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Uncertainty always lives with us. We cannot take exact measurement of initial conditions or parameters values in a
mathematical model. As humans, we are remaining alive in an environment where the uncertainties lie in the modelling of
physical phenomena. -ere might be some incomplete information or estimation of the parameter or initial values. To handle
uncertainty, we use fuzzy operators rather than classical operators. In this paper, we study a model of HIV-1 infection by
taking uncertainty in the initial data under Caputo fractional operator. We explore the existence and uniqueness of the results
through fixed-point theory. We study the Ulam–Hyres stability of the considered model. By using the fuzzy Laplace Adomian
decomposition method, numerical results are obtained for specific fuzzy initial conditions. To better understand the be-
haviour of the fuzzy solution, we present the obtained numerical results graphically for various fractional orders where the
uncertainty lies in [0, 1].

1. Introduction

AIDS (acquired immune deficiency syndrome) is one of the
most dangerous diseases caused by a pathogen virus called
HIV (human immunodeficiency virus) and leads a person to
death. In 1982, a patient in the USA was infected by HIV. At
the end of 2019, about 38 million people, identified by the
WHO (World Health Organization), were surviving with
HIV. In 2019, 0.69 million people died from diseases as-
sociated with AIDS. To investigate how AIDS can spread or
control, mathematical models are valuable instruments as
they provide a short or a long-term prediction of the fre-
quency of the disease. Many researchers have investigated
the dynamics of HIV infection models [1–3]. A lot of
methods have been used by researchers to find a solution to
HIV infections [4–6]. In [7], the authors presented an HIV-1
infection model which contains five compartments, denoted
by �M(t) (the uninfected CD4+ T cells), �M

∗
(t) (the con-

centration of infected cells), �M
∗∗

(t) (the concentration of
double cells), and Vp(t) and Vr(t) (the densities of pathogen

viruses), respectively. -e integer-order model of HIV-1
infection is given by

d

dt
�M(t) � λ − d1

�M(t) − β1 �M(t)Vp(t),

d

dt
�M
∗
(t) � β1 �M(t)Vp(t) − d2M

∗
(t) − ϵ1Vr(t) �M

∗
(t),

d

dt
�M
∗∗

(t) � ϵ1Vr(t) �M
∗
(t) − d3

�M
∗∗

(t),

d

dt
Vp(t) � k′ �M

∗
(t) − d4Vp(t),

d

dt
Vr(t) � c′ �M

∗∗
(t) − d5Vr(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where the host cells are produced at the rate λ. Moreover,
d1, d2, d3, andd4 are the rates of death of host cells, infected
cells, double infected cells, and pathogen virus, respectively.
β1 is the rate of infection of healthy CD4+ Tcells. -e rate of
production of HIV-1 by a cell is defined by k′, ϵ1 is infection
rate of removal of HIV-1 infected cells, c′ is the rate of
production of recombinant by a double-infected cell, and d5
is the removal rate of recombinant. -e mathematician has
taken an interest in fractional calculus in recent years as it
has many applications in engineering and biological sciences
[8–10]. In the last decade, the researcher converted many
models from integer order to fractional order which pro-
vides best results as compared to integer-order derivatives.
As fractional operator has a greater degree of freedom,
different researchers studied the existence theory of the
solution [11–13]. -e fractional operators also have been
used for modelling of different infectious diseases. Sweilam
et al. investigated the optimal control for variable order
fractional HIV/AIDS andmalaria mathematical models with
multitime delay [14]. -e Legendre spectral-collocation
method was used for solving fractional optimal control of
HIV infection of CD4+T cells’ mathematical model in [15].
A complex fractional-order HIV infection model with drug
resistance during therapy has been studied by Sweilam et al.
[16]. Some other applications of the fractional-order oper-
ators in various field of sciences can be found in [17–19]. It is
worthy to note here that the fractional derivative in the
Caputo sense is the most commonly used definition among
the definitions of the fractional derivative. -e definition of
Caputo is mathematically rigorous than the Rie-
mann–Liouville definition. -e Caputo derivative exists in

the whole interval (0, 1). In addition, Caputo definition is
very welcome in applied science and engineering. Fur-
thermore, properties of the Caputo derivative are helpful in
translating the higher fractional-order differential systems
into lower ones. For a comparison between Caputo and
Riemann–Liouville operators, the interested reader is re-
ferred to [20, 21]. -erefore, we will consider the fractional
operator in Caputo sense.

