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In this paper, a car-following model considering various driving styles is constructed to fulfill the personalized needs of different
users of autonomous vehicles. First, according to a set of selection rules, car-following events are selected from the Next
Generation Simulation (NGSIM) dataset, and then through an unsupervised machine learning method, the extracted data are
divided into two styles, i.e., conservative and aggressive. Statistical analysis is then conducted to analyze the differences in vehicle
speed, acceleration, desired time headway, and so on between both driving styles. Based on the analysis, a car-following model
based on model predictive control is designed. Experimental results from testing data show that the proposed car-following
models demonstrate different driving styles in terms of safety, comfort, and effectiveness. ,e conservative driving model is safer
and more comfortable than the radical driving model, but the driving efficiency is low.

1. Introduction

A car-following model is one of the most important mi-
croscopic traffic flowmodels [1] and depicts the longitudinal
behavior of a vehicle and its interaction with leading ve-
hicle(s) in the same lane [2]. Controlling vehicle velocity to
maintain a safe and comfortable following distance is the
main goal of a car-following model [3]. ,e first car-fol-
lowing model was developed in the 1950s [4], and a large
number of traditional car-following models have been
proposed since then [5], e.g., the intelligent driver model
(IDM) [6], Gazis–Herman–Rothery (GHR) model [7], op-
timal velocity model [8], and Wiedemann model [9]. In
addition, many car-following models based on intelligent
algorithms and machine learning have been developed in
recent years. Luo et al. [10] proposed a car-following model
based on amodel-predictive-control (MPC) framework with
multiple objectives. Zheng et al. [11] presented a car-fol-
lowing model with a k-nearest-neighbor algorithm, which
outputs the most similar cases with the trained model. Jia
et al. [12] introduced a method to model car-following
behavior with an artificial neural network, which takes
several inputs and uses them to predict acceleration. Zhu

et al. [3] proposed a model based on reinforcement learning
that, through training, can effectively control the speed
during car following.

Since the individual perception of comfort is different, it
is not enough to simply study the car-following model. Some
studies have aimed to meet the personalized needs of dif-
ferent users and focused on car-following models in which
driving styles are considered. For example, Lefevre et al. [13]
presented a car-following model based on a non-parametric
regression method, which is a combination of a hidden
Markov model (HMM) and Gaussian mixture regression
(GMR).,e function of the Lefevre et al. model is to produce
an acceleration sequence using historical data. However, this
approach does not address the generation issue of the model
since the model is employed to compute an acceleration
sequence online that would only replicate what a human
driver would do in the corresponding circumstances. For
general scenarios, the performance of the model must be
further studied. Kuderer et al. [14] proposed an inverse
reinforcement learning method to learn driving styles from
demonstrations. In this situation, the expected feature values
of the model are matched with observed empirical feature
values. Experimental results suggested that the method can
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learn distinct policies for different users. ,e limitation of
this study is that the speed-change range is limited to the
range of 23–29m/s and is not convincing in other cases. Li
et al. [15] modeled the traffic environments and driving
styles with an artificial potential field (APF). ,e APF values
are used in the MPC model design process. In this way,
people’s driving habits and styles are added to the controller.
Although this algorithm can reflect driving style, it needs a
complex and effective APF design.

A personalized car-following model based on an MPC
algorithm, which can effectively solve the multiobjective
optimization problem under constraints, is proposed herein.
,e multiple objectives include minimizing the following:
(1) the error between actual inter-vehicle distance and de-
sired inter-vehicle distance to reflect driving styles, (2) the
relative speed to the leading vehicle to maintain following
behavior, and (3) the acceleration and the jerk to ensure
comfort. In addition, constraints can be integrated into the
driving style while ensuring safety.

,e rest of this paper is structured as follows. In Section
2, the dataset and car-following-event extraction rules are
introduced. In Section 3, a k-means clustering algorithm is
used to classify driving style, and the classified data are
analyzed based on statistical methods. In Section 4, the
method of the personalized driver car-following model is
discussed. In Section 5, the performance of the proposed
model is evaluated through comparative simulation. Finally,
our main conclusions and future directions are presented in
Section 6.

2. Data Preparation

2.1. Dataset. ,e Next Generation Simulation (NGSIM)
data that were collected in 2005 by the U.S. Federal Highway
Administration were used in this work.,ey provide precise
location information for every vehicle, recorded at 10Hz,
resulting in detailed lane positions and locations relative to
other vehicles. More specifically, we considered the I-80
dataset retrieved from Interstate 80 in Emeryville, CA, in the
San Francisco Bay Area on April 13, 2005. ,e study area
measures approximately 503m and includes eight lanes: five
driving lanes, one on-ramp lane, one off-ramp lane, and one
merging lane. ,e dataset contains 45min of trajectories for
vehicles on I-80, divided into three 15-minute periods: 4:00
p.m.–4:15 p.m., 5:00 p.m.–5:15 p.m., and 5:15 p.m.–5:30 p.m.
,e trajectory data of the timespan 4:00 p.m.–4:15 p.m. were
used in this study.

