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With the development of science and technology, it has had a great impact on the manufacturing industry. �e manufacturing
industry has higher and higher requirements for industrial manipulators, and the expectations for the quality and function of the
industrial manipulators in the manufacturing industry are increasing day by day. At the same time, the requirements for the
working accuracy of the manipulators are also getting higher and higher. In this paper, a new method is proposed. An error
compensation and calibration algorithm based on parameter separation and integration of the standard DHmodel (SDH) is used
to construct the kinematic model of the manipulator. �e six groups of structural parameters of the six-axis manipulator are
calibrated once every two groups, thereby eliminating the in�uence of the singular value of the position of the manipulator.
Finally, the feasibility of this scheme is veri�ed by simulation experiments, the accuracy is ensured, and the expected purpose is
achieved. Because the method in this paper has high requirements on the posture of the manipulator, it reduces the overall
calibration calculation and saves time, which has a certain e�ect on the improvement of the industrial manipulator in the
manufacturing industry.

1. Introduction

Because of the complexity of industrial manipulator com-
ponents, it is necessary to conduct in-depth research on them
so as to realize the e�ective operation and control of the
manipulator on the basis of mastering the relevant content.
�e actual accuracy and theoretical design model of the
manipulator body may be inaccurate. In order to ensure that
the manipulator body conforms to the theoretical design
model, improves the positioning and trajectory accuracy of
the manipulator, or can completely move according to the
program, the manipulator needs to be calibrated after as-
sembly.�e accuracy of the kinematicmodel can be improved
if all deviations are re�ected in the DH parameters.

�e main sources of kinematic error in robotic arms
include machining error, assembly error, zero-point error,
reducer return, reduction ratio error, and calibration error,
of which calibration error is limited by the rudimentary
calibration device and the streamlined calibration process,
and in fact, the largest errors often come from this area.

�e above calibration methods have two shortcomings:
one is that the established robotic arm models are mostly
MDH models, which adds an extra parameter to be cali-
brated, i.e., increases the di�culty of calibration. In this
paper, an error compensation scheme based on the standard
DH model is proposed to address these two problems in the
error calibration process. �e traditional standard DH
model has the drawback that when two adjacent axes of the
arm are parallel or nearly parallel, small errors can cause
large changes in the DH structural parameters, resulting in
oddities in the arm’s position and even damage to the arm.
Noting that the di�erential transformation matrix of the
standard DHmodel is only related to �xed parameters, such
as the linkage de�ection and linkage rotation angle, and not
the joint angle, this greatly simpli�es the calculation of the
error calibration.

In this paper, a new error calibration and compensation
model are developed by making appropriate improvements
to the standard DHmodel, which in turn solves this problem
well.
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2. Kinematic Model of a Robotic Arm

During the movement of a robot arm, the angles of the joints
of the arm need to be adjusted to achieve the corresponding
Cartesian spatial position, and the matrix characterizing this
type of transformation relationship is called the mechanical
Jacobi matrix. �e mechanical Jacobi matrix is only related
to the D-H parameters of the arm itself and varies from arm
to arm. Suppose a joint is �xed and, without any constraints,
the joints adjacent to it have six freely changeable dimen-
sions in free space (Cartesian space) with respect to the �xed
joint, i.e., six degrees of freedom; if an independent coor-
dinate system is established for each joint, then the method
of �ush coordinate transformation is su�cient to solve the
problem. However, this is not a good representation of a
chain arm system with a unique structure rather than a
simple free rigid body, nor is it possible to relate the property
parameters of the joints themselves (rotation angle for ro-
tating joints, translation distance for translating joints) to the
coordinate transformation.

