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To address the controller workload with the forecast, the capacity of the air tra�c management system is e�ectively enhanced. It
should be based on a speci�c analysis of the controller workload. In the current controller workload studies, there is no clear
means to analyze the process of controller workload development propagation. In this paper, we propose a new method for
analyzing the factors in�uencing the controller workload.�is method takes into account the in�uence of various situations in the
actual work of controllers and objectively quanti�es the complexity of work conditions. A complex network is constructed by
treating various factors as nodes and the complexity relationships between these nodes as edges.�e complexity network was then
tested using the contagion model. �e sum of the number of times of infecting other nodes and being infected in the detection
result was de�ned as the infection capacity of the nodes, and the point with the strongest infection capacity was controlled and
analyzed. �e results show that the point with the strongest infection capacity is the key factor for the development of controller
workload generation. In addition, the analysis of the key factors using a backpropagation neural network shows that the prediction
of the controller workload can be made by the key factors. It will provide a new e�ective method to control controller workload
and improve air tra�c control capability.

1. Introduction

According to the International Air Transport Association
(IATA) forecast made in 2018, China will overtake the
United States as the world’s largest aviation market by the
mid-2020s, with the Chinese civil aviation market reaching
1.6 billion passengers per year by 2037 [1]. China’s air tra�c
management system will then face a large impact, and the
rapid increase in the number of �ights will likely lead to a
serious overload on controllers. �e likelihood of air tra�c
safety incidents is also likely to increase. In addition to this,
excessive workload can lead to a reduction in the capacity the
controllers can manage, leading to �ight delays and a�ecting
air tra�c [2]. �erefore, this paper intends to analyze and
study the controller workload and preventive measures to
cope with the development factors of controller workload.

Controller workload refers to the physical and psy-
chological stress experienced by controllers during their

work to maintain the safe, e�cient, and rational operation of
guaranteed air tra�c. As an important support for the air
tra�c management system, the workload of controllers is an
important factor a�ecting �ight safety. To this end, Stein E of
the Federal Aeronautics Administration (FAA) was the �rst
to propose the air tra�c workload input technique (ATWIT)
in 1985 [3]. It was followed by the task load index method
(NASA-TLX) in 1988 by Hart at the National Aeronautics
and Space Administration Ames Research Centre (NASA
AMES) [4]. Reid also proposed the subjective workload
assessment technique (SWAT) method in 1988 [5]. In ad-
dition, the International Civil Aviation Organization
(ICAO) document 9426 recommends two assessment
methods: the “DORATASK” method proposed by the
British Operations and Analysis Council [6] and the “MBB”
method proposed by the German scientist Messerschmidt
[7]. �ese models have been endorsed by ICAO since their
presentation. In particular, the “DORATASK” method has
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been documented by ICAO and recommended to civil
aviation authorities worldwide. -e “DORATASK” method
measures the controller’s workload through the controller’s
working hours. It divides the controller’s working time into
“visible working time, invisible working time, and response
time.” Visible work is defined as checking process sheets,
land and air calls, etc. Invisible work is defined as controller
thinking, etc. Recovery time is another part of the equation.
It has no clear characteristics; however, it is essential for the
controller’s status maintenance. -e “MBB” method is
similar; however, the visible part of the work is refined, and
the tasks are clearly categorized. Other methods, such as
“FAA,” “ATWIT,” and “NASA-TLX,” are different. -ey do
so by means of questionnaires. -ey classify the load of
controllers into several classes. -e controller’s workload is
confirmed by filling out a questionnaire at the end of the
work day or at regular intervals. -ese methods do not
specify the magnitude of the controller’s load and rely en-
tirely on the controller’s own perceptions. -erefore, they
are not as applicable as the “DORATASK” method. It in-
directly proves that methods that do not have criteria and
rely exclusively on the controller’s own perceptions have
certain drawbacks. In other words, it is more subjective and
more influenced by the controller’s human factors. -is
drawback can be remedied to a certain extent by having clear
criteria for the completion of the questionnaire.

With the development of China’s civil aviation industry,
scientists have improved the above-mentioned methods in
combination with China’s actual situation, and they have
achieved better results [8–10]. -is work further demon-
strates the universality and soundness of the approach de-
scribed above.