Confusion and uncertainty still live with us, and that is a
reality. Many human beings are exposed to doubting any-
thing surrounding them and questioning why for themselves
or others. Because they are not clear, and their reports are
incomplete or inaccurate. Now, suppose that we are in a
situation where uncertainty occurs with all this inaccurate
knowledge. It is a reality that, in many of our real questions
where inaccurate data are involved, we do not know how to
answer. For scientists, this mindset and attitude of uncer-
tainty is very necessary. Our aim is to sort out how to
understand it and operate through it rather than trying to
fight ambiguity because the advancement, resources, and life
that you want are uncertain. To overcome this situation,
Zadeh introduced fuzzy set in 1965 [22]. -e concept of
fuzzy mapping and control has been addressed by Zadeh and
Chang [23]. Furthermore, researchers extended the ordinary
and fractional operators to fuzzy operators [24, 25]. -ese
operators have been used by various authors to study dif-
ferent models [26–29]. If the information or data is im-
precise, then fuzzy operators model physical phenomena
easily and accurately. We are interested in investigating
model (1) for fractional-order derivative under the uncertain
initial conditions. For fractional order 0< c≤ 1, consider

D
c
t

�M t,ϖ0(  � λ − d1
�M t,ϖ0(  − β1 �M t,ϖ0(  �Vp t,ϖ0( ,

D
c
t

�M
∗

t,ϖ0(  � β1 �M t,ϖ0(  �Vp t,ϖ0(  − d2
�M
∗

t,ϖ0(  − ε1 �Vr t,ϖ0(  �M
∗

t,ϖ0( ,

D
c
t

�M
∗∗

t,ϖ0(  � ε1�Vr t,ϖ0(  �M
∗

t,ϖ0(  − d3
�M
∗∗

t,ϖ0( ,

D
c
t
�Vp t,ϖ0(  � k′ �M

∗
t,ϖ0(  − d4

�Vp t,ϖ0( ,

D
c
t
�Vr t,ϖ0(  � c′ �M

∗∗
t,ϖ0(  − d5

�Vr t,ϖ0( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

along with fuzzy initial conditions,

�M 0,ϖ0(  � �M 0,ϖ0( , �M 0,ϖ0(  ,

�M
∗ 0,ϖ0(  � �M

∗ 0,ϖ0( , �M
∗ 0,ϖ0(  ,

�M
∗∗ 0,ϖ0(  � �M

∗∗ 0,ϖ0( , �M
∗∗ 0,ϖ0(  ,

�Vp 0,ϖ0(  � �Vp 0,ϖ0( , �Vp 0,ϖ0(  ,

�Vr 0,ϖ0(  � �Vr 0,ϖ0( , �Vr 0,ϖ0(  ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

such that ϖ0 ∈ [0, 1].

2. Preliminaries

-is section provides the basic concepts of fuzzy sets and
fuzzy fractional calculus. Let FFD, FFI, and LT denote the
fuzzy fractional derivative, fuzzy fractional integral, and
Laplace transform, respectively.

Definition 1 (see [29, 30]). A fuzzy set d: R⟶ [0, 1] is
called a fuzzy number if

(i) d is fuzzy convex.
(ii) d is normal, i.e., for some (z0 ∈ R; d(z0) � 1).
(iii) _d is upper semicontinuous on R.
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(iv) -e closure of z ∈ R, d(z)> 0  is compact.

Definition 2 (see [29, 30]). -e parametric form of a fuzzy
number d is given by [d (u,ϖ0), d(u,ϖ0)], for ϖ0 ∈ [0, 1], if
and only if

(i) d (u,ϖ0) is increasing, left on [0, 1] and right
continuous at 0, respectively.

(ii) d(u,ϖ0) is decreasing, left on [0, 1] and right
continuous at 0, respectively.

(iii) d (u,ϖ0)≤ d(u,ϖ0).

Definition 3 (see [31]). Let I: E × E⟶ R be a function,
and b � (b(ϖ0), b(ϖ0)) and c � (c(ϖ0), c(ϖ0)) are any two
fuzzy numbers. -en, the H-distance between b and c is
given by

I(b, c) � sup
ϖ0∈[0,1]

max b ϖ0(  − c ϖ0( 


, b ϖ0(  − c ϖ0( 


  .

(4)

In E, I satisfies the properties given below:

(i) I(b + υ, c + υ) � I(b, c)∀b, υ, c ∈ E.
(ii) I(b〉, c〉) � |〉|I(b, c)∀〉∈ R and b, c ∈ E.
(iii) I(b + ξ, c + ς)≤I(b, c) + I(ξ, ς)∀b, c, ξ, ς ∈ E.
(iv) (E,I) is a complete metric space.

Definition 4 (see [31]). Let Λ be a continuous fuzzy function
on [0, d]⊆R, and a FFI is defined as

I
κΛ(t) �

1
Γ(c)


t

0
(t − ζ)

c− 1Λ(ζ)dζ . (5)

Furthermore, if CRF [0, b]∩ LRF [0, b], where CRF [0, b]

and LRF [0, b] are the spaces of fuzzy continuous functions

and fuzzy Lebesgue integrable functions, respectively, then
the FFI can be written as

I
cΛ(t) ϖ0 � I

cΛϖ0(t), I
cΛϖ0(t) , 0≤ϖ0 ≤ 1, (6)

where

I
cΛϖ0(t) �

1
Γ(c)


t

0
(t − ζ)

c− 1Λϖ0(t)dζ ,

I
cΛϖ0(t) �

1
Γ(c)


t

0
(t − ζ)

c− 1Λϖ0(t)dζ .

