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“Carbon peak and neutrality” are an important strategic decision to promote the transformation of China’s energy economy and
build a community with a shared future for mankind. China is a big energy consumer, and the whole society is facing huge
challenges under the goal of carbon peak and neutrality. The realization of the goal of carbon peak and neutrality requires the
guidance of correct theoretical methods and scientific deployment. This paper mainly studies the energy consumption scheduling,
demand response management, and energy trading problems of microgrid. In view of the shortcomings of the existing energy
optimization scheduling methods in the microgrid, a variety of energy resources such as electric energy, natural gas, heat energy,
and cold energy are considered into the microgrid model. Based on the noncooperative game and Stackelberg game, a new energy
optimal dispatch model is constructed with a variety of game methods such as two-layer game. Maximize the personal benefits of
the microgrid while meeting the reliable operation of the system and the electricity demand of users. The three-stage nonco-
operative game problem is solved based on the reverse bootstrap method, and the closed expression of the optimal strategy in each
stage is obtained. The power generation forecasting technology based on big data is studied, and a power forecasting method is
proposed, which can effectively guide the energy consumption of the microgrid. The simulation results show the effectiveness of
the proposed renewable energy management model based on big data, which verifies that the accurate wind power prediction

results are conducive to better theoretical analysis of energy management.

1. Introduction

On December 12, 2020, Xi Jinping, General Secretary of
the Central Committee of the Communist Party of China,
solemnly announced at the UN Climate Ambition
Summit that China will strive to achieve Carbon peak by
2030 and strive to achieve the “Carbon peak and neu-
trality goal” of Carbon neutrality by 2060. On April 30,
2021, General Secretary Xi Jinping emphasized at the 29th
collective study meeting of the Political Bureau of the
CPC Central Committee that realizing carbon peak and
neutrality is China’s solemn commitment to the world, is
also a broad and profound economic and social change,
and is by no means easy to achieve. Party committees and
governments at all levels must have the energy to grasp
the traces of iron and stamp on the stone, clarify the

timetable, roadmap, and construction drawings, and
promote economic and social development based on the
efficient use of resources and green and low-carbon de-
velopment [1, 2].

Facing the great and arduous goal of Carbon peak and
neutrality, what challenges will China face? What exactly
does this goal require of Chinese society? The author believes
that there are two major requirements in summary: one is
energy saving on the energy demand side, and the other is
zero carbonization on the energy supply side. The dual
carbon goal is a huge subject covering multiple industries
and disciplines in the whole society [3-5]. This paper only
analyzes and judges the challenges and countermeasures of
the energy industry under the mission of Carbon peak and
neutrality from the perspective of energy supply, that is, to
gradually realize the “primary energy” “Zero-carbon,
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secondary energy electrification” direct use of zero-carbon
energy and electrified secondary use.

Renewable energy sources such as wind power and
photovoltaics have attracted widespread attention from all
over the world due to their environmentally friendly and
renewable characteristics. However, the uncertainty of its
primary energy has a certain impact on the operation and
power quality of the power system, to alleviate the fluctu-
ation of the power supply, and the power grid dispatching
usually limits its output scale, thus causing a serious phe-
nomenon of curtailment of wind and solar power [6-8].

Distributed energy system (DES) is one of the devel-
opment directions to solve the problem of renewable energy
consumption. Compared with the traditional centralized
energy supply system, DES is composed of small distributed
power sources (such as gas internal combustion engines, and
gas turbines). An energy system is composed of loads and
energy transmission equipment according to a certain to-
pology. The main advantage of the distributed energy system
is that it can realize the cogeneration of cooling, heating, and
power, which can maximize the “cascade utilization” of
energy and improve the utilization rate of energy [9, 10].
Connecting several distributed energy systems to the grid
gas network to establish an energy network can realize the
regional interconnection of multiple energy sources. The
established energy network is also called a distributed energy
network system (DENS). It realizes the information-energy
cooperative control through information network technol-
ogy and forms a safe, efficient, and intelligent new energy
network system. Among them, the autonomous dispatch
strategy refers to the optimal operation strategy of the
distributed energy network system aiming at system sta-
bility, economy, and environmental benefits, coordinating
regional controllable power sources, loads, and energy
storage facilities to achieve a balance between supply and
demand at different time scales. The distributed energy
network system can be connected to a large power grid and
run in a grid-connected mode and can also be disconnected
and run independently when the power grid fails [11-13].

