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As an emerging means of transportation for the intelligent transportation system (ITS) in aviation and aerospace, hypersonic
cruise vehicles (HCVs) have received numerous research interests during the past several decades. However, the navigation and
positioning strictly limit the progress and application of HCVs due to their special characteristics on dynamics and environments.
To improve the stability of navigation in HCVs, a chi-square test-based adaptive federated cubature Kalman filter (CAFCKF) is
proposed in this paper. In the proposed approach, the chi-square test is adopted for the estimation of the measurement noise
statistics firstly. Subsequently, a new adaptive information fusion factor is designed for the federated filter to adjust the con-
tribution of each subsystem. Finally, the information sharing factor, which is used for the amendment of the state covariance of
each subsystem, is refined based on the judging index of the chi-square test accordingly. Simulation results show that the proposed
CAFCKF can be used to improve the accuracy and stability of the navigation system.

1. Introduction

(e intelligent transportation system (ITS) has received
numerous research interests to improve the consumption of
vehicles using advanced technologies during the past several
decades. Recently, the concept of ITS has been expanded
from the land traffic to the fields of aviation and aerospace.
Hypersonic cruise vehicle (HCV) is an emerging means of
transportation for the ITS in aviation and aerospace.
However, the navigation and positioning for the HCVs are
still a challenging problem due to their special characteristics
on dynamics and environments, leading to the limited
progress and application of the HCVs. Currently, the
strapdown inertial navigation system (SINS) has been widely
used for autonomous navigation in HCVs [1–3]. However,
the error of SINS often increases boundlessly in time series
due to the gyro drift and accelerometer bias [3]. To overcome
the shortcoming using a single SINS, the Global Navigation
Satellite System (GNSS) was proposed to provide highly
accurate position information [4–6]. But the GNSS usually

lacks autonomy, which makes it susceptible to artificial
interference. To reduce the accumulated navigation error
and to resist electromagnetic interference, the celestial
navigation system (CNS) was proposed in [7, 8]. (e SINS,
GNSS, and CNS were then combined to keep the system
reliable when the GNSS was out of service [9]. However, the
problem with the CNS is that it has difficulty in star selection
and velocity measurement [10]. As a new supplement for the
navigation technique, the spectral redshift navigation system
(SRS) was then studied, in which the velocity can be cal-
culated from the spectral redshift information of celestial
spectrum [11]. Compared with other navigation systems, the
SRS has the advantages such as simple navigation principle,
easy star selection, and zero time delay, which makes it
suitable as an auxiliary navigation system to assist in cor-
recting the velocity error of SINS, avoiding parameter di-
vergence while maintaining system autonomy [12, 13]. Due
to these reasons, the integration of INS/GNSS/CNS/SRS will
be a promising navigation strategy for the HCVs to address
the limitations of INS/GNSS integration in lack of autonomy
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and INS/GNSS/CNS integration in star selection and ve-
locity measurement.

(e Kalman filter has been proposed as an important
information fusion algorithm for the linear integrated
navigation system [14]. Recently, the nonlinear information
fusion algorithms, such as extended Kalman filter (EKF)
[15], unscented Kalman filter (UKF) [16], and cubature
Kalman filter (CKF) [17], were proposed to handle the data
fusion problem involved in the nonlinear system. (e CKF
applies the cubature rule to obtain the consequently fixed
cubature points with a constant weight, which is more stable
than UKF [18]. A comparison between CKF and UKF was
made in [19], and it was shown that the CKF was more
accurate than the sigma points approach-based UKF. When
the Kalman filter was used to achieve information fusion in
the navigation system, an accurate system model and exact
noise statistics were required [20]. However, the navigation
system always involves uncertainties and faults caused by the
outlier in measurement under highly dynamic conditions.
To avoid the influence of outlier in measurement, mea-
surement noise was often handled by the H-infinity strategy
[21, 22]. However, this method may break down in the
presence of randomly occurred outliers since it assumes that
the estimation to be achieved is a linear combination of state
vectors which is very difficult to satisfy. (rough statistical
linear regression of a nonlinear system function, the Huber-
based KF method was proposed in [23] to curb the effect of
outlier in measurement, which can achieve the robustness
but sacrifices the estimation accuracy. Moreover, a scaling
factor of measurement noise covariance was calculated to
further adjust the Kalman gain to deal with the outlier in
measurement [24, 25]. However, the scaling factor in this
method is often selected by experience. To improve the
accuracy of noise estimation, the maximum likelihood
principle (MLP) was also studied in [26, 27]. However, this
method involves large computational burden, which makes
it unable to achieve the real-time navigation performance
[25].

