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In the deformation monitoring data of gravity dams, a few outliers are often found, which will have adverse e�ects on the
monitoring of model building and other data analysis work. In this study, the multiple local outlier coe�cient method was
proposed to quickly detect the outlier data in real time and to provide high-quality data for subsequent data analysis. �is method
was based on the idea of distance in the outlier detection algorithm, aiming at laws and characteristics of gravity dam deformation
monitoring data. First, the basic principle, calculation steps, and basic features of the multiple local outlier coe�cient method were
studied. �en, for the two important parameters of the algorithm, the appropriate window length was selected using auto-
correlation and partial autocorrelation analysis, and the appropriate threshold values were selected using the 3σ criterion,
maximummethod, and empirical method. Finally, an engineering example was used to verify that the algorithm could accurately
detect the outliers in the gravity dam deformation monitoring data, and the deviation degree and meaning of the outliers were
understood according to the calculated outlier coe�cient. �e multiple local outlier coe�cient method has the advantages of a
simple calculation principle, fast calculation speed, real-time detection, and a clear meaning of calculation results. By selecting the
appropriate parameters, the method could satisfy the outlier detection of di�erent types of data, o�ering an advantage in adapting
to the computing demand of massive monitoring data and improving the intelligence and real-time monitoring of dam safety.

1. Introduction

Deformation monitoring data contain important informa-
tion on dam or slope deformation. �ese data are an im-
portant basis for understanding the deformation
mechanism, predicting deformation, and evaluating the
safety state [1, 2]. However, in the process of data collection,
it is inevitable that error information will appear in mon-
itoring data. For random errors, the relevant methods of
empirical mode decomposition are often used to reduce
their proportion in the original data, so as to improve the
calculation accuracy of the prediction model [3, 4]. For
outliers, the causes of their generation usually include in-
strument failure, structural damage, human factors, or other
uncertain factors. �e situation is relatively complex. So it is

necessary to detect them �rst. In the analysis of gravity dam
deformation monitoring data, these outliers often contain
important information about whether the dam is abnormal.
�erefore, timely and accurate detection of outliers is very
important to ensure the safe operation of the dam.

At present, the methods for detecting outliers mainly
include the expert experience method, statistical probability
method, multiscale decomposition, and data mining in
gravity dam deformation monitoring data analysis. �e
expert experience method detects outliers by manually
analyzing the data process line. �is method relies too
heavily on the individual levels of experts, and its e�ciency is
low. �e statistical probability method detects outliers
according to statistical eigenvalues of data. Commonly used
methods include the 3σ criterion [5] Chauvenet criterion [6],
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Grubbs criterion [7], Dixon criterion [8], and small prob-
ability theory [9]. 'ese methods are simple to apply but
usually have certain requirements regarding quantity and
quality of the data, with certain assumptions. As a result,
these methods have many inconveniences. Wavelet analysis
is a representative method of multiscale decomposition,
where after multi-scale analysis of data, it can detect outliers
by identifying the modulus maximum points of decomposed
coefficients. Studies have shown that outliers can be clearly
detected in high frequency parts after decomposition [10].
Wavelet analysis is based on the internal relationship of the
data for detection, without involving the influence of ex-
ternal causes. Data mining is a fast developing subject in
recent years and has been widely used in various fields
[11, 12]. Outlier detection is an important research direction
in data mining [13]. 'e representative algorithms include
the local outlier factor (LOF) and K-nearest neighbor (KNN)
algorithm [14, 15]. 'ese methods usually determine
whether there are outliers based on the distance between
data. According to this principle, some scholars have pro-
posed the DE-LOF outlier detection algorithm [16]. DE-LOF
first performs first-order difference on the original data. For
the differenced sequence, according to the distance between
each value and the first ten values, an LOF algorithm is used
to determine the local outlier coefficient of this value. Fi-
nally, a set of sequences composed of local outlier coeffi-
cients is obtained, and then, the small probability method is
used to determine the threshold value to determine which
values are outliers. By default, this method determines
whether the value is an outlier according to the first ten
values to be detected. Whether the range of these ten values
is reasonable needs further study.