Since China’s energy resources and energy demand are
characterized by reverse distribution, in order to promote
the optimal allocation and utilization of energy resources,
the concept of demand-side response is proposed in the
existing technology, that is, through various ways and means
(such as through legal, administrative, economic, techno-
logical, and other means) to guide and encourage users to
actively change the conventional energy consumption. As a
virtual controllable resource, demand-side response can be
combined with a variety of energy supply types to effectively
overcome the impact of the reverse distribution of energy
resources and energy demand on the power system.
Therefore, in view of the above status quo, it is urgent to
develop an energy Internet dispatching system based on big
data analysis to overcome the deficiencies in current prac-
tical applications [14, 15].

Game theory is also known as “game theory,” and in
Taiwan, China is translated as “game theory,” as shown in
Figure 1. In a broad sense, game theory refers to the process
in which multiple entities (agents) use the information they
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FIGURE 1: Game theory.

have (the decisions of each participant) to make decisions
under certain constraints (the rules of the game). It is also a
branch of applied mathematics and an important discipline
in operations research and has a wide range of applications
in computer, psychology, economics, and other disciplines.
Taking computer science as an example, according to in-
complete statistics, researchers who are active in wireless
networks, distributed computing, databases, algorithm
analysis, and other branches have long been concerned
about the application of game theory in computer science
[16-18]. Game theory is a direction of mathematical theory
research and has become an important research method in
economics. It mainly solves decision-making problems and
finds the optimal solution by studying the rational inter-
action between multiple game participants. Game theory
only has five basic elements: game players, strategy sets,
payofls, information, and Nash equilibrium. Games can be
divided into different categories according to different
classification conditions. In general, we think that there are
two main categories of games, namely, cooperative games
and noncooperative games. According to whether there is a
constrained agreement between the interacting participants,
the game is divided into cooperative game (constrained
agreement) and noncooperative game (unconstrained
agreement). In addition, the game can be divided into static
game and dynamic game, complete information game, and
incomplete information game according to the time se-
quence of participants’ behavior and the degree of infor-
mation mastery in the game process [19-21]. In order to
further improve the efficiency of distributed energy utili-
zation, the competition and cooperation mechanism with
multiple target entities has been widely used in the energy
management research of microgrids.

Despite the advantages of cooperative analysis among
systems, noncooperative game models do not require mutual
commitment among various market players and have the
advantage of lower communication overhead. Furthermore,
through noncooperative game analysis in various nonco-
operative game models, it is possible to effectively model
hierarchical levels among players in which leaders have
market dominance over followers and can adapt their
strategies to imposed on followers. Most of the current re-
search on microgrid energy consumption scheduling, energy
trading, and demand response management only considers
one energy source, namely, electricity [22-24]. However, with
the consideration of various energy networks such as electric
power, natural gas, and thermal energy into the microgrid,
the microgrid system will become more complex and
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unpredictable. How to comprehensively manage multiple
energy resources and ensure the efficient and stable operation
of the system is particularly critical. Therefore, it is necessary
to carry out corresponding research on the energy optimi-
zation scheduling method of the microgrid, which com-
prehensively considers various energy resources such as
electric energy, natural gas, and cold energy.

To sum up, in order to effectively utilize renewable
energy while further ensuring the reliable operation of the
system and meeting the electricity demand of users, this
paper studies the problem of distributed energy manage-
ment and maximizes the individual objective function of
each market participant. The method based on the fusion of
noncooperative game idea and big data solves the problem of
microgrid energy management in the energy Internet. In
order to effectively reduce the uncertainty caused by wind
turbines, a short-term wind power prediction algorithm
based on deep learning is proposed. In the pretraining
process, an adaptive evolutionary algorithm with a three-
layer hidden layer structure is used to extract features from
the training sequence, and in the fine-tuning process, the
backpropagation algorithm is used to calculate the weights
of the entire neural network. Numerical results show that
accurate wind power prediction results are beneficial for
better energy management [25, 26].

