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With the development of COVID-19, the epidemic prevention requirements of city subway system have become stricter. �is
study studies the transmission path of epidemic disease in city subway system. Using FLUENT software and AnyLogic software,
the simulation models of subway platform ventilation structure and crowd behavior mode in subway system are constructed,
respectively, and SEIR (vulnerable exposed a�ected recovered) is used as the general infection model of epidemic disease.
According to the actual situation, the parameters such as shoulder width, �ow, and moving speed of crowd are determined, and
the simulation analysis of epidemic disease transmission in subway system is carried out. �e analysis results show that the
transmission speed of the disease in the subway will increase with the enhancement of the transmission capacity of the disease and
the increase of the contact rate. When the disease transmission capacity is 0.14, the number of latent persons reaches the peak at
14.115 time units, which is 1374, and the number of patients reaches the peak at 28.541 time units, which is 1925. According to the
simulation results, the simulation analysis results show that with the enhancement of disease transmission ability and the increase
of exposure rate, the maximum number of latent and sick people in the subway environment will increase. �e corresponding
suggestions on risk management and control of infectious disease transmission in subway are put forward. �e research results
can provide a useful reference for the epidemic prevention management of urban subway transportation system in China.

1. Introduction

Mankind has been threatened by infectious diseases since
ancient times. After enteringmodern times, humanmethods
to deal with infectious diseases have become more and more
e�cient, but they still cannot completely o�set the damage
caused by infectious diseases (Jabbar, 2020) [1]. As a rela-
tively closed space, the subway system has smaller air �ow
degree than the outside world, dense personnel, fast per-
sonnel �ow speed, and wide �ow range. It is an ideal en-
vironment for the spread of infectious diseases (Su et al.,
2020) [2]. If the prevention and control of infectious diseases
in the urban subway system is not scienti£cally and rea-
sonably prepared, the urban subway will become a major
loophole in epidemic prevention during the epidemic period
and pose a direct threat to the lives and lives of citizens
(Mehra et al., 2020) [3].

�e main method to study the transmission path and
prevention and control mode of infectious diseases in urban

subway system is virtual simulation modeling. On the one
hand, a representative subway platform space model in
geometric characteristics is constructed according to the
spatial size characteristics of real subway system, and the
model is implemented by £nite metadata simulation soft-
ware FLUENT (Zhou et al., 2019) [4]. On the other hand, the
research also models the behavior subject of the plat-
form—passengers and their movement mode. Speci£cally,
the research draws on the force concept of classical me-
chanics to design the traveler’s “social force” model, which
accurately expresses the traveler’s movement mode in the
subway system and gives the pedestrian’s shoulder width,
moving speed, and other index values in the model with
reference to the relevant data of pedestrians in reality. �e
simulation numerical analysis software AnyLogic designed
by the concept of social force is used to build the pedestrian
“social force” model (Fu et al., 2021) [5]. Shi et al. focused on
the dynamics of malaria transmission based on time series
data. A data-driven nonlinear stochastic model is proposed
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to infer and predict the dynamics of malaria transmission
according to the time series of epidemic data (Shi et al., 2020)
[6]. *e above three models are combined to analyze the
spread of infectious diseases under the background of pe-
destrians moving in the subway system. According to the
analysis of the transmission path law of infectious diseases in
subway, some suggestions are put forward to optimize the
development of epidemic prevention in urban subway (Cao
et al., 2020) [7].