Considering redundant and homologous measurement
information in the multisensor navigation system, the
federated Kalman filter (FKF) was proposed for the state
fusion estimation of integrated navigation information
[28, 29]. With a distributed filter structure, the FKF is more
convenient for fault isolation and more efficient than the
centralized filter. In the FKF, the information sharing factor
has great effects on the accuracy of information fusion and
correlation elimination among the local estimations.
However, the value of information sharing factor does not
always reflect the differences between each state variable.(e
chi-square test is a statistical method for the real-time de-
tection of abnormal changes in a dynamic system [30, 31].
(us, it can be used to detect changes of statistical char-
acteristics of measurement noise and to optimize the in-
formation sharing factor in the FKF for the application of
integrated navigation.

In this paper, a SINS/GNSS/SRS/CNS integrated navi-
gation system and a chi-square test-based adaptive federated

cubature Kalman filter (CAFCKF) are proposed to improve
the accuracy and reliability of the navigation system in
HCVs. In CAFCKF algorithm, the chi-square test is used for
the estimation of the statistical characteristics of measure-
ment noise. (en, a new adaptive information fusion factor
is designed to adjust the contribution of each subsystem.
Further, the information sharing factor is also refined based
on the judge index of the chi-square test to amend the state
covariance of each subsystem for the optimization of the
global state estimation. Finally, the proposed CAFCKF al-
gorithm is verified in the SINS/GNSS/SRS/CNS integrated
navigation system.

2. SINS/GNSS/SRS/CNS Integrated
Navigation System

(e structure of SINS/GNSS/SRS/CNS integrated navigation
system is shown in Figure 1, in which the SINS is used as the
main navigation system and the GNSS, SRS, and CNS are
applied to correct the error of SINS. In this integrated
system, the SRS and CNS can be regarded as the supplement
of SINS/GNSS integration when GNSS is out of service, since
they can provide the velocity observation and position
measurement to correct the error of SINS.

2.1. Kinematic Model. (e state of the kinematic model is
chosen as

X(t) � Φ δ vn δp εb ∇b
 , (1)

where Φ � (ϕE, ϕN,ϕU) denotes the attitude error, δvn �

(δvE, δvN, δvU) is the velocity error, δp � (δL, δλ, δh) de-
notes the position error, εb and ∇b denote the gyro constant
drift and accelerometer zero bias, respectively, and n and b
represent the n-frame and b-frame, which will be explained
in the next paragraph.

(e navigation frame (n-frame) is selected as the E-N-U
(East-North-Up) frame. Denote the inertial frame as
i-frame, the body frame as b-frame, the Earth frame as
e-frame, and the SINS simulated navigation frame as n’-
frame. Based on the E-N-U frame, the error equations of
SINS in terms of velocity and attitude are written as

_Φ � −ωn
in × Φ + δωn

in − Cn′
b δωb

ib

δ _v
n

� Cn′
b

f
b

  × Φ + Cn′
bδf

b
− 2ωn′

ie + ωn′
en  × δvn

− 2δωn
ie + δωn

en(  × vn

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where f
b
is the measured specific force in the b-frame, δωb

ib

is the gyro’s measurement error, ωn
ie is the angular velocity of

the Earth, ωn
en is the angular velocity of the vehicle relative to

the Earth, ωn
in � ωn

ie + ωn
en is the relative angular velocity

between n-frame and i-frame, ωn′
in , ωn′

en, and ωn′
ie are the

corresponding values in the n’-frame, and vn is the velocity
obtained by SINS in n-frame.

(e error equation of SINS in terms of position is given
by
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δ _L �
δvN

RM + h
− δh

vN

RM + h 
2,

δ _λ �
δvEsecL

RN + h
+ δL

vE tan LsecL

RN + h
− δh

δvEsecL

RN + h 
2,

δ _h � δvU,

(3)

where RM and RN are the median radius and normal radius
and h, λ, and L are the altitude, longitude, and latitude
output using SINS in n-frame.

(e equation of εb and ∇b can be described as

_εi � 0 (i � x, y, z)

_∇i � 0 (i � x, y, z).
 (4)

(us, from (2)–(4), the discrete kinematic model of
SINS/GNSS/SRS/CNS integration system can be presented
by

Xk � Fk/k−1Xk−1 + Wk, (5)

where k is the sample time, Xk is the discrete system’s state
vector, Fk/k−1 is the discrete system’s state transformation
matrix, and Wk is the discrete system’s kinematic noise
matrix.

2.2. Measurement Equation of SINS/GNSS Subsystem. (e
pseudorange and pseudorange rate from a GNSS receiver
can be represented as [10]

ρ(i)
� R

i
+ bp + v

i
ρ, i � 1, 2, . . . , m

_ρi
�

D
i

ρi
+ bp + v

i
_ρ
, i � 1, 2, . . . , m

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where ρ(i) and _ρ(i) represent the pseudorange and pseu-

dorange rate, respectively, and v(i) � v(i)
ρ v

(i)
_ρ 

T
represents

the measurement noise.