2.2. Data Preprocessing. Since the NGSIM raw data are
acquired from video analysis, they contain many chronic
errors and noise [16]. ,erefore, the Savitzky–Golay filter
[17], using a third-order polynomial with window length 21,
was employed to smooth the speed and acceleration data, as
illustrated in Figure 1.

2.3. Car-Following-Event Extraction. Car-following models
explain the driving states of a following vehicle (FV)
responding to the movements of a leading vehicle (LV) [18].

Figure 2 shows a typical car-following scene. In the same
lane, the driver of the following vehicle adjusts the driving
speed of their own vehicle in real time according to the
driving behavior of the leading vehicle to maintain the
desired distance; d refers to the inter-vehicle distance be-
tween two vehicles.

In line with the above definition of a car-following event,
the extraction rules are defined as follows.

(1) ,e LV and FV stay in the same lane.
(2) Lanes 1–5 are selected. ,e on-ramp/off-ramp

driving state may affect normal car-following
behavior.

(3) Only the vehicle type “car” is extracted. Different
types of vehicles behave differently when following.

(4) ,e timespan of the following event is> 15 s, en-
suring that car following lasted long enough to be
analyzed [3].

According to the above rules, a total of 572 vehicle pairs
(259,860 trajectory samples) were collected from the dataset.
For extracted car-following events, 70% were used for
driving style analysis and determining the design parameters
of the models, and 30% were used for testing.

3. Driving Style Cluster Analysis

Driving data that can reflect driving style are needed to build
a personalized car-following model. For this purpose, the
data must be categorized effectively based on different
driving styles.

Different behavior characteristics have been used in
different studies to identify driving styles. Aljaafreh et al. [19]
and Chen and Chen [20] selected acceleration and speed of
the FV as characteristics to identify driving style, while Li
et al. [15] chose acceleration and time headway. Gao et al.
[21] used a group of variables, e.g., relative speed, time
headway, and jerk, to reflect the differences in driving styles.
Sun et al. [22] utilized inter-vehicle distance, speed, and
acceleration/deceleration as car-following variables to ana-
lyze driving style.

Combining the inter-vehicle distance and speed of an
agent vehicle, the time to collision inverse (TTCi) is defined
as follows:

TTCi �
Δv
d

, (1)

where Δv is the relative speed between the LV and FV and d
is the inter-vehicle distance. In the present work, TTCi, time
headway, and the absolute value of acceleration/deceleration
were selected as the behavior characteristics to reflect the
driving style. Drivers were clustered into two driving styles:
conservative and aggressive, by a k-means algorithm [18].
,e clustering results are shown in Figure 3, from which it
can be seen that aggressive drivers tend to maintain less time
headway, less TTCi, and higher acceleration than conser-
vative drivers. ,e clustering centers are shown in Table 1.

Figure 4 presents the distribution of car-following speed
and acceleration at which the different driving styles exhibit
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a statistically distinct difference. In the conservative driving
style, the median value of the speed is approximately 7.18m/
s, the minimum value of the speed is 0.13m/s, and the
maximum value of the speed is 20.18m/s. In the aggressive
driving style, the same values are 9.76, 1.33, and 31.24m/s,
respectively. ,e acceleration shows no greater difference
than speed, but specifically, approximately 99% of the ac-
celeration value distribution ranged from − 3m/s2 to 3m/s2

for aggressive driving style and from − 2.5m/s2 to 2.5m/s2
for conservative driving style.

4. Car-Following Model That Considers
Driving Style

We obtained different driving styles’ trajectory data, and the
analysis in the preceding section shows differences between
conservative and aggressive drivers. ,ese differences in-
volve time headway, TTCi, speed, and acceleration in car-
following behavior. Consequently, these indicators are used
to quantify driving styles in modeling.

4.1. Spacing Strategy. Drivers of the same style tend to
maintain similar time headway in car-following scenes, but
there are great differences in time headway between different
styles. In this work, a car-following model is designed based
on the method of constant time headway. ,e equation of
the desired inter-vehicle distance is

Δddes � vfth + d0, (2)

where vf is the driving speed of the following vehicle and th
is the desired time headway; in the conservative driving style,
th is 3.16 s, and in the aggressive style, it is 1.92 s. d0 is a safe
distance when the vehicle is driving at 0 km/h or very low
speed. In this paper, the inter-vehicle distance when the
speed is less than 5 km/h (1.39m/s) is taken as d0. According
to statistics, the value of d0 is 5.56m in the conservative
driving style but 3.36m in the aggressive style.