In terms of objective evaluation methods, the electro-
encephalogram (EEG) is a direct response to changes in
brain activity. It directly reflects changes in brain activity
and is generally considered the most effective method of
detecting human fatigue, and it is naturally a hot topic in
the study of controller fatigue at home and abroad. It is also
a hot spot for the study of fatigue in controllers at home and
abroad. Lal and Craig [11] and Eoh et al. [12] found that δ
and θ wave activities increased significantly in the fatigue
state by means of statistical analysis, and the ratios of β and
(α+ θ)/β were significantly different. ARICO [13] proposed
a controller brain fatigue coefficient based on the EEG
signals collected by school control trainees in a simulator
and established a related controller workload model.
DASARI and KRISHNA [14, 15] continuously monitored
the controllers’ EEG signals through simulation experi-
ments, and the experimental results showed that the
controllers began to show fatigue at 70min, and their
judgement reaction ability gradually deteriorated. A team
of scientists has demonstrated that relevant indicators can
be extracted from physiological indicators, such as con-
troller brain wave signals, skin electrical signals, and
electrocardiograph (ECG) signals, for controller workload
assessment [16–18]. Similarly, scientists from various
countries have proposed controller workload evaluation
methods based on facial features, voice features, and so on
[19, 20].

On this basis, scientists in various countries began to
focus on the factors affecting the control process and tried to
prevent and adjust them. Edwards first developed the
principle of a specific system interface for “people” working
safely in 1972, known as the software, hardware, environ-
ment, liveware (SHEL) model. Hawkins then described the
model in diagrams [21]. -e model can be used to analyze
human errors that occur because of mismatches between the
elements of the interface. Errors tend to occur at the central
point of contact between people and hardware, software,
environment, and other people. -e model is a direct guide
to safety as it graphically depicts the vulnerable aspects of
modern production, and the interfaces described are not
only found on the front line but at all levels of the production
organization. Hence, the model is universally relevant. For
this reason, ICAO has included it as a safety management
analysis method [22]. Shorrock derived the causes of control
errors based on psychological principles by analyzing
dangerous approach events that occurred during 1995–1997
[23]. -e Reason model was developed in 1990 by Reason, a
professor at the University of Manchester, in his book
“Human Error,” [24] which argues that accidents are not
usually caused by isolated factors but by a combination of
system defects. Defects at all levels of the organization do not
necessarily lead to an accident. When defects occur at all
levels simultaneously (like light penetrating cheese), the
system loses its multilevel defense, and an accident occurs.
However, the Reason model is an abstract theory. It does not
indicate what exactly the “holes” in the different levels of
defect cheese are, let alone how these “holes” are to be found
in an accident investigation. -erefore, since 1997, Wieg-
mann and Shappell have been building a human factors
analysis and classification system (HFACS) based on the
Reason model [25]. HFACS has achieved certain results.
However, it is tailored to flight (pilot-centric) and is not fully
applicable to controller-centered air traffic control activities.
-en, in 2021, Di Mascio et al. have conducted research on
the impact of work on controller load. By simulating a busy
three-runway international airport, he concluded that the
maximum traffic manageable from the airside would gen-
erate an unacceptable workload for tower controllers [2].
Bedon and Mattei have conducted a study on the effects of
the environment on the human body [26, 27]. In their study,
they found that the psychological and mental state of a
person is influenced by the structure when the environment
in which he or she is placed is a glass structure. Since the
working environment of the tower in which the controllers
work is almost an all-glass structure, the working envi-
ronment can impose a severe psycho-physical load on the
controllers.

In conjunction with the above studies, we know that
while many current studies have identified some of the
factors influencing controller workload, no studies have
been able to thoroughly consider all factors together. In
particular, there are gaps in the understanding of the
propagation of controller workload. Current research
addressing how multiple influences on controller workload
work together for controllers remains flawed. -e propa-
gation of workload needs to be studied more extensively and
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networked in the context of the work situation. With the
development of the times, controllers are facing increasingly
diverse work. -ey, as individuals, also face a variety of
events before and after work. However, there is a lack of clear
evaluation of the many factors that affect the controller
workload, and it is not clear exactly which of these factors
will have a larger impact and which will not. -e number of
factors that may affect the controller workload is also in-
creasing. From a network perspective, the various influ-
encing factors work together toward the ultimate goal of
controller workload. -erefore, from this perspective, the
propagation of influencing factors in the network can be
understood to the maximum extent only by introducing the
complex network theory. Complex networks allow us to
analyze the interrelationships between factors and the degree
of influence they have on each other. In the field of civil
aviation, complex networks were first applied to the field of
air traffic control by Laudeman et al. to assess the control
difficulty and controller workload [28]. Wu et al. used the
identification of air traffic complexity to evaluate flight safety
and quality [29]. Zhang et al.’s team used complex networks
to perform a risk analysis of the flight network, which helped
to reduce risk propagation and delays [30]. -erefore, it is
feasible to use the complex network theory to analyze civil
aviation safety issues. -e previous studies mainly focused
on the problems of civil aviation flight safety and delays
using the complex network theory. We then want to use
complex networks to make an identification of the key
factors that affect the controller workload.