*e innovation of this research lies in the following
aspects. Firstly, the complex process of infectious disease
transmission in the subway system is simplified to the
disease transmission of each subway station and then
combined with the actual spatial layout, geometric char-
acteristics, ventilation, and other elements of the subway
station.*e simulationmodel of the subway platform is built
by using the finite metadata simulation software FLUENT.
Secondly, on the basis of understanding the pedestrian
movement intention and referring to the force concept of
classical mechanics, this paper creatively puts forward the
“social force” model so as to more accurately describe the
pedestrian movement law in the subway platform and set
reasonable values for the parameters involved in the “social
force” model one by one according to the actual situation of
the subway system. For example, by counting the body
height, shoulder width, and other data of adults, the elderly,
young people, and children, the existence of pedestrians in
the subway space model is simplified into a cylinder with the
shoulder width of people of all ages as the diameter and the
height of people of all ages as the height, which greatly
simplifies the calculation method of the distance between
pedestrians and obstacles in the subsequent “social power”
model. *e influence of the distance between pedestrians
and other individuals or objects on their moving speed is
quantified as a piecewise function. At the same time, we use
the concept of “social force” proposed by Kozio et al. to carry
out the numerical analysis of social force [8].

*e full text can be divided into four parts. *e first part
is used to introduce the research background of the law of
infectious disease transmission, the harm and control
methods of infectious disease transmission in the subway,
the technical methods and research ideas used in the re-
search, the innovation of the full text, and so on. *e main
content of the second part is to establish the infection model
of epidemic diseases in urban subway, including the design
and simulation of subway station space model, pedestrian
movement model, and general infection model of infectious
diseases. *e third part is used to analyze and present the
calculation results of the simulation model and provide
some constructive suggestions on subway epidemic pre-
vention and control based on the analysis results. *e fourth
part is mainly used to summarize the content of the full text.

2. Related Works

Infectious diseases, especially those with obvious symptoms
and high mortality, pose a great threat to mankind. Infec-
tious disease experts and scholars all over the world have
carried out a large number of relevant studies in order to

improve the ability of economies to prevent and control
infectious diseases. Aimed at the spread of COVID-19 in
Egypt, combined with the concept of partial derivative, an
improved dynamic model for predicting COVID-19 prop-
agation is established, and the prediction results are in good
agreement with the actual report data (Raslan, 2021) [9].
Tiwari et al.’s research team designed a simple improved
infectious disease transmission model based on SerD to
study the transmission law of COVID-19 and predict the
epidemic peak under the locking effect. *e test results show
that the epidemic peak predicted by the model is more
accurate [10]. Considering the health insurance coverage
and other factors in the study area, Fang et al. designed an
infectious disease transmission model combined with ma-
chine learning method to predict the transmission peak of
infectious diseases, and the simulation results show that the
prediction performance of the model is good [11]. Fan et al.
used the quasi-experimental analysis framework to analyze
the situation of immigrants in Wuhan and COVID-19 data.
It was found that the size of Wuhan immigrants was highly
correlated with the number of confirmed cases per day. *e
results of this study help to monitor the epidemic prevention
and control situation in various regions. Wan et al. proposed
a new COVID-19 transmission dynamic model combined
with the intervention measures implemented in China. *e
model was parameterized by Markov Chain Monte Carlo
(MCMC) method to estimate the number of controlled
propagation and effective daily reproduction rates of disease
transmission in Chinese mainland (excluding Hubei). *e
estimated results show that the premature release of personal
protection may prolong the transmission period of the
disease, allow more people to be infected, and even lead to
the second wave of epidemic or outbreak. Based on the
assessment results, the research team suggested that in order
to ensure that the epidemic is controlled at a reasonable
level, it is necessary to maintain the current comprehensive
restrictive interventions and self-protection measures, in-
cluding travel restrictions, entry quarantine, contact track-
ing, and isolation and reduction of contact, such as wearing
masks, maintaining social distance, and so on (Wan et al.
2020) [12].

