with decreasing
values of q. From Figure 3, we can observe that for fixed α,
the same is also true for the slash power normal distribution.

(e SPN distribution has a unimodal density which is
skewed to the left if 0< α< 1 and to the right if α> 1. Figure 4
depicts a few p.d.f. graphs for different values of α. When
α � 1, the distribution is symmetric since φ(− u) � φ(u) In
this case, the p.d.f. of the distribution is given by

f(x; 1, q) � q 
1

0
ϕ(xv)v

qdv. (14)

(is means that the SN distribution is a special case of
the SPN distribution.
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Figure 1: (e c.d.f. of the SPN distribution.
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Figure 2: (e p.d.f. of the PN and SPN distribution.
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Figure 3: (e p.d.f. of the SPN distribution with various q values.
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When α � 2, we have the standard univariate skew-slash
distribution, which is introduced by Wang and Genton [14]
with the p.d.f. f(x; λ, q) � 2q 

1
0Φ(xv)ϕ(λxv)vqdv � η(x;

0, 1, q, 1) (see [14]).
When α � 1 and q � 1, the distribution is reduced to

f(x; 1, 1) � 
1

0
ϕ(xv)vdv �

1
x
Φ(x) −

1
x
2 

x

0
Φ(u)du

�
1
x
Φ(x) −

1
x
2[uΦ(u) + ϕ(u)]|

x
0

�
1
x
2 [ϕ(0) − ϕ(x)], x≠ 0.

(15)

(at is,

f(x; 1, 1) �

1
x
2 [ϕ(0) − ϕ(x)], x≠ 0,

ϕ(0)

2
, x � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

(e above distribution is just the standard SN distri-
bution SN(1).

Also, in terms of (eorem 1, the SPN distribution ap-
proaches the PN distribution when q approaches infinity.

Proposition 1. Let U ∼ U(0, 1) and X|U � u ∼ PN(α, 0,

u− 1/q), α> 0, q> 0, then

X ∼ SPN(α, q). (17)

Proof. According to the definition of PN(α, μ, σ), we have

fX(x) � 
+∞

− ∞
f(x, u)du

� 
+∞

− ∞
fx|u(x|u)fU(u)du

� 
1

0

α
u

− 1/q Φ
x

u− 1/q  
α− 1

ϕ
x

U
− 1/q du t � U

1/q
 

� q 
1

0
αtΦα− 1

(xt)ϕ(xt)t
q− 1dt

� qα
1

0
Φα− 1

(xt)ϕ(xt)t
qdt,

(18)

which is just the same as (6). (us the proof is completed.
(e proposition shows that the SPN distribution can be

represented as a mixture of the PN distribution and uniform
U(0, 1) distribution.(e result gives us an alternative way to
generate random numbers from the SPN distribution.

2.3. Random Number Generation. Firstly, we employ the
inverse function method to generate a random number y

from the
PN(α) distribution, and the p.d.f. is f(y) � α[Φ

(y)]α− 1ϕ(y).

Secondly, we generate a random number u on (0, 1).
(en, the quotient x � y/u1/q will serve as a random variable
from the SPN(α, q) distribution.

2.4. Moments of the Slash Power Normal Distribution. If a
random variable X ∼ SPN(α, q) and has the stochastic
representation in (eorem 1, then the mean of X is given by

E[X] � E YU
− 1/q

  � E[Y]E U
− 1/q

 

�
q

q − 1
E[Y], q> 1.

(19)

Let

Cn(λ) � 
+∞

− ∞
[Φ(λy)]

nϕ(y)dy, n � 0, 1, 2, · · · , λ ∈ R,

E[Y] � α
+∞

− ∞
y[Φ(y)]

α− 1ϕ(y)dy

�
α(α − 1)

2
��
π

√ 
+∞

− ∞
Φ

y
�
2

√  

α− 2

ϕ(y)dy

�
α(α − 1)

2
��
π

√ Cα− 2
1
�
2

√ .

