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Due to rapid development of manufacturing and online retail, the life cycle of many products is becoming shorter and shorter.
Hence, manufacturers may launch new products in selling season to maintain market share and attract new customers. Under
these circumstances, manufacturers may release a presale information before the selling season, and the retailer correspondingly
makes a preorder according to the estimation to the demand. For the case that the wholesale price rises gradually with time during
the preselling period and the market demand is stochastic, based on minimizing the legacy loss via CVaR measure in risk
management, we establish a loss-averse newsvendor’s preordering decisionmodel. By model analysis, we establish the closed form
solution to the model and provide the optimal preordering time and preordering quantity to the retailer. Some numerical
experiments are made to show the validity of the model, and some managerial insights are explored through the
numerical experiments.

1. Introduction

As a promotion strategy in modern market, preselling
mechanism is widely used by many enterprises in which the
manufacturer releases a preselling information when the
products are still in the production process [1–4]. For ex-
ample, Apple provides customers a preordering service
before a new generation of products comes to market [5] and
the millet mobile phone industry adopted presale mecha-
nism when it published the first generation cell phone [6].
Now, the preselling mechanism has been widely used in
service industry, electronic manufacturing, and online re-
tailing [7–12].

For the preselling mechanism, from the manufacturer’s
perspective, it can collect new product’s demand informa-
tion and reduce inventory risk in today’s competitive
market, and hence it can help the manufacturer predict the
market potential demand and reduce inventory risk. For
this, Cachon [8] compared inventory risks under push, pull,
and preorder discount contracts between suppliers and
retailers, Gilbert and Cvsa [13] examined manufacturers’

wholesale price commitment decisions as well as issues
related to presale timing, Boyaci and Özer [7] established a
profit-maximization model in which a manufacturer col-
lected advance sales information periodically prior to the
regular sales season for a capacity decision, and Nasiry and
Popescu [14] characterized the effect of anticipated regret on
consumer decisions and on firm profits and policies in an
advance selling context where buyers have uncertain
valuations.

For the preselling mechanism, from the retailer’s per-
spective, the retailer can receive a price discount for
accepting the manufacturer’s preselling, which will reduce
the retailer’s purchasing cost. For example, Amazon offered
a 20% preorder discount for all new-to-be-released video
games from 2016 to 2018 [12]. Furthermore, preselling
guarantees that the retailer receives the items earlier, which
is particularly valuable when the product may be hard to find
in the spot selling period due to its popularity [5, 15, 16]. A
second benefit of preselling is that the selling season demand
can be more accurately forecasted because orders received in
the preselling period may be correlated with the demand in
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the selling season. )e retailer can update its demand
forecast and adjust the order quantity accordingly to reduce
excess inventory and stock out risks. In addition to reducing
inventory risks, preselling takes advantage of changes in
consumers product valuation uncertainty over time as noted
by Xie and Shugan [17], Shugan and Xie [18], and Gun-
depudi et al. [19].

It should be noted that most research studies on this
issue assume that supply chain participants are risk-neutral,
whereas some scholars showed through empirical research
that not all the decision-makers are of this type [20]. )us, it
is essential to take the retailers’ behavior preference into
considerations [21–23]. Due to this, the loss aversion theory
is posed and is applied in many fields, such as portfolio
optimization and supply chain management. In particular,
the CVaR is a popular measure in describing decision-
maker’s behavior preference for risk [24, 25] and has made a
good success in quantifying and mitigating the potential risk
in newsvendor problem [26–35].

In this paper, we consider a loss-averse newsvendor
model in which the manufacturer will provide a preselling
strategy to the retailer before the selling season. In the
preselling period, the wholesale price increases with time.
Since the demand during the selling season is stochastic, to
minimize the retailer’s legacy loss, the retailer should de-
termine the preordering time and preordering quantity
according to the estimation to the demand in the selling
season. For this, we establish an optimal preordering de-
cision model. By modeling analysis, we obtain the retailer’s
optimal preordering time and preordering quantity.

)e remainder of this paper is organized as follows.
Section 2 presents the notations and provides some nec-
essary assumptions needed on the concerned problem. In
Section 3, we establish an optimization model for the
concerned problem. Section 4 provides the model solution
and gives the retailer’s optimal preorder policy. Section 5
presents numerical examples to illustrate the validity of the
model. Some conclusions are drawn in the last section.