(7)

Definition 5 (see [31]). A fuzzy function
Λ ∈ CRF [0, b]∩LRF [0, b] is such that Λ � [Λϖ0(t),Λϖ0(t)],
t1 ∈ (0, b); then, the FFD in Caputo sense is given by

D
cΛ t0(  ϖ0 � D

cΛϖ0 t0( , D
cΛϖ0 t0(  , (8)

where

D
cΛϖ0 t0(  �

1
Γ(n − c)


t

0
(t − ζ)

n− c− 1 dn

dζnΛϖ0(ζ)dζ 
t�t0

,

D
cΛϖ0 t0(  �

1
Γ(n − c)


t

0
(t − ζ)

n− c− 1 dn

dζnΛϖ0(ζ)dζ 
t�t0

,

(9)

where n � [c].

Definition 6 (see [32]). Let V ∈ CRF [0, b]∩LRF [0, b]. -en,
the fuzzy LT of Λ(t) is defined as

L[Λ(t)] � 
∞

0
Λ(t)exp(− st)dt . (10)

While, in the parametric form, the fuzzy LT is given by


∞

0
Λ(t)exp(− st)dt � 

∞

0
Λ t,ϖ0( exp(− st)dt , 

∞

0
Λ t,ϖ0( exp(− st)dt . (11)

Hence,

L[Λ(t)] � L Λ t,ϖ0(  ,L Λ t,ϖ0(   . (12)

Theorem 1 (see [31]). 3e LTof Caputo fractional derivative
is defined as

L D
c
I(t)(   � s

c
L[I(t)] − s

c− 1
[I(0)]. (13)

3. Existence and Uniqueness Results

In this section, the existence and uniqueness of the solution
of the fuzzy fractional model via fixed-point theory are
discussed. Let us write the right-hand side of system (2) as
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Ψ t, �M t,ϖ0(   � λ − d1
�M t,ϖ0(  − β1 �M t,ϖ0( �Vp t,ϖ0( ,

Ξ t, �M
∗

t,ϖ0(   � β1 �Mt,ϖ0�Vpt,ϖ0 − d2
�M
∗

t,ϖ0(  − ε1�Vr t,ϖ0(  �M
∗

t,ϖ0( ,

f t, �M
∗∗

t,ϖ0(   � ε1�Vr t,ϖ0(  �M
∗

t,ϖ0(  − d3
�M
∗∗

t,ϖ0( ,

g t, �Vp t,ϖ0(   � k′ �M
∗

t,ϖ0(  − d4
�Vp t,ϖ0( ,

h t, �Vr t,ϖ0(   � c′ �M
∗∗

t,ϖ0(  − d5
�Vr t,ϖ0( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

We can write the given system (2) as

D
c
t

�M t,ϖ0(  � Ψ t, �M t,ϖ0(  ,

D
c
t

�M
∗

t,ϖ0(  � Ξ t, �M
∗

t,ϖ0(  ,

D
c
t

�M
∗∗

t,ϖ0(  � f t, �M
∗∗

t,ϖ0(  ,

D
c
t
�Vp t,ϖ0(  � g t, �Vp t,ϖ0(  ,

D
c
t
�Vr t,ϖ0(  � h t, �Vr t,ϖ0(  .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Now, using fractional integral, we obtain

t,ϖ0(  � �M 0,ϖ0(  +
1
Γ(c)


t

0
(t − s)

c− 1Ψ s, �M s,ϖ0(  ds ,

�M
∗

t,ϖ0(  � �M
∗ 0,ϖ0(  +

1
Γ(c)


t

0
(t − s)

c− 1Ξ s, �M
∗

s,ϖ0(  ds ,

�M
∗∗

t,ϖ0(  � �M
∗∗ 0,ϖ0(  +

1
Γ(c)


t

0
(t − s)

c− 1
f s, �M

∗∗
s,ϖ0(  ds ,

�Vp t,ϖ0(  � �Vp 0,ϖ0(  +
1
Γ(c)


t

0
(t − s)

c− 1
g s, �Vp s,ϖ0(  ds ,

�Vr t,ϖ0(  � �Vr 0,ϖ0(  +
1
Γ(c)


t

0
(t − s)

c− 1
h s, �Vr s,ϖ0(  ds .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Now, consider a Banach space as B � B1 × B2×

B3 × B4 × B5, under the norm,

�M t,ϖ0( , �M
∗

t,ϖ0( , �M
∗∗

t,ϖ0( , �Vp t,ϖ0( , �Vr t,ϖ0( 
�����

�����

� max
t∈[0,T]

�M t,ϖ0(  + �M
∗

t,ϖ0(  + �M
∗∗

t,ϖ0( , +�Vp t,ϖ0(  + �Vr t,ϖ0( 


 .
(17)

We can write equation (16) as
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�Π t,ϖ0(  � �Π 0,ϖ0(  +
1
Γc


t

0
(t − Ω)

c− 1Θ(Λ, �Π(Ω))dΩ ,

(18)

where �Π(t,ϖ0) �

�M(t,ϖ0)
�M
∗
(t,ϖ0)

�M
∗∗

(t,ϖ0)
�Vp(t,ϖ0)
�Vr(t,ϖ0)

, �Π(0,ϖ0) �

�X(0,ϖ0)
�M
∗
(0,ϖ0)

�M
∗∗

(0,ϖ0)
�Vp(0,ϖ0)
�Vr(0,ϖ0)

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

and Θ(t, �Π(t,ϖ0)) �

Ψ[t, �M(t,ϖ0)]
Ξ[t, �M

∗
(t,ϖ0)]

f[t, �M
∗∗

(t,ϖ0)]
g[t, �Vp(t,ϖ0)]
h[t, �Vr(t,ϖ0)].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

We take some as-

sumption on nonlinear function Θ: B⟶ B as

(1) Lipschtiz condition: there exists a constant K�Π > 0
such that, for each �Π1(t,ϖ0), �Π2(t,ϖ0) ∈ B,

Θ t, �Π1 t,ϖ0( (  − Θ t, �Π2 t,ϖ0( ( 




≤K�Π
�Π1 t,ϖ0(  − �Π2 t,ϖ0( 


.