D
(i)

� x − xsi(  _x − _xsi(  + y − ysi(  _y − _ysi( 

+ z − zsi(  _z − _zsi( ,
(7)

where (x, y, z) is the actual position of the vehicle in the
e-frame; (xsi, ysi, zsi) is the position of the ith satellite in
the e-frame; ( _x, _y, _z) is the actual velocity of vehicle in the
e-frame; ( _xsi, _ysi, _zsi) is the velocity of the ith satellite in
the e-frame; and R(i) represents the geometric range from
the i th satellite to the receiver, which can be calculated as

R
(i)

�

���������������������������

x − xsi( 
2

+ y − ysi( 
2

+ z − zsi( 
2



. (8)

It is known that

x � RN + h( cos L cos λ,
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(9)
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Figure 1: SINS/GNSS/SRS/CNS integrated navigation system.
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where (L, λ, h) is the corresponding position of the vehicle in
n-frame, RN is the radius of curvature in the prime vertical,
f is the eccentricity of the ellipsoid, Ce

n is the rotation matrix
from n-frame to e-frame, and (vE, vN, vU) is the corre-
sponding velocity of vehicle in n-frame.

(e position and velocity estimated by SINS are satisfied
such that

L � L + δL

λ � λ + δλ
h � h + δh

,

vE � vE + δvE

vN � vN + δvN

vU � vU + δvU

,

⎧⎪⎪⎨

⎪⎪⎩

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

where (L, λ, h) is the real position.
By substituting (7)–(11) into (6), the nonlinear mea-

surement equation is obtained as

ZGNSS � h ρ(1)
, ρ(2)

, ρ(3)
, ρ(4)

, _ρ(1)
, _ρ(2)

, _ρ(3)
, _ρ(4)

 
T

  + v,

(11)

where v(i) � [v(i)
ρ ; v

(i)
_ρ ].

ρ(i)
� RN +(h − δh) cos(L − δL)cos(λ − δλ) − xsi 

2


+ RN +(h − δh) cos(L − δL)sin(λ − δλ) − ysi 
2

+ RN 1 − f
2

  +(h − δh) sin(L − δL) − zsi 
2

1/2

+ bp,

_ρ(i)
�

RN +(h − δh) cos(L − δL)cos(λ − δλ) − xsi 

× vU − δvU( cos(L − δL)cos(λ − δλ) − vE − δvE( sin λ − vN − δvN( sin L cos λ 

+ RN +(h − δh) cos(L − δL)sin(λ − δλ) − ysi 

× vU − δvU( cos(L − δL)sin(λ − δλ) + vE − δvE( cos λ − vN − δvN( sin L sin λ 

+ RN 1 − f
2

  +(h − δh) sin(L − δL) − zsi 

× vU − δvU( sin(L − δL) + vN − δvN( (L − δL) 

ρ(i)
+ bp.

(12)

2.3. Measurement Equation of SINS/SRS Subsystem.
Considering the redshift principle of spectrum and the
Doppler frequency shift formula, the relationship between
redshift of celestial spectrum observed in vehicle and the
velocity of vehicle is [12]

1 + zi( 

������������

c2 − vp − vci



2



− vp − vci  · ui − c � 0, (13)

where i denotes the observed objects which is not less than 3,
zi denotes spectral redshift value of celestial body calculated
in the target vehicle, vp denotes the velocity vector of the
vehicle in the i-frame, vc denotes the velocity vector of the

celestial body in the inertial coordinate system, which can be
obtained by querying the celestial ephemeris, c denotes the
velocity of light, and u denotes the position unit vector of the
celestial object in the i-frame, which can be measured by the
star sensors.

Assume that

Zi vp  � vp − vci  · ui − 1 + zi( 

�����������

c2 − vp − vi




2



+ c. (14)

(rough the first order Taylor expansion at vp � 0 and
omitting the higher-order terms, (14) can be transformed to
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Z1(0) +
zZ1 vp 

zvpx

|vp � 0 · vpx +
zZ1 vp 

zvpy

|vp � 0 · vpy +
zZ1 vp 

zvpz
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Z2(0) +
zZ2 vp 

zvpx
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zZ2 vp 
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|vp � 0 · vpy +
zZ3 vp 
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Z3(0) +
zZ3 vp 

zvpx

|vp � 0 · vpx +
zZ3 vp 
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|vp � 0 · vpy +
zZ3 vp 

zvpz

|vp � 0 · vpz � 0,
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(15)

where (vpx, vpy, vpz)T represents the components of vp in
i-frame.