In addition, many scholars have attempted a variety of
methods for dam data outlier detection. In the Bayesian dy-
namic linear model framework with the switched Kalman fil-
teringmethod [17], the observed structure data are decomposed
into a group of hidden components and different components
are described in different ways. If any changes occur in the local
trend, a local acceleration component must be added to model
its rate of change. At the same time, this method combines the
advantages of dynamic adjustment of the Kalman filter. 'is
method has the advantages of high robustness, high timeliness,
and no marking of training data. 'is method needs to build a
model first. When building themodel, how to deal with outliers
in the training data also exists in the enhanced regression tree
method [18], dynamic mutation blind spot [19], SSA-NAR
model [20], etc. 'e above methods for detecting outliers need
to establish a prediction model first, and then judge whether
there are outliers according to the error between the predicted
data and the measured data. However, it fails to perform outlier
detection when there are outliers in the data of the training
model before the establishment of the model.

In order to improve the accuracy and reliability of the
analysis and calculation of gravity dam deformation mon-
itoring data, it is necessary to detect outliers in the original
data before data analysis. To solve this problem, this paper
proposed a multiple local outlier coefficient (MLOC)
method based on the aforementioned research methods and
ideas [21, 22]. Different from the DE-LOF method, the

MLOC method explored the correlation between the value
to be detected and the data before k times. 'is ensures that
highly correlated data were used as a basis for judging
whether the data to be detected are an outlier. At the same
time, the MLOC method has no restrictions on the selection
method of its key parameters, which enables the method to
flexibly adjust parameters according to the change rules and
characteristics of different types of data, and has stronger
adaptability. In addition, this method can independently
detect outliers of real-time monitoring data to meet the
demand of real-time monitoring of dams.

2. Multiple Local Outlier Coefficient Method

2.1. Basic Conception

2.1.1. Basic Principles. 'e deformation process of gravity
dams is usually stable in the short term but will be periodic
and monotonous in the long term. According to defor-
mation characteristics, theMLOCwas proposed in this work
for outlier detection in gravity dam deformation monitoring
data. 'is method is based on the distance between the data
at a certain time and the data before k times, to assess
whether it is an outlier. Specifically, at the first moment, a set
of window data and a value to be detected are selected from
the original monitoring data. 'ey are entered into the
MLOC method to judge whether the value to be detected is
an outlier. 'en, the value that has been detected is added to
the window data, and the first value in the window data is
removed to complete the update of the window data. After
that, the data after the value that has been detected can be
detected, that is, the outlier detection at the second moment.
By analogy, the method can continuously detect outliers for
the latest data. 'e workflow is shown in Figure 1.

In this work, we assumed three assumptions for this
method as follows:

(1) 'ere was a high correlation between the data at a
certain time and the data before k times

(2) 'e changes between data and the data before k times
were relatively smooth

(3) Outliers occur in a small amount and at a low rate
and should not exceed half of the total amount of
data in the window data

'e parameters in this method include the window data
length k and threshold B. 'e first k data of the data to be
detected were called the window data, where k was the
window length. 'e criterion for determining whether the
data to be detected were outliers was called threshold B.

Let the gravity dam deformation monitoring data be
expressed as X= {x1,x2,. . .,xt}, and the difference sequence of
lagging order i of X is expressed as ΔiX= {xi,1, xi,2,. . ., xi,j}:

Δxi,j � xi,j − xi,j−i, (1)

where i= 1,2,. . ., k represents the lag order, j= 1 + i, 2 + i, . . .,
t represents the value at the jth moment, and Δxi,j represents
the difference between xj and the data at the previous
moment.
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If the window length was k, there were k difference
sequences ΔiX(i= 1,2,. . ., k). Each difference sequence had
two thresholds, maximum and minimum, while the k dif-
ference sequences had a total of 2k thresholds. 'e MLOC
method was calculated as the ratio between Δxi,j and the
thresholds of ΔiX. If the ratio was less than or equal to 1, it
indicated that the value to be detected was within the
threshold range and was normal, while the outlier coefficient
was defined as 0. Otherwise, it meant that the value to be
detected was outside the threshold range, and the ratio
consisted of the multiple outlier coefficient, where the larger
the ratio, the greater the outlier degree.