(19)

(2) Growth condition: there exists constants M�Π > 0 and
N�Π > 0 such that

Θ t, �Π t,ϖ0( ( 


≤M�Π
�Π t,ϖ0( 


 + N�Π. (20)

Theorem 2. If the growth condition is satisfied, then system
(3) has at least one solution.

Proof. Consider A � �Π(t,ϖ0) ∈ B: ‖�Π(t,ϖ0)‖≤ r  ⊂ B is
closed and fuzzy convex, and a mapping ψ: A⟶ A is
defined by

ψ �Π t,ϖ0( (  � �Π 0,ϖ0( 

+
1
Γ(c)


t

0
(t − Ω)

c− 1Θ Ω, �Π t,ϖ0( ( dΩ .

(21)

-en, for any �Π(t,ϖ0) ∈ A, we have

ψ �Π t,ϖ0( ( 
����

���� � max
t∈[0,T]

�Π 0,ϖ0(  +
1
Γ(c)


t

0
(t − Ω)

c− 1Θ Ω, �Π t,ϖ0( ( dΩ



,

≤ �Π 0,ϖ0( 


 +
1
Γ(c)


t

0
(t − Ω)

c− 1 Θ Ω, �Π t,ϖ0( ( 


dΩ ,

≤ �Π 0,ϖ0( 


 +
1
Γ(c)


t

0
(t − Ω)

c− 1
MΠ

�Π t,ϖ0( 


 + NΠ dΩ ,

≤ �Π 0,ϖ0( 


 +
τc

Γ(c + 1)
M�Π

�Π t,ϖ0( 


 + N�Π .

(22)

It follows that ‖ψ(�Π(t,ϖ0))‖≤ r. -us, ψ(A) ⊂ A; it
implies that ψ is bounded. To show ψ is equi-continuity,
consider ϕ1,ϕ2 ∈ [0, T] such that ϕ1 < ϕ2. -en,

ψ �Π t,ϖ0( (  ϕ2(  − ψ �Π t,ϖ0( (  ϕ1( 
����

���� �
1
Γ(c)


ϕ2

0
ϕ2 − Ω( 

c− 1Θ Ω, �Π t,ϖ0( ( dΩ

− (c) 
ϕ1

0
ϕ1 − Ω( 

c− 1Θ Ω, �Π t,ϖ0( ( dΩ ,

≤ ϕc
2 − ϕc

1 
M�Π

�Π t,ϖ0( 


 + N�Π 

Γ(c + 1)
.

(23)

Hence,

ψ �Π t,ϖ0( (  ϕ2(  − ψ �Π t,ϖ0( (  ϕ1( 
����

����⟶ 0 as ϕ2⟶ ϕ1.
(24)

-is show that the operator ψ is equi-continuous, which
is completely continuous using Arzela–Ascoli theorem, as ψ
is bounded. -erefore, system (3) has at least one solution
using Schauder’s fixed-point theorem. □
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Theorem 3. Let the Lipschitz condition hold. If

τc
KΠ < Γ(c + 1), (25)

then system (3) has a unique solution.

Proof. Let �Π1(t,ϖ0), �Π2(t,ϖ0) ∈ B. -en,

ψ �Π1 t,ϖ0( (  − ψ �Π2 t,ϖ0( ( 
����

���� � max
t∈[0,T]

1
Γc


t

0
(t − Ω)

c− 1Θ Ω, �Π1 t,ϖ0( ( dΩ

−
1
Γc


t

0
(t − Ω)

c− 1Θ Ω, �Π2 t,ϖ0( ( dΩ ,

≤
τc

Γ(c + 1)
K�Π

�Π1 t,ϖ0(  − �Π2 t,ϖ0( 


,

(26)

which shows that ψ is a contraction. -us, system (3) has a
unique solution by Banach contraction theorem. □

4. Ulam–Hyres Stability

In this section, we show that the numerical results are stable.
Take a small change ϕ ∈ C[0, T], where ϕ(0) � 0 depends on
the solution of ψ( Π(t,ϖ0)) as

(i) For any positive ε, |ϕ(t)| ≤ ε

(ii) D
c
tψ( Π(t,ϖ0)) � Ψ(t,ψ( Π(t,ϖ0)) + ϕ(t))

Lemma 1. 3e above perturb problem has a solution,

D
c
tψ Π t,ϖ0( (  � Ψ t,ψ Π t,ϖ0( (  + ϕ(t)( ,

ψ Π 0,ϖ0( (  � ψ Π 0,ϖ0( ( ,
(27)

if it satisfies

Π t,ϖ0( (  − Π(0) t,ϖ0( (  +
1
Γ(c)


t

0
(t − s)

c− 1Ψ(s, ( Π(t, s)))ds 




≤

T
c

Γ(c + 1)
ε � ΩT,αε. (28)

Proof. -e proof is easy. □

Theorem 4. Consider assumption (2) and relation (29) hold.
3en, the numerical results of the considered model are

Ulam–Hyres stable if Δ � Tc/Γ(c + 1)KΨ < 1, by showing
that equation (25) is Ulam–Hyres stable.