2. Game Theory Model

In recent years, with the continuous advancement of the goal of
“Carbon peak and neutrality,” the large-scale grid connection
of distributed energy such as solar energy and wind energy, due
to the uncontrollable, fluctuating, variable, and intermittent
characteristics of distributed energy, large-scale, high-pro-
portion Access will bring certain challenges to the stability of
the power system. In addition, the installed capacity of the
microgrid is limited, and only relying on its own energy supply
may not meet the user’s power demand. When the user’s power
supply is insufficient, the power plant and the energy storage
company should be coordinated to purchase the corresponding
power to meet the user’s energy demand in time.

In recent years, in addition to the economic field, game
theory has also been applied in the field of microgrids. In the
microgrid, a simple economic model can no longer describe
the complex energy network including a variety of renewable
energy and energy storage devices, and the use of nonco-
operative game, alliance game, Stackelberg game, and other
game theory methods together with the economic behavior
of each individual in the energy network can be effectively
modeled and analyzed. There are generally three important
basic elements in game models: players, strategies, and
benefit functions. The behavior of the players is selfish and
rational, by adjusting their game strategies to maximize their
benefits. The general idea of applying game theory to the
field of microgrid research is as follows: on the basis of the
system model of microgrid, the three basic elements in the
game model must be clarified first, the corresponding game
model must be constructed, and the game model must be
proved by relevant proof methods. Whether there is a
corresponding equilibrium, then design a corresponding

algorithm to solve the game process, and finally analyze the
characteristics of the game model through simulation. The
performance decisions between multiple entities are made
through cooperation or competition strategies, thereby ef-
fectively improving the microgrid.

The basic assumption of the game model establishment:
each game participant is rational and pursues the maximiza-
tion of his own interests, and each participant needs to con-
sider his own knowledge information and the behavior
expectations of other participants. From the perspective of
game types, big data energy scheduling game models can
generally be divided into three categories: (1) noncooperative
games, where each participant chooses his own actions in-
dependently from other participants; (2) cooperative games,
where the participants in the game act in the form of alliances
and cooperation; (3) semicooperative games, where players
choose one player to cooperate. This paper constructs a
noncooperative game model of dual energy consumption
scheduling among household users in the energy inter-
connected microgrid. In this game model, household users
compete with each other to adjust the electricity and natural
gas consumption of hybrid gas-electric equipment to maximize
its benefits. The employed functions are shown in Figure 2.

Assuming that the players in the game are each
household m;, then there are M households in a certain area,
and then,

{my,my,...,my}. (1)

The resource allocation strategy of a single family can be
expressed as a resource allocation matrix A(m;):

a, (m;)
a, (m;
A(m,) _ 2( 1) ) (2)
a, (m;)
The benefit function of household user # is defined by the
consumption cost of electricity and natural gas, namely,
U, = —Pex, — Pgy,. (3)

Here, a control variable n, is defined to describe the dual-
energy scheduling strategy of the hybrid gas-electric
equipment of household user 7, namely,

A,
z, =ax, — —
2
(4)
A, b +An
ax, —— = — —.
n 2 yt’l 2

The benefit function for home user #n can be described as

A [2 A2
Un(zn):_|:Pe+/\z<Ean_Spn+ n/a+z,,)] n/a+zn

~ [Pg uy < Ga, + An/zb— zn>] An/zb— 2

(5)
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In the noncooperative game model of dual energy
consumption scheduling among household users, there are
participants, namely, all household users n. In strategy, each
household user 7 controls the control variable z,, of its mixed
gas-electric equipment to adjust its electricity and natural
gas consumption. The predicted is shown in Figure 3. In the
benefit function, each household user maximizes its benefit
U, and is defined in equation (5). The set of strategies for all
feasible dual-energy consumption scheduling for home user
n is expressed as

S, ={z.lzy " <z, <27}, (6)

Among them, 2y, and zy,.x respectively represent the
smallest and largest controllable variable value. For each
household user n, the optimal response strategy of its dual
energy consumption scheduling is defined as

2 = argmax U, (z,,). (7)

n

The energy supplier resource game (NYGYS) can be
represented by a quadruple:

NYGYS = {M, Req, S, Utility}. (8)

Among them, M is the participant of the game, Req is the
request matrix, S is the alternative strategy of the game
participant, and Utility is the profit.

S={S(m)li=12...,M},

)
Utility = {Utilityli = 1,2..., M}.