Because the gravity dam deformation data had a slow
monotonic trend in the long run, the positive and negative
changes in the data were slightly different. 'erefore, there
were two thresholds for ΔiX: maximum and minimum,
while k difference sequences had 2k thresholds. 'e data to
be detected could obtain k outlier coefficients at most, where
the largest absolute value among the outlier coefficients was
the final outlier coefficient.

2.1.2. Calculation Steps. Let the deformation monitoring
data of the gravity dam be expressed as {x1, x2,. . ., xt− 1, xt,
xt+ 1. . ., xt + i}. 'e calculation steps for the MLOC method
are as follows:

(1) Determine the parameters. According to the original
monitoring data, the k value and threshold B were deter-
mined, where threshold B contained the maximum
threshold B1 � {b11, b12,. . ., b1k} and the minimum threshold
B2 � {b21, b22,. . ., b2k}.

(2) Extract the initial window sequence. 'e first window
data were denoted asW� {xt− k,. . ., xt− 2, xt− 1}, and the data
to be detected were {xt, xt+ 1,. . ., xt + i}.

(3) Determine the initial outlier coefficient. We made sure
that the initial window data were all normal values, where
the outlier coefficient λ of each value was 0.

(4) Mark the normal data. 'e MLOC method defaulted to
the majority of data in the window data as normal data,
according to the outlier coefficient. 'is step is needed to
mark the normal data in the window data and group them
into a set Z, Z⊆W.

(5) Calculate the outlier coefficient.

(i) We calculated the difference value di between the value
xt to be detected and each value in Z,
di� xt− xi(xi ∈ Z), where the set comprising di was D.

(ii) We calculated the multiple outlier coefficients ui for
xt, where the set comprising ui was U:
Ui � di/b1i (di∈D且di≥ 0); ui � di/b2i (di∈D且di< 0).

(6) Determine the outlier coefficient. If |ui|> 1 is in U, we
selected the umax with the largest absolute value in U as the
outlier coefficient λt of xt.

If |ui|≤ f, the value xt to be detected was normal data, and
its outlier coefficient λt � 0 was defined.

(7) Update the window data. We added xt to the window data
W and eliminated xt− k. 'en, we used the data xt+ 1 at the
next moment as the data to be detected. Steps 4–7 were
repeated to continuously detect real-time data.

2.1.3. Basic Features. According to the above introduction
for the MLOC method, this method has the following four
features.

(1) High efficiency. Faced with a considerable amount of
streaming data, the MLOC method could extract, store, and
calculate a small amount of data, and the calculation process
was simple. 'erefore, this method was highly efficient.

(2) Clear meaning. 'e outlier coefficient represented the
ratio between the distance of the data to be detected, de-
viating from the first k data and the corresponding
threshold, and the meaning of the outlier degree was clear.

�e original deformation monitoring data of gravity dam

Multiple local outlier
coefficient method�e window data
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Figure 1: 'e workflow of the multiple local outlier coefficient method.
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(3) Real time. 'e MLOC method only had to measure the
value to be detected and the first k data and did not need to
know the data after the value.'erefore, the data acquired in
real time could be detected.

(4) Not affected by outliers. 'e MLOC method defaulted to
the minority of outliers in the window data, and this method
judged the value to be detected based on the majority of
normal values in the window data. 'erefore, even if there
were outliers in the window data, it did not affect the cal-
culation process.