From the above, we concluded that the controller
workload is not solely determined by one factor because of
the interaction of multiple factors that affect the controller
workload. -e complex network theory can provide a new
way of solving the problem. In this paper, we propose a new
approach based on the complex network theory and con-
tagion model to analyze the key factors affecting the con-
troller workload. Usually, the contagion models are many,
and typically, they include the susceptible-infected-recov-
ered (SIR) model, susceptible-infected-exposed-recovered
(SIRS) model, and so on. In practice, the propagation
mechanism of the SEIR model and the mechanism of action
of factors affecting the controller workload are most similar.
In this paper, the mechanism of action of factors affecting
the controller workload is explained using the SEIR model.

-is paper proposes the use of actual data from China’s
aviation operations, the use of correlation coefficients to
establish complex networks, the introduction of the SEIR
propagation model to analyze the propagation effects of each
node in the network, and the identification and control of key
nodes through dynamics principles.-e purpose of this paper
is to discuss the causal factors and propagation paths of
controller workload in a more comprehensive and thorough
manner and to provide support for the controller workload
control. It is found that the maximum information coefficient
(MIC) can effectively reflect the nonlinear relationship be-
tween features. Complex networks can clearly show the re-
lationship between features. -e identification of key nodes
using propagation model analysis becomes very simple as the
features and their relationships are determined in advance.

-e network is tested using the SEIR model, where the more
infectious nodes are more important in the network. -e
identified nodes are also controlled by means of improving
the probability of the corresponding nodes in the model to
prove that the identified nodes are critical nodes. Finally, the
nodes were verified again using the backpropagation (BP)
neural network. If the identified node is a critical node, then it
should correspond to a prediction result that is better than the
other nodes. In summary, this method can accurately identify
the key factors affecting the controller workload and provide
support for controlling the controller workload.

2. Network Construction

-ere is a complex relationship between the factors, through
a complex network composed of factors (nodes) and cor-
relations between factors (connected edges), denoted as
G � (V, E, W), where V � v1, v2, v3, . . . , vn􏼈 􏼉 is the set of
nodes in the network corresponding to each influencing
factor. E � e1, e2, e3, . . . , en􏼈 􏼉 represents the set of connected
edges, which reflect the interrelationship between factors.
W � w1, w2, w3, . . . , wn􏼈 􏼉 is the set of edge weights of the
network, and the weights of the connected edges reflect the
degree of correlation between the factors in the network. In
the construction of the network, it is necessary to determine
the nodes and connected edges.

2.1. Feature Selection. As air traffic control is a “human-in-
the-loop” system, there are many factors that have an impact
on controller workload and are closely related. -erefore, a
reasonable desection of the influencing factors is the key to
the analysis of controller workload. -is paper classifies the
various influencing factors involved in controller workload
with reference to the relevant requirements and research of
civil aviation on controller workload. All the influencing
factors are classified into four categories: human factors,
operational environment factors, airspace posture factors,
and organizational implementation factors. In total, there
are 30 influencing factors. Data were collected from civil
aviation controllers in the form of a questionnaire survey on
the above 30 items and controller workload. -e risk was
taken in the range of [1, 10], with higher values indicating a
greater impact on control compliance. Some of the data are
shown in Table 1.

As the data obtained are of a fixed order type, they
should be analyzed before the complex network is con-
structed. Cronbach’s reliability coefficient was first proposed
by the American educator Lee Cronbach in 1951 [31].
Cronbach’s reliability coefficient α usually takes a value
between [0, 1]. A value of 0.6 or below is generally con-
sidered to have insufficient confidence. A value of 0.7-0.8 is
considered to have good confidence. A value of more than
0.8 indicates very good confidence. Equation (1) is used for
the calculation of Cronbach’s reliability coefficient α.