When expressing the transformation relationship between
two coordinate systems, a rotation matrix R and a displace-
ment matrix P are usually required, with a total of 12 pa-
rameters. For traditional manipulators, the transformation
relationship between coordinate systems can be clearly rep-
resented by four parameters θ, d, a, and α, provided that the
following two constraints are satis�ed. θn represents the axis
Xn and axis Xn− 1, dn represents the directional distance
between the axis Xn− 1 and axis Xn along the positive di-
rection of the axis Zn− 1, an represents the directional distance
between the axisZn− 1 and axisZn along the positive direction

of the axis X, and α represents axis angle between Zn− 1 and
axis Zn. a is the directional distance between the Zn− 1 axis
and Zn axis along the Xn axis, and α is the angle between the
Zn− 1 axis andZn axis.�e speci�c positional relationship and
direction of the parameters are shown in Figure 1.

As can be seen in Figure 1, the transformation of the
coordinate systemOn−1 to the coordinate systemOn needs to
be done in four steps, �rst, rotating the coordinate system
On−1 around Zn−1 by an angle of θn, translating along the
positive direction of Zn−1 by the length of dn, then translating
along the positive direction of Xn by the length of dn, and
�nally rotating around Xn by an angle of αn

Let An denote the transformation matrix from the co-
ordinate system On−1 to the coordinate system On, then An
can be expressed as follows:

An � Rot Zn−1,θn( )∗Trans Zn−1,dn( )∗Trans Xn−1,an( )

∗Rot Xn−1,αn( )

�

cθn −sθncαn sθnsαn ancθn
sθn cθncαn −cθnsαn ansθn
0 sαn cαn dn

0 0 0 1




,

(1)

where cθn denotes cosθn, sθn denotes sinθn. ... and so on. �e
symbols of this type in the equations that indicate the same
meaning and are not repeated.

�e transformation matrix of the 6-axis robot arm is the
transformation matrix of each joint multiplied together in
order, and by substituting (1), we get
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Figure 1: Schematic diagram of the standard DH model of a robotic arm.
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6T � A1 ∗A2 ∗A3 ∗A4 ∗A5 ∗A6

�

f11 f12 f13 p1

f21 f22 f23 p2

f31 f32 f33 p3

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(2)

2.1. Calibration Algorithm for Errors in the Structural Pa-
rameters of the Robot Arm. (e inverse kinematics of a
manipulator is the calculation of the angular values of the
joints of the manipulator from the known coordinate po-
sitions or poses of the end-effectors, also known as the
inverse kinematics of the manipulator, which is the inverse
of the forward kinematics. (e solution to the forward ki-
nematics problem is simple and unique, whereas the solu-
tion to the inverse kinematics problem is complex and may
have multiple solutions or no solutions at all. Factors that
affect the finishing accuracy of a robotic arm include ki-
nematic interpolation, arm load, stiffness, mechanical
clearance, tool wear, and thermal effects. An important way
to improve the positioning accuracy is to establish a posi-
tioning compensation algorithm and an error model. (e
positioning accuracy of the robotic arm can be divided into
two categories: absolute positioning and repeatable posi-
tioning accuracy.(e absolute positioning accuracy refers to
the deviation between the set value and the actual value, and
the repeated positioning accuracy refers to the position
deviation when the robot arm repeatedly reaches a certain
point. Since the repeatable positioning accuracy of robotic
arms is generally higher than absolute accuracy, techno-
logical breakthroughs in absolute accuracy are particularly
important. For this purpose, parameters such as joint
stiffness, position error, and temperature deformation of the
robot arm need to be identified, an error model or error
matrix should be obtained, and the position of the end
effector should be servo-corrected. Feedback channels are
incorporated into robotic arm servo control, and robotic
arm vision servo is one of the methods. (e robotic arm
visual servo control uses visual feedback sensors to obtain
changes in the working environment and image feature
extraction through vision processing to obtain the position
of the target and the end of the robotic arm in Cartesian
space, then the decision control compares the current
feedback information with the target information and cal-
culates the corresponding control command to finally guide
the robotic arm to complete the task. (rough the precision
correction algorithm, the 6-axis industrial manipulator
system is essentially a semiclosed control structure, which
precisely controls the position of the servo motor joint, and
the relationship between the motor position and the end
effector of the manipulator is determined by kinematics. (e
relationship between the motor position and the robotic arm
end effector position is determined by kinematics. To im-
prove the absolute accuracy of the robotic arm positioning,
calibration is necessary because errors inevitably occur
between the theoretical kinematics model and the actual
model.