(20)

Clearly, C0(λ) � 1; then,
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Figure 4: (e p.d.f. of the SPN distribution with various α values.
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C2n+1(λ) � 
2n+1

i�1
(− 1)

i+1
2n + 1

i

⎛⎝ ⎞⎠
1
2i

C2n+1− i(λ). (21)

See Arnold and Beaver [23] for the proof.
We can now easily obtain C1(λ) � 1/2, C2(λ) � 1/π

arctan
������
1 + 2λ2


, C3(λ) � 3/2πarctan

������
1 + 2λ2


− 1/4, etc.

(erefore,

α : 1 2 3 4 · · ·

E[Y] : 0
1
��
π

√
3

2
��
π

√
6 arctan

�
2

√

π3/2
· · ·

E[X] : 0
q

��
π

√
(q − 1)

3q

2
��
π

√
(q − 1)

6q arctan
�
2

√

π3/2
(q − 1)

· · ·

.

(22)

In order to obtain the second moment of X, we need to
compute the second moment of Y2 (t< 1/2). Firstly, when
α� 1, it is obvious that

E Y
2

  � 
+∞

− ∞
y
2ϕ(y)dy � 1 (23)

(en, for α� 2, 3, . . ., we have

E Y
2

  � α
+∞

− ∞
y
2
[Φ(y)]

α− 1ϕ(y)dy

� − α
+∞

− ∞
y[Φ(y)]

α− 1dϕ(y)

� − α y[Φ(y)]
α− 1ϕ(y) 

+∞
− ∞ + α

+∞

− ∞
[Φ(y)]

α− 1
+ y(α − 1)[Φ(y)]

α− 2ϕ(y) ϕ(y)dy

� [Φ(y)]
α+∞

− ∞ + α(α − 1) 
+∞

− ∞
y[Φ(y)]

α− 2
[Φ(y)]

2dy

� 1 +
α(α − 1)

2π


+∞

− ∞
[Φ(y)]

α− 2
e

− y2
ydy

� 1 +
α(α − 1)

4π
− 

+∞

− ∞
[Φ(y)]

α− 2de
− y2

  It can be seen thatE Y
2

  � 1 if α � 2 

� 1 +
α(α − 1)(α − 2)

4π


+∞

− ∞
[Φ(y)]

α− 3ϕ(y)e
− y2

dy

� 1 +
α(α − 1)(α − 2)

4π


+∞

− ∞
[Φ(y)]

α− 3ϕ(
�
3

√
y)dy

� 1 +
α(α − 1)(α − 2)

4π
�
3

√ 
+∞

− ∞
Φ

u
�
3

√  

α− 3

ϕ(u)du

� 1 +
α(α − 1)(α − 2)

4π
�
3

√ Cα− 3
1
�
3

√ .

(24)

(erefore,
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α : 1 2 3 4 · · ·

E Y
2

  : 1 1 1 +

�
3

√

2π
1 +

�
3

√

π
· · ·

E X
2

  :
q

q − 2
q

q − 2
q

q − 2
1 +

�
3

√

2π
 

q

q − 2
1 +

�
3

√

π
  · · ·

. (25)

(en, Var(X) � E(X2) − [E(X)]2 can be obtained by
using the abovementioned expressions.

From the definition of X, the general moments are given
by

E X
k

  � E YU
− 1/q

 
k

� E Y
k

 E U
− k/q

 

�
q

q − k
E Y

k
 

�
qα

q − k


+∞

− ∞
[Φ(y)]

α− 1ϕ(y), q> k.

(26)

For special cases, when α> 2 is a positive integer, we have

E Y
k

  � 
+∞

− ∞
y

kα[Φ(y)]
α− 1ϕ(y)dy

� α
+∞

− ∞
y

k− 1
[Φ(y)]

α− 1
yϕ(y)dy

� α
+∞

− ∞
(k − 1)y

k− 2
[Φ(y)]

α− 1ϕ(y)dy + α
+∞

− ∞
(α − 1)y

k− 1
[Φ(y)]

α− 2ϕ2
(y)dy

� (k − 1)E Y
k− 2

  +
α(α − 1)

���
2π

√ 
+∞

− ∞
y

k− 1
[Φ(y)]

α− 2ϕ(
�
2

√
y)dy

� (k − 1)E Y
k− 2

  +
α(α − 1)