4.2. Car-Following Model. Based on the longitudinal kine-
matics between the FV and LV, the following equation can
be derived:

x(k + 1) � Ax(k) + Bu(k),

y(k) � Cx(k),
(3)

where

1 2 3 4 5
Acce

lera
tio

n (m
/s

2 )

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

–0.08
–0.06
–0.04
–0.02
0.00
0.02
0.04
0.06
0.08

aggressive
conservative

TT
Ci

 (1
/s

)

Time Headway (s)

Figure 3: Clustering results of k-means algorithm.

1600

4

6

8

sp
ee

d 
(m

/s
) 10

12

14

1700 1800 1900
Frame_ID

2000 2100 2200

(a)

1600

–3

–2

–1

ac
ce

rle
ra

tio
n 

(m
/s

2 )

0

1

2

3

1700 1800 1900
Frame_ID

2000 2100 2200

(b)

Figure 1: Raw and smoothed NGSIM data using Savitzky–Golay filter for vehicle 515. (a) Longitudinal speed. (b) Longitudinal acceleration.
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x(k) � Δ d(k) Δv(k) v(k)􏼂 􏼃
T
,

u(k) � a(k),

A �

1 Δt 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �

− 0.5Δt2

− Δt

Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(4)

where k represents the kth time point, Δt is the sampling
interval (0.1 s), Δd is the inter-vehicle distance between the
FV and LV, v is the speed of the FV, and a is the acceleration
of the FV.

,e target of car following is that the driver adjusts the
vehicle’s speed to that of the LV and maintains the inter-
vehicle distance to the expected value.

Objectives: Δderr(k)⟶ 0;Δv(k)⟶ 0,where Δderr is
the inter-vehicle distance error, defined as follows:

Δderr � Δ d − Δddes. (5)

To provide comfort to the passengers during car fol-
lowing, the absolute value of acceleration and jerk must also
be as small as possible.

Objectives: |a(k)|⟶ 0, |j(k)|⟶ 0,where the jerk is
defined as follows:

j(k) �
a(k) − a(k − 1)

Δt
. (6)

In the conservative driving style, the largest value of jerk
is defined as

2.5m/s2 − − 2.5m/s2􏼐 􏼑

0.1 s
� 50m/s2, (7)

and in the aggressive driving style, the largest value of jerk is
defined as

3m/s2 − − 3m/s2􏼐 􏼑

0.1 s
� 60m/s2. (8)

Constraints must be met when solving optimization
problems. First, to avoid collision with the LV, the inter-
vehicle distance must satisfy the constraint of the minimum
value; here, the minimum value is defined as d0. Meanwhile,
to ensure that FV is in the car-following scene, the distance
should be smaller than the maximum car-following distance
(45.72m). Second, the minimum and maximum values of
speed, acceleration, and jerk must also be constrained.

Constraint 1: d0 ≤Δ d(k)≤ dmax.
Constraint 2: vmin ≤ v(k)≤ vmax.
Constraint 3: amin ≤ a(k)≤ amax.
Constraint 4: jmin ≤ j(k)≤ jmax.
,e specific values of the above constraints in different

styles are shown in Table 2.

Table 1: Clustering centers of car-following variables for different driving styles.

Driving style Driver number Time headway (s) TTCi (1/s) Acceleration (m/s2)
Conservative 136 3.1602 0.0011 0.5982
Aggressive 268 1.9221 − 0.0002 0.6399
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Figure 4: Distribution of car-following speed and acceleration. (a) Distribution of speed. (b) Distribution of acceleration.
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4.3. Model Predictive Control. MPC is a form of control in
which the current control action is acquired by solving
online, and the first value of the fixed control sequence,
which is obtained by solving an open-loop optimal control
problem [23], is applied. ,en, the horizon continues a
step and the procedure is repeated. MPC can solve
multivariable and constrained problems, so it is suitable to
incorporate the car-following model into the MPC
framework.

Based on the principles of MPC, the modeling of a car-
following problem is calculated as follows:

Y(k) � Ψξ(k) + ΘΔU(k), (9)

where

Y(k) �

η(k + 1|k)
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,

ξ(k + i|k) � x(k + i|k) u(k + i|k)􏼂 􏼃
T
,

Δu(k + i|k) � u(k + i|k) − u(k + i − 1|k),

(10)

where Np is the prediction horizon and Nc is the control
horizon. x(k+ i|k) and u(k+ i|k) refer to the open-loop
predictive state and control quantity at time point k,
respectively.