2. Notation and Assumptions

In this paper, we consider the newsvendor model with a
preselling strategy and the retailer is risk-averse. More
precisely, the planning horizon consists of two period-
s—preselling period and spot selling period. During the
preselling period, the wholesale price of the item gradually
increases with time (see Figure 1). )us, to enjoy the lower
wholesale price provided by the supplier, the retailer may

make a preorder. However, the prepaid purchase cost would
result in certain interest cost during the preordering period.
)us, the retailer should make a tradeoff between enjoying
the benefit provided by the preselling strategy and bearing
the interest cost of prepaid for the preorder. With this, the
retailer should determine the preordering time and the
preorder quantity so that his profit is maximized. To this
end, we need the notations listed in Table 1.

For the concerned model, we assume that

(1) )e retailer is risk-averse
(2) )e whole price during the preordering period is

c(t) � c0 + τt for t ∈ [0, T0], where τ > 0 is a constant
(3) )e demand during the spot selling period is random

which obeys probability distribution with probability
density function f(x) and probability distribution
function F(x)

3. Model Formulation

For the concerned inventory mechanism, since the whole-
sale price in the preselling period gradually increases with
time and it is lower than the ordinary wholesale price, the
retailer should determine the preordering time and the
preorder quantity. Further, since the demand during the
spot selling period is random, it is impossible to make a
preorder such that the order quantity is equal to the demand;
this means that there is always a risk of loss for any preorder.
)en, the retailer’s preorder decision will be affected by his
attitude to the risk of loss. For this, we use the popular CVaR
measure to describe his behavior preference for risk [24, 25].
To this end, we first compute the retailer’s loss function.

Suppose the preorder is made at td with quantity Qd.
)en, from the assumption, the retailer’s profit is

Π td, Qd, D( 􏼁 � bmin D, Qd( 􏼁 − c td( 􏼁Qd − c T0 − td( 􏼁c td( 􏼁Qd + r Qd − D( 􏼁
+
, (1)

where X+ � max X, 0{ }, the first term is sale profit, the
second term is the wholesale cost, the second term is the loan
interest, and the last term is recycling profit.

Certainly, if the retailer’s preorder quantity exactly meets
the demand, i.e., Qd � D, then the retailer can obtain the

maximal profit (b − c(td))D − c(T0 − td)c(td)D. )en, for
preorder made at td with quantity Qd, the retailer’s loss is

L td, Qd, D( 􏼁 � b − c td( 􏼁 − c T0 − td( 􏼁c td( 􏼁( 􏼁D − Π td, Qd, D( 􏼁.

(2)

c (t)

c (t)=c0+τt
c0

T0 tO

Figure 1: )e variation of the wholesale price in the planning
horizon.
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Using the fact that min(Qd, D) � Qd − (Qd − D)+, the
function can be written as

L td, Qd, D( 􏼁 � b − c td( 􏼁 − c T0 − td( 􏼁( 􏼁 D − Qd( 􏼁 +(b − r) Qd − D( 􏼁
+
. (3)

For the confidence level α ∈ (0, 1), the value-at-risk of
the retailer’s loss is

VaRα L td, Qd, D( 􏼁( 􏼁 � inf y |Pr L td, Qd, D( 􏼁≤y􏼈 􏼉≥ α􏼈 􏼉,

(4)

which represents the minimum loss under the confidence
level α. As a risk-averse decision maker, the retailer may take
VaR as the targeted loss and pay more attention to the loss
above a given target level [24, 25]. )is yields the following
CVaR measure to describe the retailer’s behavior preference
for risk:

CVaRα L td, Qd, D( 􏼁( 􏼁 �
1

1 − α
E L td, Qd, D( 􏼁 | L td, Qd, D( 􏼁⩾VaRα L td, Qd, D( 􏼁( 􏼁( 􏼁. (5)

To facilitate computing of the CVaR, Rockafellar and
Uryasev [25] introduced the following auxiliary function:

Hα td, Qd, y( 􏼁 � y +
1

1 − α
E L td, Qd, D( 􏼁 − y􏼂 􏼃

+
, (6)

which transforms the optimization problem

min
td,Qd

CVaRα L td, Qd, D( 􏼁( 􏼁, (7)

as the following minimization problem:

min
td,Qd,y

y +
1

1 − α
E L td, Qd, D( 􏼁 − y􏼂 􏼃

+
􏼒 􏼓. (8)

In the following, we will give a closed form solution to
the optimization problem and hence present the retailer’s
optimal preordering time and optimal preorder quantity.