���
2π

√ ��
2k

 
+∞

− ∞
v

k− 1 Φ
v
�
2

√  

α− 2

ϕ(v)dv(v �
�
2

√
y)

� (k − 1)E Y
k− 2

  +
α(α − 1)Cα− 2(1/

�
2

√
)

���
2π

√ ��
2k

 E V
k− 1

 , k � 3, 4, . . . ,

(27)

where the p.d.f. of V is given by

f(v) �
[Φ(v/

�
2

√
)]
α− 2ϕ(v)

Cα− 2(1/
�
2

√
)

,whereCα− 2
1
�
2

√  � 
+∞

− ∞
Φ

1
�
2

√  

α− 2

ϕ(v)dv. (28)

And f(v) is the p.d.f. of the generalized skew normal
distribution (see Gupta and Gupta [24]). (en,
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E X
k

  �
q

q − k
E Y

k
 

�
q(k − 1)

q − k
E Y

k− 2
  +

qα(α − 1)Cα− 2(1/
�
2

√
)

���
2π

√ ��
2k


(q − k)

E V
k− 1

 , k � 3, 4, . . .

(29)

3. Maximum Likelihood Estimation

In this section, we consider the location-scale form of the
distribution and introduce an additional location parameter
μ and a scale parameter σ to the density function. In this
form, for α � 1 and q⟶∞, the N(μ, σ2) distribution is
obtained. (e density function of the general form is given
by

f(x; θ) �
qα
σ


1

0
Φ

x − μ
σ

 v 
α− 1

ϕ
x − μ
σ

v v
qdv, (30)

where θ � (α, q, μ, σ).

Suppose X1, X2, · · · , Xn is a random sample of size n

from (30). (en, the log-likelihood function is expressed as

l(θ) � log
n

i�1
f xi, α, q, μ, σ( 

� n log q + n log α − n log σ + 
n

i�1
log

1

0
Φ

xi − μ
σ

v  
α− 1

ϕ
xi − μ
σ

v v
qdv.

(31)

(e maximum likelihood estimates (MLE) of the pa-
rameters maximize this likelihood function. Taking the
partial derivatives of the log-likelihood function with respect

to α, q, μ, and σ, respectively, and equalizing the obtained
expressions to zero yield the likelihood equations

lα �
n

α
+ 

n

i�1


1
0Φ

α− 1
ui( log Φ ui( ϕ ui( v

qdv


1
0Φ

α− 1
ui( ϕ ui( v

qdv
� 0,

lq �
n

q
+ 

n

i�1


1
0Φ

α− 1
ui( ϕ ui( v

qlog vdv


1
0Φ

α− 1
ui( ϕ ui( v

qdv
� 0,

lμ �
n

α
+ 

n

i�1


1
0Φ

α− 2
ui( ϕ ui( v

q+1
(1 − α)ϕ ui(  + uiΦ ui(  dv


1
0Φ

α− 1
ui( ϕ ui( v

qdv
� 0,

lσ � − n + 
n

i�1


1
0Φ

α− 2
ui( ϕ ui( uiv

q
(1 − α)ϕ ui(  + uiΦ ui(  dv


1
0Φ

α− 1
ui( ϕ ui( v

qdv
� 0,

(32)

where ui � (xi − μ)v/σ.

It should be noted that the abovementioned maximum
likelihood estimation equations are not in simple ana-
lytical form. (erefore, the estimates can be obtained via
numerical procedures such as the Newton–Raphson
method and the L-BFGS-B methods. (e programs in
software packages such as MATLAB and R provide
computing routines for solving such nonlinear optimi-
zation problems. In this paper, we will use the nonlinear
optimization routine optim in R which uses the L-BFGS-B
method to compute the estimates.

4. Simulation Study

In this section, we employ a simulation experiment to illustrate
the behavior of the maximum likelihood estimators of the pa-
rameters. It is well known that the maximum likelihood esti-
mators are asymptotically normal and unbiased under some
regularity conditions. However, we cannot derive the Fisher
information matrix because the log-likelihood function is a
complex transformation. It is thus difficult to obtain the theo-
retical properties of the maximum likelihood estimators. Hence,
we only numerically study the properties of the estimators.
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We first generate 1000 samples of sizes 20 and 100 from
the SPN distribution with fixed parameters. (e estimates
are computed by the optim function using the L-BFGS-B
method in R. (e empirical means and standard deviations
of the estimates are given in Table 1.