Luo et al. applied long-term and short-term memory
algorithm and extreme gradient enhancement algorithm to
establish a daily confirmed case prediction model for the
time series data of the number of infectious diseases in the
United States and used MAE, MSE, RMSE, and MAPE to
evaluate the fitting effect of the model. *e results showed
that isolating uninfected individuals to reduce the contact
rate between susceptible individuals and infected individuals
could effectively reduce the number of confirmed cases per
day. Tyagi et al. have further explored all aspects of infectious
diseases, combined with SEIQR (susceptible exposed in-
fected quarantined recovered) mathematical model and
long-term and short-term memory algorithm, designed an
improved mathematical model to predict the infectious
process of infectious diseases, and verified the model. *e
results show that the prediction result of the model is longer,
and the short-term memory algorithm or SEIQR model is
more accurate [13]. Mahajan et al.’s research team proposed
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an epidemic model based on the epidemic law of Xinguan,
which sets the disease transmission rate of symptomatic,
asymptomatic, and exposed infected people to different
values. *e model is applied to the prediction of the number
of COVID-19 infected persons in Germany and Korea. *e
results show that the prediction performance of the model is
excellent [14]. Chaudhari et al. used a variety of machine
learning algorithms to build a prediction model for the
number of patients with new crowns in a specific region
according to the existing data of patients with new crowns in
major countries in the world, regional cleanliness, pop-
ulation number, population density, ambient temperature,
environmental humidity, and other information and found
that the prediction model based on linear regression was
more effective [15].

To sum up, experts and scholars in the industry have
put forward a large number of intelligent algorithms and
models to predict the spread of infectious diseases, and
some models have excellent prediction accuracy. However,
there are few research data on the construction of special
infectious disease transmission path prediction model for
the specific scene of dense flow of people, that is, the subway
transportation system. *erefore, based on the modeling of
the physical environment and pedestrian behavior of the
subway scene, this study attempts to build a simulation
model to analyze the transmission path of infectious dis-
eases in the subway so as to provide some references for
improving the epidemic prevention ability of the urban
subway scene.

3. Establishment of Epidemic Transmission
Model of Urban Subway

3.1. SimulationDesignofEpidemicPreventionandVentilation
System of Urban Subway Platform Based on Fluent.
Tunnel ventilation or air conditioning system shall be set
in the station hall and platform hall of subway station,
section tunnel, turn back line, and end line tunnel. *e
equipment and management rooms in the station shall be
equipped with local ventilation or local air conditioning
system. *e noise transmitted from the tunnel ventilation
equipment to the station hall and platform hall shall not
exceed 70 dB (a), and the noise transmitted to the ground
air Pavilion shall meet the requirements of the current
national environmental noise standards for urban areas.
When the ventilation system of the station management
room is sucked from the tunnel, the air inlet shall be set at
the side of the train entering the station and the air outlet
shall be set at the side of the train leaving the station.
Urban rail transit is mostly built underground, lacking
natural ventilation and light; coupled with the high
population density on the rail transit line, the epidemic
spreads more rapidly in this environment (Roy et al.,
2020) [16]. Since the transmission direction and intensity
of most infectious diseases are related to the ventilation of
the environment, and the subway platform, as a key node
in subway transportation, is very important to control the
spread of the epidemic, it is necessary to analyze the
ventilation environment of urban subway platform

(Wang et al., 2020) [17]. However, the constituent ele-
ments and changes of urban subway ventilation envi-
ronment are complex, so its simulation analysis model
needs to be established first to simplify the secondary
influencing elements and components and highlight the
core elements of ventilation environment (Paiva et al.,
2020) [18].

At present, there are many subway stations using full-
height semiclosed safety doors in China. *erefore, when
establishing the ventilation environment model of subway
platform, this form of safety door structure is selected as the
basis (Feng et al., 2021) [19]. FLUENT is a common finite
element numerical simulation software. Its simulation
modeling process usually consists of the following steps:
firstly, mesh the object’s three-dimensional geometric
model, then check the mesh division quality; then select the
appropriate solution equation, define the attribute param-
eters of the model, and set the boundary conditions. *e last
step is to use FLUENT to calculate and iterate the model
until the calculation results converge and output the re-
quired data and statistical charts. Sousa et al. estimated the
number of cases within 80 days after the first case by solving
the differential equation. *e results are logarithmicized and
compared with the actual values to observe the fitting of the
model [20]. *e air flow form in the subway platform can be
simply regarded as turbulence. According to the mainstream
simulationmethod of turbulence in the engineering field, the
following formulas can be obtained.
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In (4), u, v, and w, respectively, represent the velocity
components of air velocity u