In this paper, the posture error model of each joint is
constructed and the differential motion model of the overall
robot arm is derived by controlling certain joint angles to
reduce the effect of singularity.

2.2. Differential Errors in Adjacent Joints. Let Δθi, Δdi, Δai,
and Δαi represent the error of joint i, which is the final
required result. (en, according to the reporter’s derivative
rule, the differential error transformation matrix between
adjacent joints is,

dAi �
zAi

zθi

Δθi +
zAi

zdi

Δdi +
zAi

zai

Δai +
zAi

zαi

Δαi

(i � 1, 2, 3, 4, 5, 6),

(3)

easy to get

zAi

zθi

�

−sθi −cαicθi sαicθi −aisθi

cθi −cαisθi sαisθi aicθi

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

zAi

zdi

�

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0
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,

zAi

zai

�

0 0 0 cθi

0 0 0 sθi

0 0 0 0

0 0 0 0
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,

zAi

zαi

�

0 sθisαi sθicαi 0

0 −cθisαi −cθicαi 0

0 cαi −sαi 0

0 0 0 0
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.

(4)

Further, there are

dAi �
zAi

zθi

Δθi +
zAi

zdi

Δdi +
zAi

zai

Δai +
zAi

zαi

Δαi

� Ai Ωθi +Ωdi +Ωai +Ωαi(  � AiΩi (i � 1, 2, 3, 4, 5, 6),

(5)

of which Ωθi �

0 −cαi sαi 0
cαi 0 0 aicαi

−sαi 0 0 −aisαi

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Ωαi �
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0 0 −1 0

0 1 0 0

0 0 0 0
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Ωdi �

0 0 0 0

0 0 0 sαi

0 0 0 cαi

0 0 0 0
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0 0 0 1
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0 0 0 0

0 0 0 0
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,

Ωi �

0 −cαiΔθi sαiΔθi Δa

cαiΔθi 0 Δαi aicαiΔθi + sαiΔdi

−sαiΔθi −Δαi 0 −aisαiΔθi + cαiΔdi

0 0 0 0
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.

(6)

In the above equation, Ωi is called the error matrix
operator.

In contrast, the MDH model yields an error matrix
operator of

zAi

zθi

�

−sθi −cαicθi 0 0

cαicθi −cαisθi 0 0

sαisθi −sαisθi 0 0

0 0 0 0
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zAi

zdi

�

0 0 0 0

0 0 0 −sαi

0 0 0 cαi

0 0 0 0
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zai

�

0 0 0 1

0 0 0 0

0 0 0 0
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zAi

zαi

�

0 0 0 0

−sθisαi −cθisαi −cαi −dicαi

sθicαi cθicαi −sαi −disαi

0 0 0 0
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0 −cαiΔθi sαiΔθi −disθiΔαi + cθiΔai

Δθi 0 −cθiΔαi −dicθiΔαi − sθiΔai

sθiΔθi cθiΔαi 0 Δdi

0 0 0 0
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.

(7)
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Comparing (6) and (7), it can be found that the error
matrix operator of the SDH model is independent of the
joint angle θi, i.e., when the end position of the arm changes
and thus the joints of the arm change, the error matrix
operator remains constant, which provides a good condition
for the accuracy of the error calibration results and greatly
simplifies the operation. (e error matrix operator of the
MDH model is related to the joint angle θi, which brings
variability to the subsequent calibration algorithm, so this
chapter uses the SDH model for error calibration.

(e recursive equation for the differential error of each
joint is derived from equation (6).

dT1 � A1,

dTn � 
n

i�1
Ai + dAi(  − 

n

i�1
Ai (n � 1, 2, 3, 4, 5, 6).

(8)

It is obvious that expanding the equation dTn to contain
multiple dAi cross-multiplying terms can be considered as
higher-order infinitesimals with respect to dAi, which can be
ignored, and simplifying it further yields

dTn � 
n

i�1
A1A2 . . . dAi . . . An(  � dTn−1 ∗An + Tn−1 ∗dAn

� dTn−1 ∗An + Tn ∗Ωn(n � 2, 3, 4, 5, 6).