How to make the most reasonable and effective use of
data center resources, meet user requirements, improve
resource utilization efficiency, and reduce resource waste is
worth the attention. The mathematical model of the energy
game can be expressed as the following equation:

[ si(m;) € N,

Z si(m;) - r <Ry (my),

’ (10)
0<ERT;<RT,,

0< Z a;. - prace< Cos t.
k

Max — Utility s.t. 4

The first constraint is expressed as an overall planning
problem, and the second constraint states that the total
resources of virtual units allocated in each user do not exceed
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application-level allocation autonomous distribution

FiGure 4: Common allocation mechanisms.

the total amount of available resources. The third constraint
indicates that the actual response time of each user to each
subtask is within the maximum response time in the con-
straint. The fourth constraint indicates that the cost is within
the budget in the constraint. Through the design of the profit
function in the game model, its optimization algorithm can
solve the appropriate available resource scheduling strategy
S(m;) for each user. The benefit function is a trade-off of
resource utilization of energy centers, fairness of resource
allocation, and multitype optimization objectives.

Based on the introduction of the above knowledge, the
grid participants in the economic model include various
resource providers and consumers, and some models also
require auctioneers. Whether they are resource providers or
resource consumers, they are all selfish, and their funda-
mental goal is to maximize their own benefits. Generally, the
commonly used economic models adopt two-level distri-
bution mechanisms, namely, global distribution and local
distribution, as shown in Figure 4. Global allocation is
application-level allocation. Resources are allocated to
maximize benefits according to consumer information and
utility functions. Local allocation can support the autonomy
of grid nodes, and complete task execution according to the
system’s resource allocation strategy. Correspondingly, we
can use the knowledge of game theory to solve the problem
of grid resource allocation. The overall energy dispatching
level is based on the competitive game analysis in multiple
energy systems.

The grid resource consumer agent submits jobs to the
grid resource provider agent. Different types of jobs are
allocated to specific grid nodes through a certain global
strategy. Generally, the resource consumer agent will cal-
culate the job execution according to certain strategies. In
the same way, the resource provider agent will also make a
general calculation according to the operating capacity, load,
and quantity of resources, so as to formulate a price suitable
for the value of resources. Grid resource consumer agents
and grid resource provider agents trade, buy, and sell re-
sources through grid information services.

We can abstract the global allocation problem as a game
model in which multiple grid users (i.e., resource con-
sumers) buy resources competitively, or a game model in
which multiple resource providers compete to find users. In
the former, there are multiple users who need to perform
their jobs, and each user has a certain budget, but the re-
sources are limited, so they must successfully buy resources

and execute jobs through a bidding game. The latter situ-
ation occurs when some resources are oversupplied. Instead
of wasting resources there, it is better for the resources
themselves to actively seek out users who need resources to
obtain certain benefits.

3. System Implementation and
Simulation Analysis

The big data energy management system proposed in this
paper is a comprehensive energy consumption management
system based on the Industrial Internet of Things and big
data analysis. Large-scale, multiregional, network-wide
synchronization of data collection, aggregation, and cen-
tralized uploading requires cloud networks and cloud
storage resources with extremely high performance levels.
The overall system construction and operation and main-
tenance are most suitable for the three major telecom op-
erators to undertake, not to mention the need for different
energy consumption. The unit establishes a one-to-one
corresponding multidimensional related energy consump-
tion and emission model. For the self-control and reliable
energy-consuming units, the simulation results of the model
are used to implement the reverse switch standby operation
for the relevant energy-consuming equipment to realize the
dynamic energy efficiency optimization of the energy-con-
suming equipment. This in turn requires extremely powerful
cloud computing resources, and the implementation of such
control should be in the hands of mainstream state-owned
central enterprises, and the cloud computing resources of
the three major operators are basically guaranteed. The
network management system and dynamic environment
monitoring system built by telecom operators are respon-
sible for the collection and integrated access of the operators’
own energy consumption data. Or the existing system of the
enterprise is forwarded and connected to the operator’s
energy management cloud platform according to the unified
energy consumption and emission data collection and in-
terface standard specifications, and the operator charges the
traffic fee and function fee. For example, if users use the
energy auditing and diagnosis function to request energy use
consulting reports, additional consulting fees can be
charged. The government pays financial subsidies, mainte-
nance fees, traffic fees, and service fees to operators to
purchase services, and operators can also collect energy
consumption and emission source data, transaction fees, and
management fees for the government. The operator pays the
development fee and technical support fee to the system
technology supplier.