(5) Wide range of applications. 'e traditional outlier de-
tection method could only detect spike outliers, while the
MLOC method could detect not only the spike outlier but
also the step outlier, as shown in Figure 2. However, spike
outlier did not exceed half of the window length, and the step
outlier only appeared once in the window data.

2.2. Window Length Selection. To determine the window
length, it was necessary to know whether there was a high
correlation between the data at a certain moment and the
data at a previous i moment. In this work, autocorrelation
and partial autocorrelation were used to analyze the cor-
relation of the gravity dam deformation monitoring data.

2.2.1. Autocorrelation. Autocorrelation refers to the corre-
lation between a sequence and its lag i-order sequence.
When a sequence changes in the same direction as its lag i-
order sequence, this indicates that the sequence is a positive
autocorrelation. Otherwise, it will be a negative autocor-
relation. 'e deformation monitoring data of a gravity dam
consisted of a one-dimensional time series, where the first-
order linear autoregressive form is as follows [23]:

xi � ρxi−1 + εi, (2)

where xi is a random variable, ρ is the self-covariance co-
efficient or the first-order autocorrelation coefficient
(−1< ρ< 1), and εi is the random interference term.

Equation (1) is actually the unitary linear regression
model, where xi is the dependent variable, xi− 1 is the in-
dependent variable, and ρ is the regression coefficient.
Calculating the autocorrelation of xi actually consisted of the
process of calculating the autocorrelation coefficient, and the
least square method is used to solve the autocorrelation
coefficient as follows [23]:

ρ �


n
i�2 xixi−1


n
i�2 x

2
i−1

. (3)

With a large sample size, the autocorrelation coefficient
can usually be estimated according to the following formula
[23]:

ρ �


n
i�2 xixi−1�������������


n
i�2 x

2
i 

n
i�2 x

2
i−1

 , (4)

where the correlation coefficient is a function of time t.
Calculating the correlation served as the process for solving
the autocorrelation function.

2.2.2. Partial Autocorrelation. Usually, the correlation be-
tween random variables xi and xi− k will not be completely
independent, as they will also be affected by xi− 1, xi− 2,. . .,
xi− k− 1. If only the correlation between xi and xi− k needs to
be considered, the partial autocorrelation between them
should be calculated. 'erefore, the high-order autore-
gressive model is given as follows [24]:

xi � ϕ1xi−1 + ϕ2xi−2 + · · · + ϕkxi−k + εi, (5)

where ϕk is the partial autocorrelation coefficient and εi is the
random interference term.

'e following formula can be obtained by multiplying
both sides of (5) by x− 1, xi− 2,. . ., xi− k [24]:

ρ1 � ϕ1ρ0 + ϕ2ρ1 + · · · + ϕkρk−1,

ρ2 � ϕ1ρ1 + ϕ2ρ0 + · · · + ϕkρk−2,

⋮

ρk � ϕ1ρk−1 + ϕ2ρk−2 + · · · + ϕkρ0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

'is equation gives the Yule–Walker equation. Cramer’s
method can be used to solve ϕk as follows [24]:

%
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,
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. . . .

(7)

2.2.3. Other Instructions. 'rough correlation analysis, we
could determine that the data at a certain time had a sig-
nificant correlation with the data at the previous K time.
When a step outlier was encountered, the data sequence was
split into two parts, as shown in Figure 1. When two parts
had the same amount of data, it was impossible to test the
following data. 'erefore, to ensure that the following data
could be detected based on the two parts of the data and
improve the range of data correlation, the k= 2K+ 1 method
was used to determine the final window length.
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2.3.Dreshold SelectionMethod. 'reshold is a key criterion
that can be used to determine whether the data to be detected
are outliers or not. In the MLOC method, different
thresholds should be set for different lag sequences.
'reshold selection is complicated, and the commonly used
method involves the 3σ criterion. A reasonable threshold can
be finally determined by considering the calculation results
of various methods.