Proof. Let Π(t,ϖ0) ∈ C be any solution and Π(t,ϖ0) ∈ C be
at most one solution of equation (25); then,

Π t,ϖ0(  − Π t,ϖ0( 


 � Π t,ϖ0(  − Π0 t,ϖ0(  +
1
Γ(c)


t

0
(t − s)

c− 1Ψ s, Π s,ϖ0(  ds 




,

≤ Π t,ϖ0(  − Π0 t,ϖ0(  +
1
Γ(c)


t

0
(t − s)

c− 1Ψ s, Π s,ϖ0(  ds 





+
1
Γ(c)


t

0
(t − s)

c− 1Ψ s, Π s,ϖ0(  ds −
1
Γ(c)


t

0
(t − s)

c− 1Ψ s, Π s,ϖ0(  ds




,

≤ΩT,cε + Δ‖ Π t,ϖ0(  − Π t,ϖ0( ‖.

(29)

From (29), we have

Π t,ϖ0(  − Π t,ϖ0( 
�����

�����≤
ΩT,c

1 − Δ
ε. (30)

Hence, from (30), it follows that system (6) is “UH
stable.” Consequently, the considered model is UH
stable. □
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4.1. Procedure for Solution. In this section, we deduce the
solution of the given model by using LADM. Applying LTon
(3), we obtain

L D
c
t

�M t,ϖ0(    � L Ψ t, �M t,ϖ0(   ,

L D
c
t

�M
∗

t,ϖ0(    � L Ξ t, �M
∗

t,ϖ0(   ,

L D
c
t

�M
∗∗

t,ϖ0(    � L f t, �M
∗∗

t,ϖ0(   ,

L D
c
t

�Vp t,ϖ0(    � L g t, �Vp t,ϖ0(   ,

L D
c
t

�Vr t,ϖ0(    � L h t, �Vr t,ϖ0(   ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

s
c
L �M t,ϖ0(   � s

c− 1 �M 0,ϖ0(  + L Ψ t, �M t,ϖ0(   ,

s
c
L �M
∗

t,ϖ0(   � s
c− 1 �M
∗ 0,ϖ0(  + L Ξ t, �M

∗
t,ϖ0(   ,

s
c
L �M
∗∗

t,ϖ0(   � s
c− 1 �M
∗∗ 0,ϖ0(  + L f t, �M

∗∗
t,ϖ0(   ,

s
c
L �Vp t,ϖ0(   � s

c− 1�Vp 0,ϖ0(  + L g t, �Vp t,ϖ0(   ,

s
c
L �Vr t,ϖ0(   � s

c− 1�Vr 0,ϖ0(  + L h t, �Vr t,ϖ0(   ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

L �M t,ϖ0(   �
1
s

�M 0,ϖ0(  +
1
s

c L Ψ t, �M t,ϖ0(   ,

L �M
∗

t,ϖ0(   �
1
s

�M
∗ 0,ϖ0(  +

1
s

c L Ξ t, �M
∗∗

t,ϖ0(   ,

L �M
∗∗

t,ϖ0(   �
1
s

�M
∗∗ 0,ϖ0(  +

1
s

c L f t, �M
∗∗

  ,

L �Vp t,ϖ0(   �
1
s

�Vp 0,ϖ0(  +
1
s

c L g t, �Vp t,ϖ0(   ,

L �Vr t,ϖ0(   �
1
s

�Vr 0,ϖ0(  +
1
s

c L h t, �Vr t,ϖ0(   .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

-e infinite series solution is

�M t,ϖ0(  � 
∞

m�0

�Mm t,ϖ0( , �M
∗

t,ϖ0(  � 
∞

m�0

�M
∗
m t,ϖ0( ,

�M
∗∗

t,ϖ0(  � 
∞

m�0

�M
∗∗
m t,ϖ0( , �Vp t,ϖ0(  � 

∞

m�0

�Vpm
t,ϖ0( ,

�Vr t,ϖ0(  � 
∞

m�0

�Vrm
t,ϖ0( ,

(34)

�M t,ϖ0( �Vp t,ϖ0(  � 
∞

n�0
Z1,n

�Vr t,ϖ0(  �M
∗

t,ϖ0(  

∞

n�0
Z2,n,

(35)

where Z1,n andZ2,n are Adomian polynomials and repre-
sent nonlinear terms.