(9)

(e equations of the error model are thus established.
(e parameters Δθi, Δdi, Δai, and Δαi to be calibrated are
contained in the matrix Ωn and dT6 is the direct data ob-
tained from the measuring instruments in the experiment.

2.3. Differential Error Model for Inverse Order Joints. In the
previous subsection, a recursive formula for the error in the
position of the adjacent joints of the robot arm was obtained.
Further processing of equation gives the relationship be-
tween the error accumulated at joint i and the error in each
joint before joint i.

dTn ∗T
−1
n � dTn−1 ∗An ∗T

−1
n + Tn ∗Ωn ∗T

−1
n

� dTn−1 ∗T
−1
n + Tn ∗Ωn ∗T

−1
n

� 
n

i�1
Ti ∗Ωi ∗T

−1
i (n � 1, 2, 3, 4, 5, 6).

(10)

A closer look at this equation shows that the error at the
end of the robot arm dTn ∗T−1

n is in the form of a sum about
the parameters of the individual joints, and that their sums
are independent of each other and no coupling terms appear,
which provides the preconditions for the elimination
method.

It can be seen that Ti is the transformationmatrix of joint

i− 1 to joint i, i.e., Ti �
Ri pi

0 1 ,Ωi �
Qi li
0 0 . (erefore,

we have TiΩiT
−1
i �

RiQiR
−1
i −RiQiR

−1
i pi + Rili

0 0
  �

RiQiR
T
i −RiQiR

T
i pi + Rili

0 0
  and note that RiQiR

T
i is an

antisymmetric matrix whose elements are opposite to each
other after corresponding along the main diagonal, which
greatly reduces the number of equations and thus achieves
the effect of reducing the rank of the coefficient matrix.

According to the characteristics of equations (3)–(13),
the first n− 2 joints can be controlled so that their joint
angles remain constant and only the joint angle n and joint
angle n− 1 are changed so that the matrix equations for θn,
dn, an, αn, θn −１, dn −１, an −１, and αn −１ can be ob-
tained as follows:

dTn ∗T
−1
n ′ − dTn ∗T

−1
n ″ � Dn � Wn

� Tn ∗Ωn ∗T
−1
n ′

− Tn ∗Ωn ∗T
−1
n ″.

(11)

Due to the SDH singularity, the coefficient matrices of
θn −１, dn −１, an −１, and αn −１ are close to singular
values, so the calibration results of the structural parameters
of joints n− 1 θn −１, dn − , an −１, and αn −１ are dis-
carded and only the experimental results of θn, dn, an, and αn
are retained. In the above equation, [ ]′ and [ ]″ represent the
two sets of measurements, respectively, D represents the
matrix obtained from the measurements, i.e., the expression
on the left side of the equation, and W represents the result
obtained by numerical calculation, i.e., the expression on the
left side of the equation.

Wn �

0 Wn(1, 2) Wn(1, 3) Wn(1, 4)

−Wn(1, 2) 0 Wn(2, 3) Wn(2, 4)

−Wn(1, 3) −Wn(2, 3) 0 Wn(3, 4)

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and.

(12)

(e following is an example of how to solve for the
structural parameters θ6, d6, a6, and α6 for the last joint
calibrated, i.e., the 6th joint.

To simplify the calculation, it is assumed that the value of
α in the SDH model can only be taken to two common
parameter values, 0 and ±π/2. (e error matrix equation of
(10), which is an equation for the joint angle n and the joint
angle n− 1, can be calculated as follows:
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W6(1, 2) � f12f21cα − f13f21sα − f11f22cα + f11f23sα( )Δθ + f13f22sα − f12f23sα( )Δα

� −f33Δθ − f31Δα,

W6(1, 3) � f12f31cα − f13f31sα − f11f32cα + f11f33sα( )Δθ + f13f32sα − f12f33sα( )Δα

� f23Δθ + f21Δα,

W6(2, 3) � f22f31cα − f23f31sα − f21f32cα + f21f33sα( )Δθ + f23f32sα − f22f33sα( )Δα