The communication operator’s energy big data man-
agement system grasps the energy consumption situation in
real time, improves the real-time energy consumption model
of each energy-consuming equipment to predict the energy
use trend, realizes the dynamic optimization of energy
consumption management of various energy-consuming
equipment, and takes timely dispatching measures to im-
prove the operation efficiency. Maintain the management
level of the department, timely discover and forecast op-
erating equipment failures in advance, realize preventive
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maintenance, make all energy-consuming equipment
operate in the best state as much as possible, and minimize
the impact on energy consumption, which is in line with the
12th Five-Year Energy Saving of the General Office of the
State Council. Emission reduction proposes policy guidance,
tulfills the responsibility of enterprises for energy conser-
vation and emission reduction, and contributes to acceler-
ating the construction of a resource-saving and
environment-friendly society.

The energy management big data cloud platform es-
tablishes a benchmark computer room/base station by
clustering and correlation analysis of massive energy con-
sumption data of large-scale computer rooms/base stations
and establishing energy consumption models of energy-
consuming sites. The system constitutes a knowledge base by
constructing theoretical knowledge, experimental data, ex-
pert experience, and related definitions and theorems related
to energy consumption analysis, and stores, organizes,
implements, and uses a set of interconnected knowledge
bases in the computer to effectively realize knowledge
performance and performance. Reasoning, closely combined
with data mining and OLAP, helps users analyze, give
reasonable conclusions and suggestions, and improve social
and economic benefits.

In this section, we use concrete cases to evaluate the
performance of the proposed game method for solving
multienergy demand response management problems. As-
sume that there are 1 energy supplier and 10 residential
smart energy hubs in the system in a day, and there are 24
time periods in a day. The efficiency parameters of trans-
formers, electric refrigerators, gas boilers, and CCHPs in
each residential smart energy hub can range from the in-
terval [0.91, 0.97], [0.4, 0.5], [0.4, 0.5], [0.35, 0.45], re-
spectively. [0.4, 0.5] and [0.4, 0.5] are randomly selected. The
coeflicients of the cost function for electrical energy are 4, 2,
and 5, respectively. The coeflicients of the cost function for
natural gas are 3, 1, and 4, respectively. The coefficients in the

benefit function of each residential smart energy hub are
randomly selected from the interval [10, 20] in the time
period 12:00-14:00 and the time period 18:00-21:00. For
other time periods of the day, the coeflicients are randomly
selected from the interval [5, 10]. The coeflicient for all
residential smart energy hubs is set to 0.5. For the scheduling
parameters that do not use the above algorithm, they are set
to 0.7 and 0.6, respectively.

Figure 5(a) depicts the changes in total electrical energy
load of residential smart energy hubs under the unused and
used demand response management algorithms. Without
using the DRM algorithm, the electrical energy load has
obvious fluctuations, and the peaks exist in the period
around 13:00 and 20:00. Using the DRM algorithm, the
power load becomes smooth, and the peak is reduced by
about 20.5% around 13:00, and by about 21.45% around 20:
00. Figure 5(b) depicts the variation of total natural gas load
of residential smart energy hubs without and with DRM
algorithm. When the DRM algorithm is used, the natural gas
load becomes smooth, except that two peaks appear around
13:00 and 12:00, respectively. This is due to residential smart
energy hubs increasing the utilization of CCHP units to meet
their energy load needs during these peak hours.