Taking inverse Laplace transform, we obtain



∞

m�0

�Mm t,ϖ0(  � �M 0,ϖ0(  + L
− 1 1

s
c L Ψ t, �M t,ϖ0(    ,



∞

m�0

�M
∗
mt,ϖ0 � �M

∗ 0,ϖ0(  + L
− 1 1

s
c L Ξ t, �M

∗∗
t,ϖ0(    ,



∞

m�0

�M
∗∗
m t,ϖ0(  � �M

∗∗ 0,ϖ0(  + L
− 1 1

s
c L f t, �M

∗∗
   ,



∞

m�0

�Vpm
t,ϖ0(  � �Vp 0,ϖ0(  + L

− 1 1
s

c L g t, �Vp t,ϖ0(    ,



∞

m�0

�Vrm
t,ϖ0(  � �Vr 0,ϖ0(  + L

− 1 1
s

c L h t, �Vr t,ϖ0(    .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Comparing the first two terms of the series in parametric
form,

�M0 t,ϖ0(  � �M 0,ϖ0(  �M0 t,ϖ0(  � �M 0,ϖ0( ,

�M
∗
0 t,ϖ0(  � �M

∗ 0,ϖ0(  �M
∗
0 t,ϖ0(  � �M

∗ 0,ϖ0( ,

�M
∗∗
0 t,ϖ0(  � �M

∗∗ 0,ϖ0(  �M
∗∗
0 t,ϖ0(  � �M

∗∗ 0,ϖ0( ,

�Vp0
t,ϖ0(  � �Vp 0,ϖ0( �Vp0

t,ϖ0(  � �Vp 0,ϖ0( ,

�Vr0
t,ϖ0(  � �Vr 0,ϖ0( �Vr0

t,ϖ0(  � �Vr 0,ϖ0( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

�M1 t,ϖ0(  � L
− 1 1

s
c L λ − d1

�M0 t,ϖ0(  − β1 Z1,0 t,ϖ0(   ,

v1 t,ϖ0(  � L
− 1 1

s
c L λ − d1

�M0 t,ϖ0(  − β1Z1,0 t,ϖ0(   ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(38)
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�M
∗
1 t,ϖ0(  � L

− 1 1
s

c L β1 Z1,0 t,ϖ0(  − d2
�M
∗
0 − ε1 Z2,0 t,ϖ0(   ,

�M
∗
1 t,ϖ0(  � L

− 1 1
s

c L β1Z1,0 t,ϖ0(  − d2
�M
∗
0 t,ϖ0(  − ε1Z2,0 t,ϖ0(   ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

�M
∗∗
1 t,ϖ0(  � L

− 1 1
s

c L ε1 Z2,0 t,ϖ0(  − d3
�M
∗∗
0 t,ϖ0(   ,

�M
∗∗
1 t,ϖ0(  � L

− 1 1
s

c L ε1Z2,0 t,ϖ0(  − d3
�M
∗∗
0 t,ϖ0(   ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(40)

�Vp1
t,ϖ0(  � L

− 1 1
s

c L k′ �M
∗
0 t,ϖ0(  − d4

�Vp0
t,ϖ0(   ,

�Vp1
t,ϖ0(  � L

− 1 1
s

c L k′ �M
∗
0 t,ϖ0(  − d4

�Vp0
t,ϖ0(   ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(41)

�Vr1
t,ϖ0(  � L

− 1 1
s

c L c′ �M
∗∗
0 t,ϖ0(  − d5

�Vr0
t,ϖ0(   ,

�Vp1
t,ϖ0(  � L

− 1 1
s

c L c′ �M
∗∗
0 t,ϖ0(  − d5

�Vr0
t,ϖ0(   .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(42)

We can find other terms by the similar way. Hence, the
system has the series solution as follows:

�M t,ϖ0(  � �M0 t,ϖ0(  + �M1 t,ϖ0(  + �M2 t,ϖ0(  + · · ·

�M t,ϖ0(  � �M0 t,ϖ0(  + �M1 t,ϖ0(  + �M2 t,ϖ0(  + · · ·

�M
∗

t,ϖ0(  � �M
∗
0 t,ϖ0(  + �M

∗
1 t,ϖ0(  + �M

∗
2 t,ϖ0(  + · · ·

�M
∗

t,ϖ0(  � �M
∗
0 t,ϖ0(  + �M

∗
1 t,ϖ0(  + �M

∗
2 t,ϖ0(  + · · ·

�M
∗∗

t,ϖ0(  � �M
∗∗
0 t,ϖ0(  + �M

∗∗
1 t,ϖ0(  + �M

∗∗
2 t,ϖ0(  + · · ·

�M
∗∗

t,ϖ0(  � �M
∗∗
0 t,ϖ0(  + �M

∗∗
1 t,ϖ0(  + �M

∗∗
2 t,ϖ0(  + · · ·

�Vp t,ϖ0(  � �Vp0
t,ϖ0(  + �Vp1

t,ϖ0(  + �Vp2
t,ϖ0(  + · · ·

�Vp t,ϖ0(  � �Vp0
t,ϖ0(  + �Vp1

t,ϖ0(  + �Vp2
t,ϖ0(  + · · ·

�Vr t,ϖ0(  � �Vr0
t,ϖ0(  + �Vr1

t,ϖ0(  + �Vr2
t,ϖ0(  + · · ·

�Vr t,ϖ0(  � �Vr0
t,ϖ0(  + �Vr1

t,ϖ0(  + �Vr2
t,ϖ0(  + · · ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

Based on the procedure of the method, the following
theorem discusses the convergence of the proposed
method.