A nonhomogenous equation can be obtained as

zZ1

zvpx

|vp � 0
zZ1

zvpy

|vp � 0
zZ1

zvpz
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vp � Lvp �

−Z1(0)

−Z2(0)

−Z3(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

Due to the fact that the three observed celestial bodies are
noncollinear, L is a full-rank matrix:

vp � −

Z1(0)

Z2(0)

Z3(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦L
− 1

. (17)

(e velocity of vehicle calculated by SRS in ENU-frame
can be obtained as

vSRS � Ci
gvp � −Ci

eC
e
g

Z1(0)

Z2(0)

Z3(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦L
− 1

, (18)

where vSRS is the velocity of SRS in ENU-frame, Ce
g is the

rotation matrix from Earth frame to ENU-frame, and Ci
e is

the rotation matrix from i-frame to the e-frame.
(e velocity error measurement equation of SINS/SRS

subsystem can be expressed as

ZSRS � vn
− vSRS �

δvE

δvN

δvU

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + VSRS, (19)

where VSRS is the measurement noise.

2.4. Measurement Equation of SINS/CNS Subsystem. (e
measurement equation of SINS/CNS subsystem is chosen as
the difference of longitude and latitude information between
SINS and CNS:

Zp �
λ − λCNS
L − LCNS

⎡⎣ ⎤⎦, (20)

where (λCNS, LCNS) denote the longitude and latitude
measurements of CNS.

In order to prevent the divergence of altitude channel in
SINS, a barometric altimeter is introduced to the integrated
navigation system. (e difference in altitude between the
barometric altimeter and SINS is taken as the measurement.
(us, the measurement equation is written as

Zh � h − hU , (21)

where hU denotes the altitude output of barometric
altimeter.

(en, the measurement equation of SINS/CNS subsys-
tem can be further written as

ZCNS&BA � HCNS&BAX + VCNS&BA, (22)

where HCNS&BA � 03×3 I3×3 03×9  is the measurement
matrix of the SINS/CNS subsystem and Vk � [VCNS;VBA] is
the measurement noise.
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3. Chi-Square Test-Based Adaptive Federated
Cubature Kalman Filter

3.1. Federated Cubature Kalman Filter. To improve the
computation efficiency and reliability, a federated cubature
Kalman filter (FCKF) is established and used for the mul-
tisensor nonlinear system. Its procedure is shown below.

Step 1. State prediction:

ηi,s,k|k−1 � Ss,k−1|k−1ξi + Xk−1, (23)

where, Sk−1|k−1ST
k−1|k−1 � Ps,k−1.

xi,s,k|k−1 � f ηi,s,k|k−1 , (24)

where f(·) denotes the state equation and ξi denotes the ith
element of ξd×2d.

ξd×2d can be expressed as

ξd×2d �

1 0 · · · 0 −1 0 · · · 0

0 1 0 0 −1 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱

0 0 · · · 1 0 0 · · · −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d×2d

, (25)

where d is the dimension of system state.

Xs,k|k−1 � 
2d

i�1
wixi,s,k|k−1, (26)

Ps,k|k−1 � 
2 d

i�1
wixi,s,k|k−1x

T
i,s,k|k−1 + Xs,k|k−1X

T
s,k|k−1 + Qs,k,

(27)

where wi � 1/2 d.

Step 2. Calculate the gain matrix of the subfilter:

ςi,s,k|k−1 � Ss,k|k−1ξ + Xs,k|k−1, (28)

Ss,k|k−1S
T
s,k|k−1 � Ps,k|k−1, (29)

zi,s,k|k−1 � hs ςi,k|k−1  + rs,k, (30)

Zs,k|k−1 � 
2d

i�1
wizi,s,k|k−1. (31)

(e prediction innovation covariance matrix and cross-
covariance matrix of subfilter s can be written as

Pzz
s,k|k−1 � 

2d

i�1
wizi,s,k|k−1z

T
i,s,k|k−1 + Zs,k|k−1Z

T
s,k|k−1 + Rs,k, (32)

Pxz
s,k|k−1 � 

2d

i�1
wiςi,k|k−1z

T
i,s,k|k−1 + Xk|k−1Z

T
s,k|k−1, (33)

where Zs,k|k−1 denotes the measurement prediction of sub-
system s.

(e gain of subfilter s can be written as

Ks,k � Pxz
s,k|k−1 Pzz

s,k|k−1 
− 1

. (34)

Step 3. Update state of the subfilter as

Xs,k � Xk|k−1 + Ks,k Zs,k − Zs,k|k−1 , (35)

Ps,k � Pk|k−1 + KT
s,kP

zz
s,k|k−1Ks,k, (36)

where Ps,k is the covariance matrix of subfilter s and Xs,k is
the state estimation of subfilter s.

Step 4. Calculate the global fusion through the main filter:

Pg,k � P− 1
s,k 

− 1
,

Xg,k � Pg,k P−1
s,k

Xs,k ,
(37)

where Pg,k is the covariance matrix of the global filter and
Xg,k is the state estimation of the global filter.