α �
m
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wherem is the number of items in the questionnaire, σi is the
variance of the score of item i, σN is the variance of the scores
of all questions, and α is the reliability coefficient of the
questionnaire.

Upon substituting the relevant data into (1), the credi-
bility coefficient of this questionnaire can be derived as
α � 0.79. It proves that this questionnaire has a high degree
of credibility and can be used as a basis for complex network
construction.

2.2. Complex Network Construction. Complex networks are
built with the influences as nodes and the interrelationships
between the influences as connected edges. A complex
network built on this basis is more objective. Common
network building methods include the empirical network
building method, time series network building method, and
correlation coefficient network building method.

2.2.1. Empirical Network Construction Method. -e strategy
of the empirical network-building method is to have experts
score the indicators of the influencing factors in Table 1
through questionnaires and other forms of research and
judgement. Judgements are made on the basis of the experts’
experience in relation to the influencing factors. If the

experts believe that they are related, then they are connected,
and if not, then they are not.

-e empirical method is prone to errors and omissions
in the process of using it. It is also too subjective and can lead
to poorly constructed edges and poorly connected nodes.
-e network model constructed is different from the actual
one and does not reflect the actual situation. In practice,
experts’ opinions are not always correct. When experts make
judgements based on experience, they are likely to make
misjudgments for their own reasons. In this case, the method
would be highly problematic. It would have an impact on the
overall study.

2.2.2. Time Series Network Construction Method. -e
strategy of the time series netting method is to analyze and
reconstruct the data using the time series phase space re-
construction method in the first place. -e time series
correlation coefficients are then calculated. Next, the adja-
cency matrix is constructed from the time series correlation
coefficients. Finally, the adjacency matrix is used to con-
struct the connected edges between the corresponding
nodes, and the weights of the connected edges are usually
taken as the correlation coefficients to build a complex
network.

Table 1: Controller workload impact index.

Category Item No. Selected values

Human factors

Physiological (diurnal) rhythms 1 8 8 7
Alcohol/drug use status 2 8 9 6

Dietary status 3 2 3 3
Sleep status 4 8 8 9

Work proficiency 5 7 6 8
Family social activities 6 9 8 8

Control shifts 7 8 8 6
Pilot and crew 8 8 8 9
Length of duty 9 9 10 9

Stress reaction ability 10 8 7 8
Dietary status 11 9 8 9

Psychological qualities 12 1 2 1

Operational environmental factors

Human-machine interface friendliness 13 2 1 3
Equipment ergonomics 14 8 7 9
Equipment condition 15 8 8 7

Control room environment 16 9 10 9
Rest room environment 17 9 9 8

Geographical environment 18 3 4 3

Airspace situational factors

Weather conditions 19 5 2 2
Military aviation activities 20 8 7 8

Flight flow 21 8 8 9
Route structure 22 8 6 8
Emergencies 23 2 3 5

Sector structure 24 6 7 6

Organizational implementation factors

Duty system 25 8 9 8
Culture 26 4 5 3

Operational training 27 8 8 7
Site management 28 9 7 7

Operating procedures 29 8 7 7
Staffing 30 4 3 4

Controller workload 31 9 8 8
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-e time series correlation coefficient method can lead to
a large number of isolated nodes and independent networks
in the process of network building. It, in turn, affects the
analysis of the interrelationships between the nodes. -ere is
a large discrepancy between the results of the network
building and the actual operating conditions.

2.2.3. Correlation Coefficient Method. -e correlation co-
efficient method is used to calculate the correlation coeffi-
cients between the influencing factors and use them to
construct a continuous edge. -e common methods are the
Spearman correlation coefficient method and Pearson
correlation coefficient method.

-e Pearson correlation method has been found to be
suitable for fixed percentage changes in indicators and tends
to underestimate the correlation between data. -e Spear-
man correlation method is difficult to distinguish between
direct and indirect correlations and often results in “false
correlations” in the network.

In summary, this paper uses the maximum information
coefficient to analyze the correlation between the charac-
teristic variables.