Theorem 5. Let H be a Banach space, ϑp(δ, t), ϑn(δ, t) ∈ H,
and 0< ξ < 1. Let ϑ(δ, t) be an exact solution of the considered
model. 3en, the series solution 

∞
p�0

ϑp(δ, t) converges to the
exact solution ϑ(δ, t) whenever ϑp(δ, t)≤ ξϑp− 1(δ, t) for all

p> T ; i.e., for any ω> 0, there exists a positive number T such
that ‖ϑp+n(δ, t)‖≤ω,∀m, n> T .

Proof. Let us define the sequence of 
∞
p�0

ϑp(δ, t) as

S0(δ, t) � ϑ0(δ, t),

S1(δ, t) � ϑ0(δ, t) + ϑ1(δ, t),

S2(δ, t) � ϑ0(δ, t) + ϑ1(δ, t) + ϑ2(δ, t),

S3(δ, t) � ϑ0(δ, t) + ϑ1(δ, t) + ϑ2(δ, t) + ϑ3(δ, t),

⋮

Sp(δ, t) � ϑ0(δ, t) + ϑ1(δ, t) + ϑ2(δ, t) + · · · + ϑp(δ, t).

(44)

We need to show that Sp(δ, t) is a Cauchy sequence in
H. For this, we consider

Sp+1(δ, t) − Sp(δ, t)
�����

����� � ϑp+1(δ, t)
�����

�����,

≤ ξ ϑp(δ, t)
�����

�����

≤ ξ2 ϑp− 1(δ, t)
�����

�����

≤ ξ3 ϑp− 2(δ, t)
�����

�����

⋮

≤ ξp+1 ϑ0(δ, t)
����

����.

(45)
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Now, for any p, n ∈ N, we have

Sp(δ, t) − Sn(δ, t)
�����

����� � ϑp+n(δ, t)
�����

�����

� Sp(δ, t) − Sp− 1(δ, t)  + Sp− 1(δ, t) − Sp− 2(δ, t)  + Sp− 2(δ, t) − Sp− 3(δ, t)  + · · · + Sn+1(δ, t) − Sn(δ, t)( 
�����

�����

≤ Sp(δ, t) − Sp− 1(δ, t)
�����

����� + Sp− 1(δ, t) − Sp− 2(δ, t)
�����

�����

+ · · · + Sn+1(δ, t) − Sn(δ, t)
����

����.

≤ ξp ϑ0(δ, t)
����

���� + ξp− 1 ϑ0(δ, t)
����

���� + · · · + ξp+1 ϑ0(δ, t)
����

����

� ϑ0(δ, t)
����

���� ξp
+ ξp− 1

+ · · · + ξp+1
 

� ϑ0(δ, t)
����

����
1 − ξp− n

1 − ξ
ξn+1

.

(46)

Since ξ ∈ (0, 1) and ϑ0(δ, t) is bounded, letting
ω � 1 − ξ/(1 − ξp− n

)ξn+1
‖ϑ0(δ, t)‖, we obtain

ϑp+n(δ, t)
�����

�����≤ω,∀p, n> T . (47)

-us, the sequence ϑp(δ, t) 
∞
p�0 is a Cauchy sequence

in H. -is implies that ∃ϑ(δ, t) ∈ H such that
limp⟶∞

ϑp(δ, t) � ϑ(δ, t). -us, the required solution
converges to the exact solution. □

5. Numerical Results and Discussion

In this section, we illustrate the obtained solution of the
proposed model through MATLAB-17. We have taken the
parameter values from [7]. -e values of parameters are
λ � 2cell/mm3, d1 � 0.01/day, β1 � 0.004mm3/vir, d2 �

0.33/day, ϵ1 � 0.004mm3/vir, d3 � 2/day, k′ � 50vir/cell,
d4 � 2/day, c′ � 2000vir/cell, and d5 � 2/day. Consider
model (2) under initial conditions as

�M 0,ϖ0(  � ϖ0 − 1, 1 − ϖ0( ,

�M
∗ 0,ϖ0(  � ϖ0 − 1, 1 − ϖ0( ,

�M
∗∗ 0,ϖ0(  � ϖ0 − 1, 1 − ϖ0( ,

�Vp 0,ϖ0(  � ϖ0 − 1, 1 − ϖ0( ,

�Vr 0,ϖ0(  � ϖ0 − 1, 1 − ϖ0( ,

(48)

where ϖ0 ∈ [0, 1]. Using the developed technique on model
(2) by applying the initial conditions, we obtain