3.2. Establishment of the Chi-Square Test-Based Adaptive
FCKF (CAFCKF). In reality, the statistic characteristics of
measurement noise are always unknown or changed with
time. Under this situation, the estimator has great difficulty
in ensuring the system accuracy. To address this problem, a
noise estimator for the measurement noise statistics based
on the chi-square test (CST) is firstly proposed in this paper.

(e innovation of sth subsystem is defined as

νs,k � Zs,k − Zs,k/k−1. (38)

(e hypothesis test based on innovation can be con-
structed as

H0: E νsν
T
s  � Pzz

s,k|k−1, noise statistic unchanged,

H1: E νsν
T
s  � νs,k − μs,k  νs,k − μs,k 

T
≠Pzz

s,k|k−1, noise statistic changed.

⎧⎪⎨

⎪⎩
(39)

(en, calculate rs,k �
1

M


M

j�1
νs,k−j+1. (40)
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According to the principle of CST, the judge index can be
expressed as

Js,k � νs,k − rs,k 
T
Pzz

s,k|k−1 
− 1

νs,k − rs,k , (41)

where Js,k ∼ χ2(m).
According to the hypothesis test, by setting the signif-

icance level α (0< α< 1), there will be a threshold Ts, which
makes α follow [28]

P Js,k >Ts  � α. (42)

When the statistical characteristics of measurement
noise are unchanged, λ(k) will be smaller than Ts. Otherwise,
the judge index will exceed the threshold, and the covariance
of predicted measurement should be adjusted according to

f Pzz
s,k|k−1  � J Pzz

s,k|k−1  − Ts. (43)

Based on Newton’s method, we have

Pzz
s,k|k−1(i + 1) � Pzz

s,k|k−1(i) +
νs,k − rs,k 

T
Pzz

s,k|k−1(i))
− 1

 
− 1

νs,k − rs,k  − Ts

νs,k − rs,k 
T
Pzz

s,k|k− 1(i) 
−2

νs,k − rs,k 
T , (44)

where i denotes the times of iteration in Newton’s method.
Setting P

zz

s,k(0) � Pzz
s,k|k−1, the estimation of measurement

noise covariance can be obtained by running the iteration of
(44) until f(P

zz

s,k(i)) is less than 0. To limit the times of
iteration, a cutoff time C is set to 5, which means if J(P

zz

s,k) is
not less than the threshold when the times of iteration reach
C, the iteration will end.

Subsequently, to improve the performance of the in-
formation procedure, a new adaptive information fusion
factor is defined in FCKF. With the update of state esti-
mation through the subfilter, a judge index of the chi-square
test can be calculated according to the state estimation and
the state prediction from the subfilter:

JX,s,k � Xs,k − Xk||k− 1 
T
Ps,k||k− 1 

− 1 Xs,k − Xk||k−1 , (45)

where JX,s,k denotes the state judge index of subfilter s.
Since state estimation error of a subsystem increases as

JX,s,k increases, the information fusion factor under the chi-
square test can be defined as

As,k � diag As(k), As(k), . . . As(k) m×m, (46)

where

As(k) �
1/JX,s,k

 1/JX,s,k

. (47)

(en, the global fusion of FCKF can be modified as

Pg,k �  As,kPs,k 
− 1

 
− 1

, (48)

Xg,k � Pg,k  As,kPs,k 
− 1 Xs,k . (49)

After the global fusion process, the information sharing
factor for each subfilter is needed to refine the estimation of
each subsystem. (e judge index of the chi-square test
calculated by the global state estimation and the local state
estimation can be written as

JX,sg,k � Xg,k − Xs,k 
T
Pg,k 

− 1 Xg,k − Xs,k . (50)

When JX,g,k is larger than those of other subsystems, the
real contribution of the sth subsystem to the integration
system is smaller than that of other subsystems, whichmeans
this subsystem should have a bigger state covariance than
others. So, we refine the information sharing factor by
calculating it as

Bs,k � diag Bs(k) Bs(k) · · · Bs(k) m×m, (51)

where

Bs(k) �
1/JX,sg,k

 1/JX,sg,k

. (52)

It is known that



L

s�1
Bs,k � Im×m. (53)

(us, the refined state covariance of the subfilter can be
expressed as

Ps,k � B−1
s,kPg,k. (54)

3.3. Procedure of CAFCKF. (e structure of CAFCKF is
shown in Figure 2. (e procedure is shown below.

Step 1. Initialization of Ps,o,Xs,o,Qs,o, andRs,o.
Step 2. State prediction through equations (23)–(27).
Step 3. Estimation of predicted measurement co-

variance through equations (38)–(44).
Step 4. Calculation of the gain matrix of the subfilter

through equations (28)–(34).
Step 5. State updation of the subfilter through equa-

tions (35) and (36).
Step 6. Calculation of the defined information fusion

factor through equations (45)–(47).
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Step 7. Global fusion through equations (48) and
(50).