→ in all directions of three-di-
mensional coordinate space, ρ is the air density, p is the
pressure value, and t represents time. Referring to the sta-
tistical average theory of turbulence, the instantaneous
values of velocity and pressure can be decomposed into the
combination of average value and pulsation value, as shown
in the following equations.

u � u + u′, (5)

v � v + v′, (6)

w � w + w′, (7)

p � p + p′. (8)

Moreover, the mean value of each variable in the time
dimension can be expressed by
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Combined with formulas (1)–(9), the continuity equa-
tion and momentum equation of turbulence can be ob-
tained, as shown in the following equaions, respectively.
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Among them, xj represents the position of subway
platform j on the x-axis in the coordinate system, p is the
pressure on turbulence, μ is the viscosity coefficient of air,
and ρui

′uj
′ is the Reynolds stress. *e standard k − ε tur-

bulence model is used to build the simulation space of this
study, and its core calculation formula is shown as follows.
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where Gk and Gb represent the turbulent kinetic energy
caused by velocity and buoyancy, respectively, and YM

represents the increase of arterial expansion of the pa-
rameters generated by compressible turbulence. YM and YM

are user-defined control parameters, C1g, C2g, and C3g

represent empirical constants, and σk and σε are Planck’s
coefficients corresponding to turbulent kinetic energy k and
dissipation rate ε, respectively. When the air fluid is in a
steady state, (12) can be simplified to
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In addition, in formula (13), C1g � 1.45, C2g � 1.90, Cμ
� 0.09, σε � 1.30, andσk � 1.02. *e above is the complete
theoretical model of air flow in subway platform, and then use
FLUENT software to build the geometric model of subway
station according to this theoretical model. *e subway station
is designed as a cube with length, width, and height of 136m,
11.5m, and 3 m, respectively. *e walls of the elevator and the
subway station are simplified into smooth planes. *e plan of
the platform after the design is completed is shown in Figure 1.

Considering the geometric structure of the platform and
the accuracy of simulation calculation, the platform struc-
ture is finally divided into 625711 networks and 729642
nodes by FLUENT software, and there is no grid with
negative volume in the tested model. *e decisive index of
the model grid is calculated to be 0.87, which is greater than
0.3. It is considered that the grid quality is good and the
division is reasonable.

In terms of model parameter setting, in the k − ε tur-
bulence model, when entering and leaving the station, the
wind speeds listed at different heights are also different.
Combined with common sense, when setting the entering
station, the wind speed at the position above 0.5m is 1.2m/s,
the entering wind speed at the position above 0.5m is 2.4m/
s, and the outgoing wind speed is fixed at 1.7m/s (Mirza
et al., 2020) [21].

3.2. Establishment of Behavior Trajectory Simulation Model
and Epidemic Disease Infection Model of Urban Subway
Population. *e infection mode and law of subway epi-
demic also have obvious correlation with the movement
track of passengers. *e passenger volume of each city varies
greatly in the order of magnitude, so it is difficult to visually
compare the recovery of subway passenger volume among
cities. Generally speaking, there is an uncertain bulk dis-
tribution of people in the subway. *e greater the density of
people, the more serious the spread of the epidemic.
*erefore, it is necessary to model the movement route of
passengers in the rail transit system. Here, AnyLogic soft-
ware is selected to complete the modeling. Pedestrian
movement patterns in the subway have intrinsic motivation,
which must be taken into account when modeling their
movement behavior (Wang et al., 2019) [22]. *e so-called
pedestrian intrinsic motivation behavior model refers to
taking the subway station scene as the starting point of
research. Assuming that the movement and state of pas-
sengers are continuous, the whole process of pedestrian
activity in the station is analyzed. *us, the law of pedes-
trians in the process of a series of continuous spatial dis-
placement trajectories is analyzed so that relevant staff can
accurately grasp the evolution process of station pedestrians
under normal conditions. *e influence of pedestrians’
intrinsic motivation on their walking rules is summarized as
“social force” (an artificially designed object based on the
concept of classical mechanics). Specifically, the movement
process of most pedestrians seeking to reach their desti-
nation as soon as possible in the subway system will be
limited by various conditions of the surrounding environ-
ment, so the pedestrian self-drive can be expressed
according to the following formula.