� −f13Δθ − f11Δα,

W6(1, 4) � f24 f33Δθ + f31Δα( ) + f34 f23Δθ + f21 + Δα( ) + f11Δa + f12aΔθ + f13Δd

� f24f33 + f34f23 + f12a( )Δθ + f24f31 − f34f21( )Δa + f13Δd + f11Δa,

W6(2, 4) � f14 f33Δθ + f31Δα( ) + f34 f23Δθ + f21 + Δα( ) + f21Δa + f22aΔθ + f23Δd

� −f14f33 + f34f13 + f22a( )Δθ + −f14f31 − f34f11( )Δa + f23Δd + f21Δa,

W6(3, 4) � f14 f33Δθ + f31Δα( ) + f24 f23Δθ + f21 + Δα( ) + f31Δa + f32aΔθ + f33Δd

� f14f23 − f24f13 + f32a( )Δθ + f14f21 + f24f11( )Δa + f33Δd + f31Δa.

(13)

According to the characteristics of the SDH transfor-
mation matrix, the �rst three equations in equation can be
calibrated to Δα6 and Δa6. After the calculation of equation

(9), the coe�cients before Δθ5 and Δd5 are close to zero and
can be neglected, and �nally a matrix equation is obtained
for Δθ6, Δd6, Δa6, Δα6, Δa5, and Δα6, so that the coe�cient

Begin

Pre-processing of
measurement data

Calculate the error
matrix operator Ωi

Inverse order
calculation Ti ΩiTi

 -1

Discard terms with
coefficients of 0 for

parameters to be calibrated

Calibration of error
parameters θ, α, d, a

Are all error parameters
calibrated?

No

End

Yes

Calibration of the next
group of joints with 4

parameter errors

Figure 2: Flow chart of the calibration algorithm.
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matrix is not a singular matrix and can be directly calculated
to obtain Δθ6, Δd6, Δa6, and Δα6. �e �ow chart of the
algorithm is shown in Figure 2.

For the error parameters of joints 5, 4, 3, 2, and 1, new
measurement data can be collected and calculated by (11) to
obtain

Wi �Wi+1∗
i+1
i T− 1(i � 2, 3, 4, 5). (14)

3. Simulation Experiments and
Verification Results

�e SDH parameters of the robotic arm used in this paper
are shown in Table 1.

Experiments were performed using open-loop mea-
surements, where an external measurement device was used

to measure the position of an end-mounted actuator or
actuator. For each calibration, two measurements are taken
for each joint i. A total of 5× 2 = 10 sets of data are selected to
ensure that the joint angles, except joint i and joint i− 1
remain unchanged so that only the di�erential transfor-
mation information of joint i is preserved after they are
substracted. In this loop, the error matrix is calculated and
the parameters are calibrated until all parameters are cali-
brated. In the experimental process, the method in this paper
is compared with the ordinary least-square method, which
reduces the computational complexity and improves the
real-time performance of the system while ensuring cali-
bration accuracy.�e data used for comparison are shown in
Table 2.

As can be seen from Table 2, in terms of calibration
accuracy, the method in this paper is not inferior to the
common least-square method, but in terms of the process of
calculating the calibration error, the least-square method has
to �nd the pseudo-inverse of a coe�cient matrix of order
4× 6 to obtain the solution of the chi-square linear equation.
In contrast, the method in this paper obtains the �nal
calibration results by computing �ve 6× 6 full rank matrices
after further transformation of the error equation, which
greatly simpli�es the calculation.

In the course of the experiments, the results of the
calibration were compensated for errors with the aid of the
inspection data set, and the di�erences in position at the end
of the robotic arm were obtained by comparing the method
of this paper with the least-square method, as shown in
Figures 3–5.

�e horizontal coordinates of the above three plots
represent the number of the inspection data set, and the
vertical coordinates represent the deviation of the end po-
sition of the robot arm under the two methods. �e cal-
culation method is as follows: the 6 data of each set represent
6 joint angles, which are substituted into (1) and (2) to
obtain60T. �e results are then substituted into (5) and (8) to
obtain the error di�erential matrix after compensation.