4. Model Solution

Certainly, problem (1) can be written as

min
td

min
Qd,y

y +
1

1 − α
E L td, Qd, D( 􏼁 − y􏼂 􏼃

+
􏼒 􏼓. (9)

In the following, we first solve the inner problem w.r.t.
Qd andy and then solve the outer problem w.r.t. td. For the
inner problem, i.e.,

min
Qd,y

y +
1

1 − α
E L td, Qd, D( 􏼁 − y􏼂 􏼃

+
􏼒 􏼓, (10)

we have the following conclusion.

Theorem 1. For fixed preordering time td and confidence
level α ∈ [0, 1), the retailer optimal preorder quantity is

Q
∗
d td( 􏼁 �

(c − r)F
− 1

((1 − α)(b − c/b − r) +(b − c)F
− 1

((1 − α)(b − c)/b − r + α)

b − r
, (11)

with

Table 1: Notations.

Symbol Description
T0 )e ending time of preselling
c0 Wholesale price at the beginning of preselling
b Item selling price in spot market
r Item recycling price
τ )e wholesale price increasing coefficient
D Market demand in spot market
Qd Retailer’s preordering quantity (variable)
td Retailer’s preordering time (variable)
c )e loan interest rate
∗ )e optimal value
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y
∗

td( 􏼁 �
(c − r)(b − c) F

− 1
((1 − α)(b − c)/b − r + α) − F

− 1
((1 − α)(b − c/b − r)􏼐 􏼑

b − r
, (12)

where c � − cτt2d + (τ + cτT0 − cc0)td + cT0c0 + c0.

Proof. For problem (3), we first consider the minimization
problem w.r.t. y for fixed Qd and then solve the problem
w.r.t. Qd.

By L(td, Qd, D) � (b − c)(D − Qd) + (b − r)(Qd − D)+,
the objective function of problem (3) can be written as

Hα td, Qd, y( 􏼁 � y +
1

1 − α
􏽚

+∞

0
L td, Qd, x( 􏼁 − y( 􏼁

+
f(x)dx

� y +
1

1 − α
􏽚

Qd

0
c x − Qd( 􏼁 − y􏼂 􏼃

+
f(x)dx +

1
1 − α

􏽚
+∞

Qd

(b − c) x − Qd( 􏼁 − y􏼂 􏼃
+
f(x)dx.

(13)

We break the discussion into to two cases. □ Case 1. y≥ (c − r)Qd. In this case,

Hα td, Qd, y( 􏼁 � y +
1

1 − α
􏽚

+∞

Qd+y/b− c
(b − c) x − Qd( 􏼁 − y􏼂 􏼃

+
f(x)dx. (14)

Computing the partial derivative respect to Qd yields

zHα td, Qd, y( 􏼁

zy
� 1 −

1
(1 − α)

1 − F Qd +
y

b − c
􏼒 􏼓􏼔 􏼕. (15)

From the monotony increasing property of F(x) and
limx⟶+∞F(x) � 1, we conclude that zHα(td, Qd, y)/zy≥ 0
for sufficiently large y. If zHα(td, Qd, y)/zy|y�(c− r)Qd

≤ 0,

then the stationary point y � (b − c)(F− 1(α) − Qd) is the
minimum point of the objective function. Otherwise,
Hα(td, Qd, y) reaches the minimum in the interval
[0, (c − r)Qd], and this boils down to Case 2 discussed as
follows.

Case 2. 0≤y≤ (c − r)Qd. In this case,

Hα td, Qd, y( 􏼁 � y +
1

1 − α
􏽚

Qd− y/c− r

0
(c − r) Qd − x( 􏼁 − y􏼂 􏼃f(x)dx +

1
1 − α

􏽚
+∞

Qd+y/b− c
(b − c) x − Qd( 􏼁 − y􏼂 􏼃f(x)dx. (16)

)en,

zHα td, Qd, y( 􏼁

zy
� 1 −

1
(1 − α)

1 + F Qd −
y

c − r
􏼒 􏼓 − F Qd +

y

r − c
􏼒 􏼓􏼔 􏼕. (17)

Certainly, zHα(td, Qd, y)/zy|y�0 � − α/1 − α< 0. If
Q≤ b − c/b − rF− 1(α), then

zHα td, Qd, y( 􏼁

zy
(c − r)Qd( 􏼁 � 1 − F Qd +

c − r

b − c
􏼒 􏼓􏼔 􏼕≥ 0.