Step 8. Calculation of the information sharing factor
through equations (50)–(53).

Step 9. Information sharing through equation (54).
Step 10. Repeat Steps 2–9 until the fusion ends.

4. Results and Discussion

A simulation case study is conducted to verify the perfor-
mance of the proposed CAFCKF for the SINS/GNSS/SRS/
CNS integrated navigation system. In the simulation, a
comparison between the proposed CAFCKF, FCKF, and
cubature rule-based distributed optimal fusion (CRDOF)

k = k +1

Initialize

Input Ps,k–1 , Xs,k–1

Estimated the covariance of predicted measurement of each
subsystem as:

rs,k = 1/M ∑M
j=1 vs,k–j+1

Pz
s
z
,k|k–1 (i+1)=Pz

s
z
,k|k–1(i)+

(vs,k–rs,k)T(Pz
s
z
,k|k–1(i)-1)-1(vs,k–rs,k)–Ts

(vs,k–rs,k)T(Pz
s
z
,k|k–1(i)-2(vs,k–rs,k)T

State prediction:
Sk–1|k–1Sk–1|k–1

T = Ps,k–1,ηi,s,k|k–1 = Ss,k–1|k–1ξi + xk|k–1

Xs,k|k–1
 = ∑

 
wi xi,s,k|k–1

2d

i=1

Ps,k|k–1
 = ∑ wi xi,s,k|k–1 xi,s,k|k–1

T = Xs,k|k–1 Xs,k|k–1
T + Qs,k

2d

i=1

Calculate the information fusion factor based
on Chi-square test:

JX,s,k = (X̂s,k–Xk|k–1)T(Ps,k|k–1)-1(X̂s,k–Xk|k–1)

As(k) = 
1/JX,s,k

∑1/JX,s,k

As,k = diag{As(k) As(k) ☐ As(k)}m×m

Global fusion:

X̂g,k=Pg,k(∑(As,kPs,k)-1X̂s,k)

Pg,k=(∑(As,kPs,k)-1)-1

Estimate the state and covariance of
subsystem :

Ks,k = Px
s
z
,k|k–1(P̂z

s
z
,k)-1

Xs,k = Xk|k–1+Ks,k(Zs,k–Zs,k|k–1)
P̂s,k = Pk|k–1+Ks,kP̂z

s
z
,kKs,k

Calculate the information sharing factor
based on Chi-square test:

JX,sg,k = (X̂g,k–Xs,k)T(Pg,k–Ps,k)-1(X̂g,k–X̂s,k)

Bs(k) = 
1/JX,sg,k

∑1/JX,sg,k

∑ Bs(k) = Im×m
L

s=1

Information sharing:
Ps,k =B--

s
1
,kPg,k

Figure 2: Procedure of CAFCKF.
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[28] is made and discussed. (e dynamic flight trajectory of
HCVs is shown in Figure 3. (e parameters set in the

simulation are listed in Table 1. (e entire simulation time is
set to 1000 s, and the filtering period is set to 1 s.

(e initial value ofX0, P0, r0, q0, R0, andQ0 is selected as

X0 �
0.1°, 0.1°, 0.1°, 0.3m/s, 0.3m/s, 0.3m/s, 10m,

10m, 10m, 1°/h, 1°/h, 1°/h, 2mg, 2mg, 2mg, 50m, 1m/s
 

T

,

P0 � diag
0.1°( 

2
, 0.1°( 

2
, 0.1°( 

2
, (0.3m/s)2,

(0.3m/s)
2
, (0.3m/s)2, (10m)

2
, (10m)

2
, (10m)

2
,

1°/h( 
2
, 1°/h( 

2
, 1°/h( 

2
, (2mg)

2
, (2mg)

2
, (2mg)

2
, (50m)

2
, (1m/s)2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

r0 � 0, q0 � 0,

Q � diag 0.5°/h( 
2
, 0.5°/h( 

2
, 0.5°/h( 

2
, (0.1mg)

2
, (0.1mg)

2
, (0.1mg)

2
 .

(55)

With the aforementioned simulated parameters, the
effects of the proposed CAFCKF, FCKF, and CRDOF on the
SINS/GNSS/SRS/CNS integrated navigation system are
analyzed. (e GNSS, SRS, and CNS are given with changed
measurement noise and described as condition 1:

vGNSS ∼

N 0,RGNSS( , 0s< k≤ 300s,

N 0, 4RGNSS( , 200s< k≤ 300s,

N 0,RGNSS( , 300s< k≤ 1000s,

⎧⎪⎪⎨

⎪⎪⎩

vSRS ∼

N 0,RSRS( , 0s< k≤ 300s,

N 0, 5RSRS( , 500s< k≤ 600s,

N 0,RSRS( , 600s< k≤ 1000s,

⎧⎪⎪⎨

⎪⎪⎩

vCNS ∼

N 0,RCNS( , 0s< k≤ 300s,

N 0, 6RCNS( , 800s< k≤ 900s,

N 0,RCNS( , 900s< k≤ 1000s,

⎧⎪⎪⎨

⎪⎪⎩

(56)

where RGNSS � diag((20m)2I3×3, (0.5m/s)2I3×3), RCNS �

diag((15m)2, (15m)2, (10m)2), and RSRS � diag((0.5m/s)2,

(0.5m/s)2, (0.5m/s)2); these are also the initial values of R0
for each subfilter.