2.3.1. 3σ Criteria. 'e 3σ criterion is considered the most
representative statistical method for detecting outliers. It
assumes that data contain only random noise and then
calculates the mean value μ and standard deviation σ of data,
selecting an appropriate interval according to a certain
probability. If data exceed this interval, they will not be
considered random noise but an outlier. Otherwise, data will
be considered normal data.

Let the data sequence be {x1, x2,. . ., xj, xj+ 1,. . ., xt}, where
the mean value of this data group is as follows:

μ �
1
t



t

i�1
xi. (8)

'e standard deviation is as follows:

σ �

������������

1
t



t

i�1
xi − μ( 

2




. (9)

A reasonable threshold could be determined based on μ
and σ, where 3σ has usually been used to determine whether
data are outliers. 'e 3σ criterion has usually been required
to ensure that historical monitoring data will be sufficient
and include data for extreme conditions. Only following this
approach, data could represent the normal deformation of
the dam body under various conditions.

2.3.2. Other Methods. 'reshold determination can be ac-
complished in many ways. Specifically, the extreme value
method adopts the maximum and minimum values of
historical normal data as the threshold, while the finite el-
ement method can be used to calculate the safe deformation
model of the dam body as the threshold value. 'e finite
element method can also be used to calculate the safe de-
formation range of the dam body, and the results can be used
as the threshold. 'is process is typically considered com-
plex for determining the threshold, and it is usually

necessary to determine the threshold based on expert ex-
perience and a comparison of similar projects [25, 26].

3. Example Calculation

3.1. Project Overview. In this study, a power station hub
consists of a barrage, a water discharge structure, a water
delivery system, an underground powerhouse and a ground
switch station. 'e barrage is a roller-compacted concrete
gravity dam.'e maximum dam height of a concrete gravity
dam was set to 72.4m, the maximum length of the dam crest
was 206m, and the maximum width of the dam crest width
was 7.5m.'e total reservoir capacity was 47 million m3, the
total installed capacity was 250MW, and the dam was di-
vided into 9 sections, as shown in Figure 3. Except for dam
section no. 9, a displacement monitoring point was set at the
top of the other eight dam sections. 'e monitoring points
were numbered EX1∼EX8, as shown in Figure 4.

In this work, the data of EX4 point in dam section no. 5
were selected for analysis, and the data are shown in Figure 5.
'e EX4 point was located at the dam top in the middle of
the riverbed. Its variation range and law were representatives
to some extent, which could reflect the general law of
horizontal displacement of the dam top of the concrete
gravity dam. 'e data for EX4 were measured once a day,
including 869 data from June 2, 2016, to October 22, 2018,
and 720 data were used as training data, while 149 subse-
quent data were used as test data.

3.2. Selection of Window Length. In this work, autocorre-
lation and partial autocorrelation analysis were used to
analyze the correlation of the deformation monitoring data
of the gravity dam. 'en, the window length k was deter-
mined according to the calculation results.

Before the correlation calculation of the EX4 point, the
first-order difference calculation was first conducted to
ensure that the data consisted of the stationary sequence,
namely, the Δ1EX4 sequence. 'e calculation results of the
autocorrelation coefficient and partial autocorrelation co-
efficient of the Δ1EX4 sequence are shown in Figure 6. 'e
results showed that Δ1EX4 sequences were significantly
correlated within the three orders. 'is also indicated that
certain data in the EX4 sequence had a significant corre-
lation with the data in the first three moments.

Figure 3: Photo of the gravity dam.

xi–1
xi+1 xi

xi+1

xi+2

xi+3

xi+4

xi

Figure 2: Spike outlier and step outlier.
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According to the above calculation results, K was 3.
According to section 2.2, the window length k� 2K+ 1 is 7.

3.3. Dreshold Selection. In this work, the 3σ criterion was
first used to calculate the thresholds of the Δ1EX4∼Δ7EX4
sequence. 'en, the calculation results were analyzed by
expert experience. Finally, the maximum and minimum
values were used as thresholds.