Changes in the total power consumption of residential
smart energy hubs without and using the DRM algorithm
are studied in this paper. Compared with Figure 5, the two
peaks of the curve using the DRM algorithm are at 13 During
the period around 00 and 20:00. Power peak loads are used
to support the CCHP units. Figures also describe the changes
in the consumption of cold energy and heat energy of
residential users without and using the DRM algorithm,
respectively. In this figure, after using the DRM algorithm,
the cold energy consumption is smoothed, except for two
troughs, which is due to the fact that less electricity and
natural gas are converted into cold energy output at this
time. In this figure, after using the DRM algorithm, the
thermal energy consumption is also smoothed, except for
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the two troughs, due to the fact that less natural gas is
converted into thermal energy output at this time. Figures
also describe the changes of dispatch parameters in resi-
dential smart energy hubs without and with DRM algorithm,
respectively. In this figure, the dispatch parameters have a
significant increase in the period around 13:00 and 20:00,
which is because the residential smart energy hub needs
more natural gas to be converted into electricity for output.
On the contrary, in the figure, the dispatch parameters show
a significant increase in the period around 13:00 and 20:00,
as residential smart energy hubs tend to need to reduce the
output in the form of electrical energy converted into heat.
The convergence performance of the Stackelberg game
method for multienergy demand response management is
shown in Figure 6. There are 3 curves in this figure, and each
curve represents the change in energy cost of a residential
smart energy hub. According to the figure, at the beginning,
the energy cost of residential smart energy hubs and the
energy benefits of energy suppliers vary greatly. After about
500 iterations, the energy costs of residential smart energy
hubs and the energy benefits of energy suppliers hardly
change. At this time, we can think that the Stackelberg game
between the energy supplier and the residential smart energy
hub has reached the Stackelberg equilibrium. Figure also
compares the changes in the total energy cost of residential
smart energy hubs without and using the DRM algorithm.
As can be seen from figure, after using the above game
method, the cost of the residential smart energy hub is
reduced by about 30%. Figure also compares the changes in
the total energy revenue of energy suppliers without and
using the DRM algorithm. It can be seen from the figure that
the above game method can effectively improve the income
of the energy supplier of electricity and natural gas.
Figure 7 shows the MAPE values of the proposed al-
gorithm for three different ways for wind power prediction
step. The wind power prediction process based on historical
data is called step=1. New results can be obtained in a
similar fashion by adding the forecast results to the historical
data, a process called step=2, and so on. From the simu-
lation results, it can be found that MAPE increases with the

MAPE

FiGure 7: MAPE.
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increase of prediction step size. Thus, it can be concluded
that as the step size increases, the result becomes inaccurate.
The simulation results show that the algorithm can obtain
the smallest prediction error compared with the other two
algorithms. Specifically, when step =5, the absolute error of
prediction is reduced by 7.3% compared with the SVM
algorithm, and the absolute error of prediction is reduced by
32.4% compared with the Adam algorithm.

Figure 8 is a comparative analysis of the convergence of
different algorithms. It can be seen from Figure 8 that, with
the increase of the number of iterations, no matter whether
the proposed Stackelberg game or the classical Nash non-
cooperative game algorithm is used, after a small number of
iterations, the very clear convergence can be achieved.
However, the proposed big data-based renewable energy
management system using Stackelberg game has better
convergence than Nash, and at the same time, compared
with other algorithms, Stackelberg game can bring more
benefits to the microgrid system.

Overall, the Steinberg method is applied to the problem
of multi-energy demand response management in resi-
dential smart microgrids. In the above game model, the
energy supplier, as the leader, adjusts its energy price to
maximize its own benefit, while the residential smart energy
hub, as the follower, adjusts its energy resource consumption



according to the energy price to minimize its own the cost.
We prove the uniqueness of the Stackelberg equilibrium in
this game model and present a demand response manage-
ment algorithm that can achieve this equilibrium. The
simulation results show that the above game method can
effectively improve the utilization efficiency of various en-
ergy resources, improve the energy suppliers’ income from
selling energy, and reduce the energy consumption cost of
users. Through noncooperative game analysis in various
noncooperative game models, hierarchical models among
players can be effectively modeled in which leaders have
market dominance over followers and can impose their own
strategies on followers.

4. Conclusion

This paper focuses on energy management systems con-
sisting of power plants, energy storage companies, micro-
grids, and electricity users. In order to effectively utilize
renewable energy, it is proposed to use big data-based power
generation forecasting technology to obtain short-term wind
power forecasting results to help microgrids implement
energy management strategies. On this basis, the paper
defines the energy management problem as a three-stage
Stackelberg game, which regards each role in the electricity
market as a gamer. While ensuring the reliability of the
system, it can meet the user’s electricity demand and make
maximum personal benefits. The three-stage optimization
problem is solved by reverse induction, and the closed
analytical expressions of the optimal price and demand
strategy in each stage are derived. Finally, the effectiveness of
the algorithm is verified by simulation, and it is proved that
the prediction error will reduce the optimal benefit of the
microgrid. The experimental results show that the perfor-
mance of the genetic algorithm is better than other tradi-
tional algorithms, which is beneficial to energy management.
In future work, the focus will be on the management of
energy cooperation among multiple microgrids based on
renewable energy and electricity consumption forecasting.
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