Under condition 1, the estimation error curve of the
velocity and position using CAFCKF, FCKF, and CRDOF is
shown in Figure 4. (e mean absolute error of the velocity
and position is listed in Table 2.

As shown in Figure 4 and Table 2, during the time in-
terval of (200 s, 300 s), with the changed covariance in the
measurement noise of SINS/GNSS subsystem, the biggest
fluctuation occurs for both the error curve of velocity and
position by the FCKF. Compared to FCKF, smaller position
and velocity errors are obtained by the CRDOF. (e mean
absolute error of velocity and position reaches 0.133m/s and
6.64m. For the chi-square-based noise estimation algorithm
and the adaptive information fusion factors, smaller mean
absolute errors are obtained by the CAFCKF than those of
FCKF, which are about 0.121m/s and 3.57m. During the
time interval of (500 s, 600 s), the error curve of velocity by
the FCKF fluctuates abruptly, and the mean absolute error of
velocity is about 0.189m/s. On the contrary, compared to the
FCKF, a smaller mean absolute error of velocity is obtained
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Figure 3: Dynamic flight trajectory.
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Table 1: Parameters in simulations.

Initial position
East longitude 108.9°
North latitude 34.025°

Altitude 40 km

Initial velocity
East 151m/s
North 125m/s
Up 125m/s

Initial attitude
Pitch 0°
Roll 0°
Yaw 0°

Gyro parameters
Constant drift 0.5°/h
White noise 0.5°/h

Sampling frequency 10Hz

Accelerometer parameters
Zero bias 0.1mg

White noise 0.1mg
Sampling frequency 10Hz

GNSS parameters
Pseudorange measurement error 20m

Pseudorange rate measurement error 0.5m/s
Sampling frequency 10Hz

SRS parameters Redshift measurement error 10̂-8
Sampling frequency 1Hz

CNS parameters Measurement error 15m
Sampling frequency 1Hz

Barometric altimeter parameter Altitude measurement error 10m
Sampling frequency 1Hz
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Figure 4: Error curve of velocity and position under measurement noise with changed statistical characteristics under condition 1.
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by the CRDOF, which is 0.149m/s. Compared to the
CRDOF, a smaller mean absolute error of velocity is ob-
tained by the CAFCKF, which is about 0.1m/s. During the
interval of (800 s,900 s), the covariance of the measurement
noise is not adjusted and the contribution of each subsystem
is not ensured for the FCKF, leading to the biggest fluctu-
ation in the position error curve. Compared to the FCKF, a
more smooth error curve is obtained by the CAFCKF.
Meanwhile, a smaller mean absolute error of position, which
is 3.43m, is obtained by the CAFCKF.

To verify the universality under condition 1, the ARMSE
of velocity and position is calculated after 50 Monte Carlo
runs and shown in Figure 5.

As shown in Figure 5, the FCKF results in the biggest
ARMSE during all time intervals. During the time interval of
(200 s, 300 s), the ARMSE of velocity and position is 0.14m/s
and 4.57m for the CAFCKF, which is 22% and 39% smaller
than that of CRDOF. During the time interval of (500 s, 600 s),
the ARMSE of velocity and position is 0.11m/s and 4.34m for
the CAFCKF, which is 36% and 37% smaller than that of
CRDOF. During the interval of (800 s, 900 s), the ARMSE of
velocity and position is 0.12m/s and 4.68m/s for the CAFCKF,
which is 20% and 77% smaller than that of CRDOF.

(e GNSS, SRS, and CNS are given with another
changed measurement noise and described as condition 2:

vGNSS ∼

N 0,RGNSS( , 0s< k≤ 300s,

N 3rGNSS,RGNSS( , 200s< k≤ 300s,

N 0,RGNSS( , 300s< k≤ 1000s,

⎧⎪⎪⎨

⎪⎪⎩

vSRS ∼

N 0,RSRS( , 0s< k≤ 300s,

N 5rSRS,RSRS( , 500s< k≤ 600s,

N 0,RSRS( , 600s< k≤ 1000s,

⎧⎪⎪⎨

⎪⎪⎩

vCNS ∼

N 0,RCNS( , 0s< k≤ 300s,

N 4rCNS,RCNS( , 800s< k≤ 900s,

N 0,RCNS( , 900s< k≤ 1000s,

⎧⎪⎪⎨

⎪⎪⎩

(57)

where rGNSS � (20m; 20m; 20m; 0.5m/s; 0.5m/s; 0.5m/s),
rCNS � (15m, 15m, 10m), and rSRS � (0.5m/s, 0.5m/s,
0.5m/s).