(18)

)e case boils down to Case 1. If Qd ≥ b − c/b − rF− 1(α),
then the minimum will be attained at the stationary point of
the objective function, i.e., the root of the following equation
denoted by y∗2 :

F Qd +
y

b − c
􏼒 􏼓 − F Qd −

y

c − r
􏼒 􏼓 � α. (19)

So, for any fixed Qd, the optimal solution of the opti-
mization problem minyHα(td, Qd, y) is

y
∗

�

(b − c) F
− 1

(α) − Qd􏼐 􏼑, if Qd ≤
b − c

b − r
F

− 1
(α),

y
∗
2 , if Qd ≥

b − c

b − r
F

− 1
(α).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

Next, we consider minimization problem:
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min
Qd

Hα td, Qd, y
∗

( 􏼁. (21)

For this, we break the discussion into two cases.

Case 3. Qd ≤ b − c/b − rF− 1(α). In this case, it follows from
y∗ � (b − c)(F− 1(α) − Qd) that

Hα td, Qd, y
∗

( 􏼁 � (b − c) F
− 1

(α) − Qd􏼐 􏼑 + 􏽚
+∞

F− 1(α)
(b − c) x − F

− 1
(α)􏼐 􏼑􏽨 􏽩f(x)dx. (22)

Using the fact that

zHα td, Qd, y
∗

( 􏼁

zQd

� − (b − c)< 0, (23)

we conclude that the function is monotonically decreasing in
[0, b − c/b − rF− 1(α)]. Hence, function Hα(td, Qd, y∗)

reaches minimum in interval [b − c/b − rF− 1(α), +∞), and
this boils down to Case 4 discussed as follows.

Case 4. Qd ≥ b − c/b − rF− 1(α). In this case, y � y∗2 . )en,

Hα td, Qd, y
∗

( 􏼁 � y
∗

+
1

1 − α
􏽚

Qd− y∗/c− r

0
(c − r) Qd − D( 􏼁 − y

∗
􏼂 􏼃f(D)dD +

1
1 − α

􏽚
+∞

Qd+y∗/b− c
(b − c) D − Qd( 􏼁 − y

∗
􏼂 􏼃f(D)dD,

(24)

and

zHα td, Qd, y
∗

( 􏼁

zQd

�
1

1 − α
(c − r)F Qd −

y
∗

c − r
􏼠 􏼡 − b − c td( 􏼁( 􏼁 1 − F Qd +

y
∗

b − c
􏼠 􏼡􏼠 􏼡􏼢 􏼣. (25)

Solving equation zHα(td, Qd, y∗)/zQd � 0, i.e.,

cF Qd −
y
∗

c − r
􏼠 􏼡 +(b − c) F Qd +

y
∗

b − c
􏼠 􏼡􏼠 􏼡 � b − c, (26)

yields the optimal preorder quantity

Q
∗
d td( 􏼁 �

(c − r)F
− 1

((1 − α)(b − c)/b − r) +(b − c)F
− 1

((1 − α)(b − c)/b − r + α)

b − r
, (27)

and

y
∗

td( 􏼁 �
(c − r)(b − c) F

− 1
((1 − α)(b − c)/b − r + α􏼐 􏼑 − F

− 1
((1 − α)(b − c)/b − r)􏼑

b − r
. (28)

)is completes the proof of the assertion.
Now, consider the out problem of optimization problem

(2), i.e., minimization problem

min
td

y
∗

+
1

1 − α
E L td, Q

∗
d, D( 􏼁 − y

∗
􏼂 􏼃

+
􏼒 􏼓. (29)

For this, we have the following conclusion.