f
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. (14)

Among them, f
0
a

�→
represents the real-time self-driving

force of passenger a, and ma, τa, v
0
a

→
, and va

→ represent the
quality of pedestrian a, the time-consuming of adjusting
behavior, the current expected movement speed, and the
current actual movement speed, respectively. Pedestrians
will also be affected by other people and environmental
objects during walking. *ese effects are modeled and de-
scribed below. *e force fab

��→
between pedestrians can be

expressed by the following formula:

fab

��→
� f

ps

ab

��→
+ f

ph

ab

��→
. (15)
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Among them, f
ps

ab

��→
is the psychological force between

pedestrians, which can be described according to formula

f
ps

ab

��→
� A exp[dab/B] · α · nab

��→. A and B, respectively, represent
the force strength and force range between pedestrians, dab

represents the distance between pedestrians, nab
��→ is the force

direction, and α is the influence coefficient. f
ph

ab

��→
is the

physiological force between pedestrians, which can be de-

scribed according to the formula f
ph

ab

��→
� μ · (ra + rb − d)·nab

��→.
ra and rb represent the radius of the orthographic projection
of the private space required by pedestrians under normal
conditions. d is the straight-line distance between two
people. When (ra + rb − d) is greater than 0, the distance
between two people is not small enough to affect the
movement of both sides. At this time, the repulsion coef-
ficient should be taken as 0.

In addition to avoiding contact with other people’s
limbs, pedestrians also pay attention to avoiding obstacles in
the environment. *is action relationship can also be de-
scribed in the form of force, expressed as

f
→bar

� k · (ra − dbar)·na
�→, where k is the repulsion force

coefficient and dbar is the distance between pedestrians and
obstacles. Similarly, when (ra − dbar) is greater than 0, it is
considered that the distance between obstacles and pedes-
trians is too large to affect the latter’s walking. At this time, k

takes 0 and na
→ as the direction vector of the two forces.

AnyLogic software is developed on the basis of social force
model, which is also the reason why it is selected for pe-
destrian trajectorymodeling.*e flow of pedestrian trajectory
modeling of AnyLogic software is shown in Figure 2.

For example, the pedestrian modeling tools in godwall
area are used to implement the pedestrian modeling tools in
the godwall environment. Before behavior modeling, set the
movement logic of pedestrians. According to the common
sense of life, pedestrians first buy tickets and pass the security
inspection, then choose the appropriate route to enter the
station hall, and then enter the platform through the es-
calator or elevator. At this time, if they cannot get on the
train for various reasons, continue to wait for the follow-up
train; otherwise, they take the train. *e above pedestrian
behavior logic can be realized through PedGoTo, PedService,
and other controls in AnyLogic pedestrian library. Since the
model cannot simulate all the details of passengers entering
the platform, certain assumptions and simplification are
required (Xiong et al., 2019) [23]. According to the geo-
metric dimension data of human body, the orthographic
projection shape of pedestrian on the ground is simplified
into a circle, and the diameter is taken as the random value
within the range of 0.4m∼0.5m of adult shoulder width.*e

traveling speed is determined as 1.32m/s. *e average
hourly inflow and outflow of subway stations are 1300 and
1600 according to the average level of domestic subway.

Since the train is set to start at an interval of 6minutes,
passengers getting off the train are also set to take the door as
the source, generate it every 6minutes, and exit the station
through the nearest elevator. Finally, according to the
general mode of infectious disease transmission in the
model, the more mature SEIR model is selected.