According to equations (8) and (9), 730 historical data for
EX4 points were calculated. 'e 3σ calculation results of the
Δ1EX4∼Δ7EX4 data sequences are shown in Table 1 and
Figure 7.

As shown in the above results, some of the values in the
Δ1EX4∼Δ7EX4 sequences were not in the range of 3σ.
However, after expert analysis, these values were not out-
liers, because there were only more than two years of data
available for EX4. Compared to the lifetime of gravity dams
over decades, the total amount of data was small and there
were not representative enough data. 'erefore, the calcu-
lation results were too conservative.

'eMLOCmethod did not limit the selection method of
thresholds. Multiple methods could be used to determine the
threshold value. 'e purpose of this work was to verify the
feasibility of the MLOC method and whether it could
achieve the expected purpose. Considering this, we adopted

8# 7# 6# 5# 4# 3# 2# 1#
EX5 EX6 EX7 EX8

9#
EX1 EX2 EX3 EX4

Figure 4: Downstream elevation view of the gravity dam.
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Figure 6: 'e autocorrelation coefficient and the partial autocorrelation coefficient of Δ1EX4.
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the maximum method to finally determine the threshold.
According to the extreme value method, the threshold
calculation results of the maximum method are shown in
Table 2.

In Table 2, the absolute values of the minimum
thresholds were all smaller than the absolute values of the
maximum thresholds. 'is was because dam deformation
not only achieved relatively stable periodicity but also un-
derwent creep with time. 'us, the forward displacement of
dam deformation was greater than the backward displace-
ment, and the cumulative forward creep displacement was
generated.

3.4. Calculation Results of Multiple Local Outlier Coefficients.
According to the determined window length k and threshold
set B, outliers could be detected for the test data of EX4. To
better illustrate the outlier detection effect of the MLOC
method, three spike outliers and step outliers were added to
the test data. 'e calculation results of the outlier coefficient
for the test data are shown in Figure 8, and the information
about outliers detected is shown in Table 3.

According to the calculation results of the outlier co-
efficient, three spike outliers, step outliers, and four outliers
afterward were detected. 'is showed that the MLOC
method met the expected detection target. In addition, four
outliers were also detected in the original test data. 'is

Table 1: 3σ calculation results of the Δ1EX4∼Δ7EX4 sequences.

Data sequences Δ1EX4 Δ2EX4 Δ3EX4 Δ4EX4 Δ5EX4 Δ6EX4 Δ7EX4

μ −0.0043 −0.0087 −0.0130 −0.0176 −0.0224 −0.0269 −0.0310
σ 0.1912 0.3269 0.4368 0.5276 0.6054 0.6742 0.7343
3σ 0.5737 0.9806 1.3104 1.5828 1.8162 2.0225 2.2030
μ− 3σ −0.5780 −0.9893 −1.3234 −1.6004 −1.8386 −2.0494 −2.2340
μ+ 3σ 0.5694 0.9719 1.2974 1.5653 1.7938 1.9956 2.1720

Δ 1
EX

4
Δ 2

EX
4

Δ 3
EX

4
Δ 4

EX
4

Δ 5
EX

4
Δ 6

EX
4

Δ 7
EX

4

Figure 7: Δ1EX4 ∼ Δ7EX4 sequences and their 3σ interval.

Table 2: 'resholds of the Δ1EX4 ∼ Δ7EX4 sequences.

Data sequence Δ1EX4 Δ2EX4 Δ3EX4 Δ4EX4 Δ5EX4 Δ6EX4 Δ7EX4

Maximum threshold 1.0275 1.3599 1.8079 2.0180 2.0699 2.2350 2.4682
Minimum threshold −0.7412 −0.9674 −1.3599 −1.6994 −1.8610 −2.0226 −2.1796
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indicated that the difference between them and the data at a
certain time beforehand exceeded the maximum or mini-
mum values in the historical data. For the data at 2018.6.28,
the historical minimum value (the minimum value in the
730 training data) of the lag 2 order difference sequence was
−0.9674. However, in the test data, the difference value of lag
2 order was −1.0940, which was less than −0.9674. 'is
indicated that the deformation of the dam on June 28, 2018,
was less than the historical minimum, and its outlier co-
efficient was in the ratio of −1.0940 to −0.9674, which was
−1.1307. 'e minus sign indicated that the dam was moving
upstream.