Under condition 2, the estimation error curve of the
velocity and position using CAFCKF, FCKF, and CRDOF is
shown in Figure 6. (e mean absolute error of the velocity
and position is listed in Table 3.

As shown in Figure 6 and Table 3, during the time in-
terval of (200 s, 300 s), the error of velocity and position by
the FCKF obviously increases. Its mean absolute errors in
velocity and position are 1.73m/s and 71m, which are the
biggest among these methods. (e mean absolute errors of

Table 2: Mean absolute error of different algorithms under the measurement noise with changed statistical characteristics under condition 1.

Algorithm Error type
Mean absolute error

(200 s, 300 s) (500 s, 600 s) (800 s, 900 s) Other times

FCKF Velocity 0.195m/s 0.189m/s 0.141m/s 0.133m/s
Position 19.36m 6.46m 17.66m/s 6.36m

CRDOF Velocity 0.133m/s 0.149m/s 0.134m/s 0.126m/s
Position 6.64m 6.15m 6.86m 6.77m

CAFCKF Velocity 0.121m/s 0.103m/s 0.093m/s 0.116m/s
Position 3.57m 3.24m 3.98m 3.43m
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Figure 5: ARMSE of position and velocity under condition 1.
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velocity and position by the CAFCKF, which are 0.33m/s
and 6.57m, are smaller than those of CRDOF. During the
time interval of (500 s, 600 s), the mean absolute errors of
velocity and position by the FCKF are about 1.84m/s and

21.36m. (e CAFCKF and CRDOF present better perfor-
mance of information fusion than FCKF.(e mean absolute
errors by the CAFCKF are smaller than those of CRDOF.
During the time interval of (800 s, 900 s), the FCKF presents
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Figure 6: Error curve of velocity and position under measurement noise with changed statistical characteristics under condition 2.

Table 3: Mean absolute error of different algorithms under the measurement noise with changed statistical characteristics under condition 2.

Algorithm Error type
Mean absolute error

(200 s, 300 s) (500 s, 600 s) (800 s, 900 s) Other times

FCKF Velocity 1.73m/s 1.84m/s 0.69m/s 0.82m/s
Position 71.36m 21.36m 64.14m/s 10.36m

CRDOF Velocity 0.78m/s 0.65m/s 0.123m/s 0.14m/s
Position 10.57m 5.33m 12.58m 5.44m

CAFCKF Velocity 0.33m/s 0.21m/s 0.093m/s 0.15m/s
Position 6.57m 3.69m 4.58m 4.92m
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the biggest error in both velocity and position. (e mean
absolute errors are 0.69m/s and 64.14m. In contrast, the
smallest mean absolute errors of velocity and position are
obtained by the CAFCKF, which are 0.1093m/s and 4.58m.

Under condition 2, the ARMSE of velocity and positions
is also calculated after 50 Monte Carlo runs and shown in
Figure 7.

As shown in Figure 7, during the time interval of (200 s,
300 s), the ARMSE of velocity and position is 0.43m/s and
7.67m by the CAFCKF, which is 62% and 40% smaller than
that of CRDOF. During the time interval of (500 s, 600 s), the
ARMSE of velocity and position is 0.31m/s and 4.33m by
the CAFCKF, which is 56% and 21% smaller than that of
CRDOF. During the time interval of (800 s, 900 s), the
ARMSE of velocity and position by the CAFCKF is 0.11m/s
and 5.58m, which is 22% and 62% smaller than that of
CRDOF. Furthermore, without adaptive information fusion
factor, the biggest ARMSE is obtained by the FCKF.

5. Conclusions

In this paper, a SINS/GNSS/SRS/CNS integrated navigation
system and chi-square test-based adaptive federated cuba-
ture Kalman filter (CAFCKF) are proposed to improve the
accuracy and reliability of the navigation system in HCVs. In
the proposed CAFCKF algorithm, the chi-square test is used
to estimate the statistical characteristics of measurement
noise firstly. An adaptive information fusion factor and the
information sharing factor are also designed by using the
judge index of the chi-square test, which optimize the
contribution of each subsystem and lead to a more accurate
global state estimation. Finally, the proposed CAFCKF al-
gorithm is verified through simulation. (e result shows
that, compared with other filtering methods, the CAFCKF
leads to the smallest mean absolute errors in velocity and
position, demonstrating that it can be used to improve the
accuracy and stability of the navigation system.
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