4. Simulation Analysis of Urban Subway
Epidemic Spread

In this paper, the simulation models of subway platform
ventilation structure and crowd behavior mode of subway
system are established by using FLUENT software and
AnyLogic software, and SEIR is taken as the general in-
fection model of epidemic. By simultaneous interpretation
of the number of people in the SEIRmodel over time, we will
lay a foundation for the analysis of the number of people
who are most affected by the infection and the number of the
sick people.

First, simultaneously interpreting the spread of disease
under different transmission capacity, the basic reproductive
number of infectious diseases must be greater than 1;
otherwise, infectious diseases cannot spread in the com-
putational space, as shown in Figure 3.

Figure 3 Simulation Statistics. *e initial number of
patients is set according to 10% of the number of people in
the subway at the same time, that is, 290 people. It can be

Start Anylogic modeling

Create a new model

Import background
image

Build passenger
waiting environment

Input simulation
model parameters

* Set module properties
* Building the basic

environment
* Build action process
* Determine passenger route

Simulation analysis

Output calculation results
and draw statistical charts

Figure 2: Pedestrian trajectory modeling process of AnyLogic
software.

TOILET EXPORT

11
.5

 m

136 m

Figure 1: Plan structure of subway platform.
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seen that when the basic regeneration number is less than 1,
the transmission speed of the disease in the subway pop-
ulation is lower than the flow speed of the population and the
recovery speed of the disease. *erefore, in this case, the
disease cannot spread in the subway space, so the basic
regeneration number index must be set to a value greater
than 1 to carry out subsequent research. Referring to the
relevant data of infectious disease research, the contact rate
of latent persons is 8.781, the basic regeneration number
index is set to 5, the duration of infectious diseases is 53.214
time units, the incubation period is 6.302 time units, and the
transmission capacity is set to 0.08. *e change curve of
various populations over time calculated by substituting into
the simulation model is shown in Figure 4.

According to the analysis of Figure 4, when the simu-
lation time is 100 time units, the number of latent persons
reaches the maximum value of 1043 in the 30th minute, and
the number of patients reaches the maximum of 2086 in the
44th minute. According to the data in Figure 3, the change
step of follow-up propagation ability (I) index should be
0.03, and the selected values are 0.02, 0.05, 0.08, 0.11, and
0.14. Run the simulationmodel according to these five values
to obtain the latent real-time curve cluster and the sick real-
time curve cluster, which are shown in Figure 5 and 6,
respectively.

It can be seen from Figure 5 that with the enhancement
of disease transmission capacity, the time taken for the
number of disease latent persons to reach the peak is
gradually shortened, and the peak number increases sig-
nificantly. When the disease transmission capacity is 0.14,
the number of latent persons reaches the peak at 14.115 time
units, which is 1374. Reanalyze the real-time curve of pa-
tients, as shown in Figure 6.

It can be seen from Figure 6 that with the enhancement
of disease transmission ability, the real-time curve of the sick
population shows the same change trend as the real-time
curve of the latent, with the peak increasing and the peak
time shortening. When the transmission capacity is 0.14, the
number of patients reaches the peak at 28.541 time units,
which is 1925.

*en, analyze the spread of the disease under different
contact rates. *e core parameters of the disease are set as
follows: the transmission capacity is fixed at 0.116, the
disease duration is 52.174 time units, the incubation period
is 6.402 time units, and the contact rate (CR) is 15.0. *e
time-varying curves of various populations calculated by
substituting various parameters into the simulation model
are shown in Figure 7.

It can be seen from Figure 7 that when the simulation
time is 100 time units, the number of latent persons reaches
the maximum value of 1285 in the 19th minute, and the
maximum number of patients reaches 2120 in the 32nd
minute. According to the data in Figure 6, the CR change
step of the disease in the follow-up analysis should be 3, and
the selected values are 3.0, 6.0, 9.0, 12.0, and 15.0. Run the
simulation model according to these five values to obtain the
latent real-time curve cluster and the sick real-time curve
cluster, which are shown in Figures 8 and 9, respectively.