Step outliers were generated from September 12, 2018,
and the following three data were also judged as outliers,
which was the principle of the MLOC method. When step

outliers occurred, the following three data appeared to meet
the normal law; however, they were still a small number of
outliers compared to the general law of the previous data.
'e discriminant range set by this method was greater than
half of the window data, that is, greater than 7/2. 'erefore,
the step value and the three values behind it were judged as
outliers, and the values after that were judged as normal.

'e added outliers tended to deviate greatly from the
original data, and this was easy to detect. 'e four outliers
detected in the original test data were not outliers according
to their changing trend. 'is was because this work deter-
mined the threshold based on the maximum value of his-
torical data.'e 730 historical data sequence was short; thus,
the threshold setting was more cautious. However, this had
no impact on the overall analysis of the data, and the MLOC
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Figure 8: 'e calculation results of the multiple local outlier coefficient algorithm. (a) Test data process line-added outliers. (b) Outlier
coefficient for test data-added outliers.

Table 3: Information for the outliers detected.

Date Data Outlier coefficient Differential order Difference value 'reshold
2018.6.7 2.0000 3.3637 1 3.4562 1.0275
2018.6.20 1.5000 3.8597 1 3.9658 1.0275
2018.6.28 −4.0808 −1.1307 2 −1.0940 −0.9674
2018.6.29 −4.4181 −1.0525 3 −1.4314 −1.3599
2018.7.11 −4.4256 −1.2230 2 −1.1833 −0.9674
2018.8.29 −6.0000 −3.8779 1 −2.8743 −0.7412
2018.9.12 2.2536 3.8326 1 3.9380 1.0275
2018.9.13 1.9609 2.6803 2 3.6453 1.3599
2018.9.14 1.7351 1.9628 6 4.3870 2.2350
2018.9.15 1.4027 1.6427 7 4.0546 2.4682
2018.10.12 2.7894 1.0233 2 1.3917 1.3599
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method did not limit the method of determining the
threshold. 'us, the threshold could be determined in a
more reasonable way, and then, outliers could be detected.

4. Conclusions

According to the law and characteristics of gravity dam
deformation monitoring data, this work put forward the
MLOC method for the real-time detection of outliers.
'rough systematic research and example calculation of this
method, the following conclusions were obtained:

(1) 'e values before and after the deformationmonitoring
data of the gravity dam showed a significant correlation
within a certain range. According to this feature,
whether the value to be detected was an outlier could be
judged according to its value at a time before k.

(2) When calculating the thresholds based on the his-
torical deformation monitoring data, the historical
data required sufficient capacity and representa-
tiveness. 'e MLOC method did not limit the
method of determining the threshold; therefore, a
variety of methods and expert experience were fully
considered to determine the threshold.

(3) 'e MLOC method has the advantages of fast cal-
culation speed and real-time detection. 'e example
calculation results showed that this method could
accurately detect outliers in the monitoring data, and
the deviation degree and meaning of the outliers
could be understood by the outlier coefficient.

'e MLOC method is based on the distance between the
data at a certain time and the data before k times to assess
whether it is an outlier. 'e key parameters include the
window length and the threshold. As long as the values
before and after a set of data have a certain correlation, the
outlier detection can be carried out by adjusting parameters.
However, the selection of the threshold is always a very
complex research problem in engineering, which usually
needs to be determined by combining a variety of methods
and expert experience. 'e MLOC method has no restric-
tions on the method of parameter selection, so it has strong
flexibility and can be applied to real-time outlier detection of
various types of data.
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