Table 2: Comparison of the calibration results between the least-
square method and the method in this paper.

Joint Structural error
parameters

Traditional
methods

Methodology of this
paper

1

Δθ1 (rad) 0.00533251466 0.0053513684
Δα1 (rad) −0.00304622132 −0.0030531436
Δa1 (mm) 0.04655832461 0.0426131686
Δd1 (mm) 0.03632714664 0.0365462379

2

Δθ2 (rad) 0.00795465466 0.0079457325
Δα2 (rad) 0.00346976216 0.0035372149
Δa2 (mm) −0.04672446465 −0.0464634195
Δd2 (mm) 0.07986544668 0.0794546871

3

Δθ3 (rad) 0.00625973164 0.0062458734
Δα3 (rad) 0.00354361779 0.0035704687
Δa3 (mm) −0.03672479864 −0.0646795362
Δd3 (mm) 0.02673468355 0.0269664734

4

Δθ4 (rad) 0.00254346944 0.0025095875
Δα4 (rad) −0.00386434867 −0.0038144762
Δa5 (mm) 0.03489742168 0.0344986135
Δd5 (mm) 0.03179612134 0.0313465435

5

Δθ5 (rad) 0.00379643685 0.0038745186
Δα5 (rad) 0.00296120547 0.0029486467
Δa5 (mm) 0.03798613486 0.0374644675
Δd5 (mm) −0.05153420564 −0.0575135439

6

Δθ6 (rad) 0.00272526803 0.0027892526
Δα6 (rad) 0.00364679616 0.0036670627
Δa6 (mm) 0.02604359755 0.0267691487
Δd5 (mm) 0.05345746395 0.0532546387

Table 1: SDH parameter table.

Coordinate system
i

θ
(rad)

d
(mm) a (mm) α (rad) O�set angle

o�set
1 q1 0 160 −π/2 0
2 q2 0 580 0 −π/2
3 q3 0 200 −π/2 0
4 q4 640 0 π/2 0
5 q5 228 0 −π/2 0
6 q6 0 0 0 0
Note. �e o�set angle is the initial rotation angle of the joint and remains
constant during the calibration process.
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Figure 3: Comparison of errors in the x-component.
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From the results in the �gure, we can see that the calibration
method in this paper is slightly better than the common
least-square method, which again veri�es the feasibility and
e�ectiveness of the method in this paper. At the same time,
due to the small volume of measurement data collected in
this paper, the inverse process of a large matrix is decom-
posed into the inverse process of several small matrices,
which greatly simpli�es the calculation and reduces the time
cost.

Figure 6 shows a comparison of the least-square method
and the di�erential elimination method proposed in this
chapter in terms of calibration time; the di�erential elimi-
nation method takes almost half the time, and the time spent
is more stable.

4. Conclusion

In this paper, an error calibration optimization method
based on the SDH model is proposed by analyzing the
composition of the transformation matrix and according to
its characteristics. �is method solves the singularity
problem of the SDH model in the application of calibration
error. It is not only better than the traditional calibration
method and least-square method in terms of calibration
accuracy but also realizes simple calculation by discarding
some abnormal calibration values. Finally, through the
veri�cation of simulation experiments, it is proved that this
method can be used to identify the error of the model
parameters of themanipulator and achieve the desired e�ect.
�e source of error is not only the structural parameters of
the arm but also many external factors. �e calibration
accuracy of this method is improved when compared to the
least-square method, but it is still in the same order of
magnitude and does not signi�cantly improve the calibra-
tion accuracy, so it cannot be used in demanding working
environments. �ese aspects will also be further investigated
in future research work. Because the method in this paper
has high requirements on the posture of the manipulator, it
reduces the overall calibration calculation and saves time,
which has a certain e�ect on the improvement of the in-
dustrial manipulator in the manufacturing industry.

Data Availability
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Figure 4: Comparison of errors in the y-component.
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Figure 5: Comparison of errors in the z component.
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