�M0 t,ϖ0(  � ϖ0 − 1, �M0 t,ϖ0(  � 1 − ϖ0,

�M
∗
0 t,ϖ0(  � ϖ0 − 1, �M

∗
0 t,ϖ0(  � 1 − ϖ0,

�M
∗∗
0 t,ϖ0(  � ϖ0 − 1, �M

∗∗
0 t,ϖ0(  � 1 − ϖ0,

�Vp0
t,ϖ0(  � ϖ0 − 1, �Vp0

t,ϖ0(  � 1 − ϖ0,

�Vr0
t,ϖ0(  � ϖ0 − 1, �Vr0

t,ϖ0(  � 1 − ϖ0,

(49)

�M1 t,ϖ0(  � λ − d1 ϖ0 − 1(  + β1 ϖ0 − 1( 
2

 
t
c

Γ(c + 1)
,

�M1 t,ϖ0(  � λ − d1 1,ϖ0(  + β1 1 − ϖ0( 
2

 
t
c

Γ(c + 1)
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

�M
∗
1 t,ϖ0(  � β1 ϖ0 − 1( 

2
− d2 ϖ0 − 1(  − ε1 ϖ0 − 1( 

2
 

t
c

Γ(c + 1)
,

�M
∗
1 t,ϖ0(  � β1 1 − ϖ0( 

2
− d2 1 − ϖ0(  − ε1 1 − ϖ0( 

2
 

t
c

Γ(c + 1)
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(51)

�M
∗∗
1 t,ϖ0(  � ε1 ϖ0 − 1( 

2
− d3 ϖ0 − 1(  

t
c

Γ(c + 1)
,

�M
∗∗
1 t,ϖ0(  � ε1 1 − ϖ0( 

2
− d3 1 − ϖ0(  

t
c

Γ(c + 1)
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(52)
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�Vp1
t,ϖ0(  � k′ ϖ0 − 1(  − d4 ϖ0 − 1(  

t
c

Γ(c + 1)
,

�Vp1
t,ϖ0(  � k′ 1 − ϖ0(  − d4 1 − ϖ0(  

t
c

Γ(c + 1)
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(53)

�Vr1
t,ϖ0(  � c′ ϖ0 − 1(  − d5 ϖ0 − 1(  

t
c

Γ(c + 1)
,

�Vr1
t,ϖ0(  � c′ 1 − ϖ0(  − d5 1 − ϖ0(  

t
c

Γ(c + 1)
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(54)
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Figure 2: 2D simulation of �M
∗
(t,ϖ0) at different fractional orders and ϖ0 � 0.95. (a) Uppercase. (b) Lowercase.
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Figure 1: 2D simulation of �M(t,ϖ0) at different fractional orders and ϖ0 � 0.95. (a) Uppercase. (b) Lowercase.
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Other terms can be found out by the similar way.
We have simulated the numerical results obtained for the

different compartments via Matlab. From the literature, it is
clear the fractional operators have a greater degree of
freedom. -erefore, we have taken only a few orders for the

graphical representation. Each class has a lower and upper
solution and has presented at different fractional orders,
where the uncertainty lies in [0, 1]. -e odd-numbered
Figures 1–5 represent two-dimensional graphs for the
various compartments at various fractional orders. While

-12
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-2

0
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t
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t

(b)

Figure 3: 2D simulation of �M
∗∗

(t,ϖ0) at different fractional orders and ϖ0 � 0.95. (a) Uppercase. (b) Lowercase.
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Figure 4: 2D simulation of Vp(t,ϖ0) at different fractional orders and ϖ0 � 0.95. (a) Uppercase. (b) Lowercase.
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the even-numbered Figures 6–10 represent three-dimen-
sional graphs of the different classes at various fractional
orders and uncertainty belongs to [0, 1].-e fractional order
has a great impact on the lower and upper solution of the
considered model. As the fractional order increases from

lower value to higher values, the increase in the uppercase
and decrease in lowercase become faster.-e solution curves
of will converge to integer-order solution when the frac-
tional order tends to unity.-us, the considered model (2) is
generalized than model (1).
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Figure 5: 2D simulation of Vr(t,ϖ0) at different fractional orders and ϖ0 � 0.95. (a) Uppercase. (b) Lowercase.
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Figure 8: 3D simulation of �M
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(t,ϖ0) at different fractional orders and ϖ0 ∈ [0, 1].
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Figure 9: 3D simulation of Vp(t,ϖ0) at different fractional orders and ϖ0 ∈ [0, 1].
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Figure 10: 3D simulation of Vr(t,ϖ0) at different fractional orders and ϖ0 ∈ [0, 1].

14 Mathematical Problems in Engineering



6. Conclusion

We have successfully extended the fractional-order model of
HIV to the fuzzy fractional model under the Caputo op-
erator. We have derived the existence and uniqueness results
through fixed-point theorems. We have also deduced the
Ulam–Hyres stability of the proposed model through
nonlinear analysis. We have presented a general method via
the fuzzy LADM to obtain an approximate solution of the
proposed model. We have achieved the numerical results
for the specific fuzzy initial conditions through the de-
veloped scheme. We have provided the numerical sim-
ulations of the numerical results at different uncertainty
values and different fractional-order. -e simulations
show that fuzziness with fractional operators provides
global dynamics of a physical problem. -us, these
concepts open new doors for young researchers to model
any physical problem with fuzzy fractional operators. -e
considered model can be studied under more generalized
operators in the fuzzy case.
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