As shown in Figure 8, with the increase of the contact
rate of infectious diseases in the subway space, the time for
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Figure 3: Changes in the number of different types of people over
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Figure 5: Real-time curve of latent persons under various infec-
tious disease transmission capacity parameters.
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the number of disease latent persons to reach the peak is
gradually shortened, and the peak number increases sig-
nificantly, which is roughly the same as that in Figure 5.
When the propagation rate is 15.0, the number of lurks
reaches a peak of 1154 at 16.362 time units. Reanalyze the
real-time curve cluster of patients, as shown in Figure 9.

It can be seen from Figure 9 that with the increase of the
contact rate of infectious diseases in the subway space, the
maximum number of patients becomes larger and larger,
and the time to reach the maximum becomes shorter and
shorter. When the transmission rate was 15.0, the number of
patients reached the peak at 31.27 time units, which was
19.69.

Combined with the above analysis, the transmission
speed of infectious diseases will be greatly affected by the
transmission capacity and contact rate. *erefore, the pri-
ority path for the transmission of infectious diseases is in the
most densely populated subway entrances, elevators, stairs,
and places that are more suitable for virus transmission, such
as ambient temperature, humidity, and ventilation. In this
regard, this study puts forward the following suggestions on

the risk control of subway epidemic disease transmission
(the proposed assumption is that there have been infectious
disease cases in the city where the subway is located) [24].
First, people in the subway system should wear masks and
keep a certain distance from others as far as possible to
reduce the potential transmission efficiency of the disease.
Second, the subway system space in high-risk areas should
be regularly disinfected and tested for viruses in the envi-
ronment so as to minimize the potential source of infection.
Finally, the subway should reasonably arrange pedestrian
flow guidance signs and guides to evacuate the dense subway
pedestrian flow as far as possible so as to reduce the contact
rate of pedestrians in the environment. If the epidemic
prevention pressure around the subway is high, the facilities
with high pedestrian density in areas such as elevators can be
limited or stopped directly.

5. Conclusion

In order to explore the transmission path of the epidemic
disease in the urban subway system, the simulation models
of subway platform ventilation structure and crowd
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Figure 7: Changes in the number of different types of people over
time when the exposure rate is 15.0.
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Figure 8: Real-time curve of latent persons under various infec-
tious diseases’ exposure rate parameters.
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Figure 9: Real-time curve of patients under exposure rate pa-
rameters of infectious diseases.
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Figure 6: Real-time curve of patients under various infectious
disease transmission capacity parameters.
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behavior mode in the subway system were constructed by
using FLUENT software and AnyLogic software, and SEIR
was used as the general infection model of the epidemic
disease. *e simulation analysis results show that the
maximum number of latent and sick people in the subway
environment will increase with the enhancement of disease
transmission ability and the increase of contact rate. Spe-
cifically, when the disease transmission ability is 0.14, the
number of latent people reaches the peak at 14.115 time units,
1374 people, and the number of sick people reaches the peak at
28.541 time units, 1925 people.When the transmission rate was
15.0, the number of latent persons peaked at 16.362 time units,
1154, and the number of sick persons peaked at 31.27 time
units, 1969. *erefore, the most densely populated subway
entrances, elevators, stairs, ambient temperature, humidity,
ventilation, and other factors are more suitable for virus
transmission, which is the priority path of infectious disease
transmission. Based on the research results, the following
suggestions are put forward to ensure that pedestrians in the
subway system of cities with cases should wear masks and keep
a distance; regularly disinfect the environment; and evacuate
the relatively densely populated areas in the subway. However,
providing more convenience in the subway scene is a hot issue
in the current industry.With the complexity of the evolution of
large subway passenger flow, it has become the research di-
rection of the industry to reproduce the subway passenger flow
organization in the form of “optimization model.” *is paper
does not carry out the simulation research of subway large
passenger flow based on multilevel pedestrian behavior model
to analyze the maximum evacuation capacity of different fa-
cilities. *erefore, it needs to be studied to realize the effective
regulation of large passenger flow organization [24, 25].
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