To obtain a manageable optimization problem, the cost
function can be defined as follows:

J(ξ(k), u(k − 1),Δu(k)) � 􏽘

Np

i�1
η(k + i|k) − ηref(k + i|k)

�����

�����
2

Q

+ 􏽘

Nc − 1

i�1
‖Δu(k + i|k)‖

2

R

,

(11)

where ηref (k+ i|k) represents the reference vector andQ and
R are weighting matrices of objectives and control, re-
spectively. In the car-following problem, they are defined as
follows:

ηref(k + i|k) � Δddes(k + i|k) 0 0 0􏼂 􏼃
T
,

Δu(k + i|k) � j(k + i|k)Δt,

Q �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

where R is a one-dimensional vector, R� 10.
,e optimization objectives together with the constraints

of MPC are

s.t.

d0 ≤Δd(k)≤dmax,

vmin ≤ v(k)≤ vmax,

amin ≤ a(k)≤ amax,

jmin ≤ j(k)≤ jmax.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

5. Simulation Results

In this section, the performance of the proposed car-fol-
lowing model is evaluated and the differences between
conservative and aggressive driving styles are analyzed. All
the investigations are based on testing data, and no collisions
occurred for both conservative and aggressive car-following
modes. ,e distribution of time to collision (TTC), jerk, and
time headway are used to compare the performance of
different models in safety, comfort, and driving efficiency.

5.1. Safety. In traffic flow research, TTC is used to represent
safety and is defined as the opposite of the ratio of inter-
vehicle distance to relative speed. Obviously, the larger the

Table 2: Constraint values of two driving style models.

Driving style d0 (m) dmax (m) vmin (m/s) vmax (m/s) amin (m/s2) amax (m/s2) jmin (m/s3) jmax (m/s3)

Conservative 5.56 45.72 0.13 20.18 − 2.5 2.5 − 50 50
Aggressive 3.36 45.72 1.33 31.24 − 3.0 3.0 − 60 60
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TTC value is, the safer it is. Figure 5 shows the distribution of
TTC for conservative and aggressive driving model simu-
lations. Only the values between 0 and 80 s are counted, and
some invalid data are eliminated.,emean value of the TTC
is approximately 33.36 s in the conservative driving style and
approximately 29.85 s in the aggressive driving style. ,is
shows that the driving behavior produced by the conser-
vative driving style model is safer than that produced by the
aggressive driving style model.

5.2.Comfort. A large absolute value of jerk indicates that the
comfort is low. Figure 6 compares the distribution of jerk for
conservative and aggressive driving style model simulations.
It can be noted that the jerk values generated by the con-
servative and aggressive driving style models are concen-
trated between − 2 and 2m/s3. ,e means of the absolute
value of jerk are 0.28 and 0.38m/s3, respectively. It can be
concluded that the comfort of the conservative driving
model is higher than that of the aggressive driving model.

5.3. Driving Efficiency. Figure 7 shows the distribution of
time headway under the conservative and aggressive driving
models. ,e time headway can reflect the driving efficiency
to a certain extent; that is, the smaller the time headway, the
higher the driving efficiency. As can be seen from the figure,
the time headway under the aggressive driving style is
maintained at approximately 2.4 s, while that under the
conservative driving style is maintained at 4.0 s. ,is shows
that the aggressive driving style has higher driving efficiency
than the conservative driving style.

Two car-following scenes were randomly chosen from
the testing data. Because the speed of the FV is closely related
to the speed of the LV, it cannot reflect the driver’s style well,
so in this work, the inter-vehicle distance, acceleration, and
jerk were selected to compare the performance of different
driving styles. Figures 8 and 9 show the observed inter-
vehicle distance, acceleration, and jerk generated by different
driver car-following models. It can be seen that under
different car-following models, the inter-vehicle distance
acceleration and jerk are significantly different. ,e
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conservative model maintains a larger inter-vehicle distance
and a smaller range of acceleration and jerk fluctuations; the
aggressive model maintains a smaller inter-vehicle distance
and a larger range of acceleration and jerk fluctuations.

Based on the results discussed above, it can be concluded
that the proposed different styles of car-following models
show different levels of safety, comfort, and efficiency in the
same car-following scene.

6. Conclusions

,is study proposed a car-following model considering
different driving styles. ,e model was based on an MPC
algorithm, and the design parameters of different styles of
models were derived from NGSIM data. ,e behavior of
the proposed model was analyzed in experiments, the
results of which showed that different driving style
models exhibited different levels of safety, comfort, and
effectiveness when following a lead vehicle. Compared to
the radical driving model, the conservative driving model

is safer and more comfortable; however, its driving ef-
ficiency is low.

Our planned future study will focus on three aspects of
this research. First, road traffic efficiency will be con-
sidered to maintain the inter-vehicle distance in a more
reasonable range. Our second objective will be to classify
driving styles in more detail to provide users with more
choices. Finally, we plan to design the driver model
combined with the executive ability of the lower controller
to ensure that the designed model is more reasonable and
practical.
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Figure 9: #2 Randomly chosen car-following events from testing data for comparing the performance of different driving styles: (a)
intervehicle distance, (b) acceleration, and (c) jerk curves.
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