As can be observed from Table 1, the estimates approach
the true values as the sample size increases, which implies the
consistency of the estimates.

5. Real-Life Data Analysis

We further demonstrate the existence of the slash power
normal distribution in real life in this section. (e dataset
studied is about air pollution in Hong Kong, a high-density

city in China. (e data contain the hourly measurements of
sulphur dioxide (μg/m3) concentrations of a station in
Central, Hong Kong, in January–December 2015. Table 2
summarizes the basic descriptive statistics of the dataset.
Figure 5 reveals the positive skewness intrinsic in the data, so
the symmetrical distributions are no longer appropriate for
describing such data.

We fit the dataset with the SPN(α, q, μ, σ),
PN(α, μ, σ),and SN(α, μ, σ) and use the Kolmogor-
ov–Smirnov (K-S) test to evaluate the model fittings. (e
K-S test quantifies a distance between the empirical dis-
tribution function of the sample and the cumulative
distribution function of the reference distribution. (e
K-S test statistic is defined as

Table 2: Descriptive statistics of hourly SO2 concentrations.

Mean SD Median Skewness Kurtosis
8.595 6.935 7.000 3.375 21.113
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Figure 5: Histogram of the SO2 concentration dataset and the graphs of the fitted models.

Table 3: MLE (with (SD)) for the SPN, SN, and PN distributions.

Model α q μ σ D AIC BIC CAIC
SPN 9.467 (0.694) 2.115 (0.039) 0.001 (0.199) 3.119 (0.040) 0.00932 50636.72 50665.01 50636.72
SN 11.202 (0.532) -- 1.960 (0.042) 8.921 (0.073) 0.0212 53267.2 53288.42 53267.2
PN 1.367 (0.092) -- 7.348 (0.439) 7.247 (0.079) 0.0914 58163.4 58184.62 58163.4
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Figure 6: Empirical distribution of the SO2 and the graphs of the fitted models.
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D � sup
x

Fn(x) − F(x)


, (33)

where Fn(x) is the empirical distribution function and F(x)

is the theoretical cumulative distribution of the distribution
being tested. (e results are presented in Table 3, where the
initial values of each parameter are α � 7, q � 5, μ � 2,

and σ � 2.

Table 3 shows the maximum likelihood estimates to-
gether with the standard errors of different distributions.(e
statisticD indicates that the proposed SPNmodel is a best fit,
which is consistent with Figure 6. (e Akaike information
criterion (AIC), Bayesian information criterion (BIC), and
corrected Akaike information criterion (CAIC) are used to
measure the goodness of fit of the models. AIC � 2k

− 2 log L, BIC � k log n − 2 log L, and CAIC � 2kn/
n − k − 1− 2 log L,where n is the sample size, k is the number
of parameters in the model, and L is the maximized value of
the likelihood function for the estimated model. (e best
model is the one with the smallest AIC (or BIC or CAIC).

From Table 3, AIC, BIC, or CAIC shows that the pro-
posed SPN model is a best fit. We can also observe that the
SPN model successfully captures the kurtosis and skewness
of the SO2 concentration data of Central, Hong Kong (see
Figure 5). (is shows that the SPN model provides a good
vehicle to deal with skewed and heavy-tailed data.

6. Conclusion

In this paper, we have proposed and analyzed a new slash
version of the power normal distribution. It is defined as the
ratio of two independent random variables, namely, the
power normal and the power of the uniform distribution.
(e slash normal, skew-slash normal, and related distri-
butions turn out to be special cases of the proposed slash
power normal distribution. We have studied its basic
properties, including the variance and the general moments.

(e SPN distribution is fitted to a real-life dataset by the
maximum likelihood approach and we have compared it
with the power normal and skew normal distributions. (e
empirical result shows that the proposed SPN model better
fits the dataset and it provides us a more appropriate model
to deal with skewed and heavy-tailed data.
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