Theorem 2. For the risk-averse retailer with confidence level
α, the retailer’s optimal preordering time is
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t
∗
d �

􏽥td, if 􏽥td ∈ 0, T0􏼂 􏼃, ϕ 􏽥td( 􏼁≤ 0, min ϕ(0), ϕ T0( 􏼁􏼈 􏼉,

0, if 􏽥td ∈ 0, T0􏼂 􏼃, ϕ(0)≤min ϕ 􏽥td( 􏼁, ϕ T0( 􏼁􏼈 􏼉,

T0, if 􏽥td ∈ 0, Ta0􏼂 ,ϕ T0( 􏼁≤min ϕ 􏽥td( 􏼁, ϕ(0)􏼈 􏼉,

0, if 􏽥td ∉ 0, T0􏼂 􏼃, ϕ(0)≤ ϕ T0( 􏼁,

T0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where

ϕ td( 􏼁 �
− cτt

2
d + τ + cτT0 − cc0( 􏼁td + cτT0 + c0 − r􏼐 􏼑 b + cτt

2
d − τ + cτT0 − ic0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r

F
− 1 (1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r
+ α⎛⎝ ⎞⎠⎛⎝

− F
− 1 (1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r
⎛⎝ ⎞⎠⎞⎠,

(31)

and􏽥td is the root of the equation ϕ′(td) � 0. Correspondingly,
the optimal preorder quantity is

Q
∗
d �

− cτt
2
d + τ + cτT0 − cc0( 􏼁td + cτT0 + c0 − r􏼐 􏼑F

− 1
(1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑/b − r􏼐 􏼑

b − r

+
b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑􏼐 F

− 1
(1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑/b − r + α􏼐 􏼑

b − r
.

(32)

Proof. From )eorem 1, we know that the objection
function of minimization problem (4) can be written as

ϕ td( 􏼁 �
(c − r)(b − r) F

− 1
(1 − α)(b − c/b − r +α) − F

− 1
((1 − α)(b − c)/b − r)􏼐 􏼑􏼐

b − r

�
− cτt

2
d + τ + cτT0 − cc0( 􏼁td + cτT0 + c0 − r􏼐 􏼑 b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r

F
− 1 (1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r
+ α⎛⎝ ⎞⎠⎛⎝

− F
− 1 (1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r
⎛⎝ ⎞⎠⎞⎠.

(33)

To compute its minimum, we consider its derivative
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ϕ′ td( 􏼁 �
b + r + 2cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑 − 2cτtd + τ + cτT0 − cc0( 􏼁

b − r

F
− 1 (1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r
+ α⎛⎝ ⎞⎠⎛⎝

− F
− 1 (1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r
⎛⎝ ⎞⎠⎞⎠

+
− cτt

2
d + τ + cτT0 − cc0( 􏼁td + cτT0 + c0 − r􏼐 􏼑

(b − r)
2

b + cτt
2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

f (1 − α) b + cτt
2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑/b − r + α􏼐 􏼑

(1 − α) − cτtd + τ + cT0τ − cc0( 􏼁

f (1 − α) b + cτt
2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑/b − r􏼐 􏼑

F
− 1 (1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r
⎛⎝ ⎞⎠⎛⎝

− F
− 1 (1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑

b − r
+ α⎛⎝ ⎞⎠⎞⎠.

(34)

If equation ϕ′(td) � 0 is inconsistent, then function ϕ(t)

reaches its minimum at 0 or T0; otherwise, we denote
􏽥td � argmin ϕ(td) | ϕ′(td) � 0􏼈 􏼉. )en, if 􏽥td ∉ [0, T0],

function ϕ(td) reaches its minimum at 0 or T0; if
􏽥td ∈ [0, T0], then ϕ(td) reaches its minimum at 0 or 􏽥td or T0.

From the discussion above, we can obtain the retailer’s
optimal preordering time

t
∗

�

􏽥td, if 􏽥t∈ 0, T0􏼂 􏼃, ϕ 􏽥td( 􏼁≤ 0, min ϕ(0), ϕ T0( 􏼁􏼈 􏼉,

0, if 􏽥t∈ 0, T0􏼂 􏼃, ϕ(0)≤min ϕ 􏽥td( 􏼁, ϕ T0( 􏼁􏼈 􏼉,

T0, if 􏽥td ∈ 0, T0􏼂 􏼃, ϕ T0( 􏼁≤min ϕ 􏽥td( 􏼁, ϕ(0)􏼈 􏼉,

0, if 􏽥td ∉ 0, T0􏼂 􏼃, ϕ(0)≤ϕ T0( 􏼁,

T0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

and the optimal preorder quantity

Q
∗
d �

− cτt
2
d + τ + cτT0 − cc0( 􏼁td + cτT0 + c0 − r􏼐 􏼑F

− 1
(1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑/b − r􏼐 􏼑

b − r

+
b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑􏼐 F

− 1
(1 − α) b + cτt

2
d − τ + cτT0 − cc0( 􏼁td − cτT0 − c0􏼐 􏼑/b − r + α􏼐 􏼑

b − r
.

(36)

From )eorems 1 and 2, we can present the following
algorithm for computing the retailer’s optimal preordering
time and optimal preordering quantity.

In the next section, we will make some numerical ex-
periments to test the efficiency of the proposed
algorithm. □
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5. Numerical Example

In this section, we test the efficiency of the proposed
model by three numerical examples and make some
numerical sensitivity analysis to test the influence of the
involved parameters on the retailer’s optimal preorder
strategy. Some data of the considered examples are taken
from [31].

Example 1. Considering the preorder inventory mechanism
with b � 70, c0 � 25, c � 0.07, τ � 0.3, r � 15, T0 � 50, and
α � 0.95, the demand obeys the exponential distribution
with probability density function
f(x) � 1/150 exp(− x/150), x ∈ [0, +∞).

For this problem, by Algorithm 1, retailer’s optimal
preordering time is t∗d � 0.37, and optimal preordering
quantity is Q∗d � 291.

To better understand the influence of the parameters
involved in the model on the retailer’s optimal preorder
strategy, we conduct some parameters sensitivity analysis on
the model.

For inventory mechanism of Example 1, we let retailer’s
confidence level α increase from 0.90 to 0.99, while keeping
other parameters unchanged. )e numerical results are
shown in Figures 2 and 3 from which we see that with the
increase in the retailer’s confidence level of α, the optimal
preordering time is decreasing and the retailer’s optimal
preordering quantity is also increasing.

For the inventory mechanism, we let the selling price b

increase from 65 to 75, while keeping other parameters
unchanged. )e numerical results are shown in Figures 4
and 5, from which we can see that, when b increases from 65
to 75, the retailer’s optimal preordering time is also in-
creasing, while the optimal preordering quantity is
decreasing.

For the inventory mechanism considered in Example 1,
we let c0 increase from 20 to 30, while keeping other pa-
rameters unchanged. )e numerical results are shown in
Figures 6 and 7, from which we can see that, when c0 in-
creases from 20 to 30, the retailer’s optimal preordering time
is decreasing, while the optimal preordering quantity is
increasing.

For the inventory mechanism considered in Example 1,
we let c increase from 0.07 to 0.09, while keeping other

parameters unchanged, the numerical results are shown in
Figures 8 and 9, from which we can see that, if c goes from
0.05 to 0.09, the retailer’s preordering time is increasing in c

and the retailer’s optimal preordering quantity is also in-
creasing in c.

Step 1. Input parameters b, c0, τ, r, T0, α, c, f(x), F− 1(x).
Step 2. Define function
ϕ(td) � (− cτt

2
d + (τ + cτT0 − cc0)td + cτT0 + c0 − r)(b + cτt

2
d − (τ + cτT0 − cc0)td − cτT0 − c0)/b − r

(F
− 1

((1 − α)(b + cτt
2
d − (τ + cτT0 − cc0)td − cτT0 − c0)/b − r + α) − F

− 1
((1 − α)(b + cτt

2
d − (τ + cτT0 − cc0)td − cτT0 −

c0)/b − r)) and solve equation ϕ′(td) � 0 to obtain 􏽥td. If 􏽥td < 0 or 􏽥td >T0, set 􏽥td � 0.

Step 3. If ϕ(􏽥td)≤min(ϕ(0),ϕ(T0)), then set t∗d � 􏽥td, else set t∗d � T0, goto next step.
Step 4. Compute Q

∗
d � (− cτt

2
d + (τ + cτT0 − cc0)td + cτT0 + c0 − r)F

− 1
((1 − α)(b + cτt

2
d − (τ + cτT0 − cc0)td− cτT0 − c0)/b−

r)/b − r + ((b + cτt
2
d − (τ + cτT0 − cc0)td − cτT0 − c0)F

− 1
((1 − α)(b + cτt

2
d − (τ + cτT0 − cc0)td − cτT0 − c0)/b − r + α)/b − r

Step 5. Output t∗d , Q∗d .

ALGORITHM 1: )e algorithm to compute the optimal preordering time and the optimal preorder quantity.
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Figure 2: Influence of α on the retailer’s preordering time.
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Figure 3: Influence of α on the retailer’s preordering quantity.

8 Mathematical Problems in Engineering



757065
item unit selling price b

240

260

280

300

320

340

360

th
e o

pt
im

al
 p

re
-o

rd
er

 q
ua

nt
ity

Figure 5: Influence of b on the retailer’s preordering quantity.

20 22 24 26 28 30
item initial wholesale price c0

0

2

4

6

8

10

12

14

16

18

th
e o

pt
im

al
 p

re
-o

rd
er

in
g 

tim
e

Figure 6: Influence of c0 on the retailer’s preordering time.

20 22 24 26 28 30
item initial wholesale price c0

100

150

200

250

300

350

400

450

th
e o

pt
im

al
 p

re
-o

rd
er

 q
ua

nt
ity
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Figure 4: Influence of b on the retailer’s preordering time.
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Figure 9: Influence of c on the retailer’s preordering quantity.
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Example 2. Considering the preorder inventory system with
α � 0.95, b � 70, c0 � 25, c � 0.07, τ � 0.3, and r � 15, we let
T0 increase from 45 to 55, while the market demand D obeys
the exponential distribution with probability density func-
tion f(x) � 1/150 exp(− x/150), x ∈ [0, +∞).

For this inventory mechanism, the numerical results are
shown in Figures 10 and 11, from which we can see that,
when T0 goes from 45 to 55, the retailer’s preordering time is
increasing in T0 and the retailer’s optimal preordering
quantity is also increasing in T0.

Example 3. Considering the preorder inventory system with
α � 0.95, b � 70, c0 � 25, c � 0.07, r � 15, and T0 � 50, we
let τ increase from 0.2 to 0.4, while the market demand D

obeys the exponential distribution with probability density
function f(x) � 1/150 exp(− x/150), x ∈ [0, +∞).

For this inventory mechanism, the numerical results are
shown in Figures 12 and 13, from which we can see that,
when τ goes from 0.2 to 0.4, the retailer’s preordering time is
decreasing in τ, and the retailer’s optimal preordering

quantity is also increasing in τ, and the increase rate is slower
and slower.

From the numerical experiments on the involved pa-
rameter sensitivity analysis, we can see that the retailer’s
confidence level α, item selling price b, item initial wholesale
price c0, and loan interest rate c have a larger influence on
retailer’s preordering strategy, while the end time of pre-
selling period T0 and wholesale price increasing coefficient τ
have a less influence on the retailer’s preordering strategy.
)e retailer’s optimal preordering time is decreasing in α, c0,
and T0, while increasing in b. )e retailer’s optimal pre-
ordering quantity is increasing in α, c, and T0, while de-
creasing in c0.

6. Conclusion

For the concerned inventory mechanism, the planning
horizon consists of two periods—preselling period and spot
selling period. During the preselling period, the wholesale
price of the item gradually increases with time; based on
minimizing the legacy loss via CVaR measure, we
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Figure 10: Influence of T0 on the retailer’s preordering time.
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Figure 13: Influence of τ on the retailer’s preordering quantity.
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established a risk-averse’ optimal preorder strategy for the
newsvendor model and gave the retailer’s optimal pre-
ordering strategy. Some numerical examples were provided
to show the sensitivity of the involved parameters in the
model, in which can see that the retailer’s confidence level,
item selling price, item initial wholesale price, and the loan
interest rate are crucial ingredients in the retailer’s pre-
ordering problem.

From the result of numerical experiments in this study,
the high confidence level will make the retailer preorder
earlier and preorder more items. If the initial wholesale price
is high or the wholesale price increases rapidly, the retailer
should make preorder earlier and order more items to re-
duce the legacy loss. )e high selling price will make the
retailer preorder later and preorder more items to reduce the
legacy loss. )e high loan interest rate will make retailer
preorder earlier and order less items. )e longer the du-
ration of the preselling period is, more preorder items
should be made.

Certainly, the preordering model considered in this
paper assumes that the probability distribution of the de-
mand during the preselling period is fixed. However, the
demand distribution may be more and more clear with the
time during the period. )us, the research of the issue that
the fluctuation of demand is getting weaker and weaker with
the time is more significant.
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