MIC is computed using mutual information and grid
partitioning methods as follows:

Assuming a finite set of ordered pairs
D (xi, yi), i � 1, 2, . . . , n􏼈 􏼉, the scatterplot consisting of xi

and yi in D is gridded x × y and the mutual information
I(X, Y) in each grid is calculated. Mutual information
I(X, Y) is calculated as follows: for two random variables
X � xi, i � 1, 2, . . . , n􏼈 􏼉 and Y � yi, i � 1, 2, . . . , n􏼈 􏼉, n
being the number of samples. Equation (2) is used for the
calculation of I(X, Y).

I(X, Y) � 􏽘
x∈X

􏽘
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
, (2)

where p(x, y) is the joint probability density of X and Y and
p(x) and p(y) are the edge probability densities of X and Y.
-e maximum value max(I(X, Y)) of I(X, Y) under dif-
ferent division methods is selected as the mutual informa-
tion value for dividing x × y grids. -en, the maximum
information coefficient mic(I(X: Y)) is the result obtained
after its normalization. Equation (2) is used for the calcu-
lation of mic(I(X: Y)).

mic(X: Y) � max
|X||Y|<B

max(I(X, Y))

log(min(|X|, |Y|))
, (3)

where B is the upper limit of the grid division x × y, which is
a function of the number of samples n. Experience gives the
best results when B is taken as n0.6. -e same strategy is used
in this paper.

mic(I(X: Y)) ∈ [0, 1]. When the maximum mutual
information coefficient is 0, it means that the two features are
not correlated and are independent of each other. When it is
1, it means that the two features are fully correlated and can
be substituted for each other. -e larger the maximum
mutual information coefficient, the stronger the correlation
between features. -e maximum information coefficient is

used here to evaluate the correlation between features and to
determine whether two nodes i and j (between features) have
connected edges.

When mic(i, j)< 0.2 is chosen, the correlation between
the two features is considered very small, and there are no
connected edges between the two feature nodes. When
mic(i, j)≥ 0.2, the correlation between the two nodes is
considered connected, and there are connected edges. -e
edge weight between nodes is set to mic(i, j) . Based on this,
we can construct a weighted undirected feature network.-e
obtained feature network adjacency matrix is A, and the
weighting matrix is B. Equations (4) and (5) are used to
calculate the adjacency matrix (A) and the weighting matrix
(B).

A �

0 a12 · · · a1N

a21 0 · · · a2N

⋮ ⋮ ⋱ ⋮

aN1 aN2 · · · 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,
aij � 0 if micij < 0.2,

aij � 1 if micij ≥ 0.2,

⎧⎨

⎩ (4)

B �

0 b12 · · · b1N

b21 0 · · · b2N

⋮ ⋮ ⋱ ⋮
bN1 bN2 · · · 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,
bij � 0 if micij < 0.2,

bij � 1 if micij ≥ 0.2.
􏼨 (5)

-rough computational analysis, we obtain the network
as shown in Figure 1.

As shown in Figure 1, the complex network takes on a
shape similar to concentric circles. With node 31 as the
center, the nodes are distributed from the inside out
according to their degree values. In the whole network, node
31 has the highest degree value and the best connectivity. It
proves that the 30 factors selected to influence controller
compliance all have an impact on controller workload, and
the selected metrics are reasonable.

While reflecting the relationships between nodes,
complex networks are also capable of reflecting different
properties of different nodes in different ways:

(1) According to the position of the nodes in the net-
work, the impact value of each node gradually de-
creases from the inside to the outside. -e outermost
node, node 13, has a mean impact value of 2.7, while
the inner node, node 9, has a mean impact value of
8.3. It means that the outer nodes have less impact on
the controller workload than the inner nodes, and
the closer the node is to the center, the more impact
it has on the controller workload.

(2) Nodes in the inner layer of the network have larger
mean values and larger standard deviations of impact
values in the inner layer compared to those in the
outer layer. It indicates that the nodes in the inner
layer represent characteristics that vary more across
conditions and have a greater impact on the con-
troller workload. In contrast, the nodes in the outer
layer have smaller mean values and smaller standard
deviations, and their variability is smaller. For ex-
ample, in node 13, “Human-machine interface

Mathematical Problems in Engineering 5



friendliness,” if the interface design of the operating
system is not smooth and appropriate, it will lead to a
certain amount of controller workload. However, it
does not become a factor that causes a surge in
controller workload.

3. Improved SEIR Model Application

-e SEIR model is an improvement on the traditional SIR
model. It is traditionally used to analyze infectious diseases
that are latent, infectious, and immune after cure, such as
SARS, avian influenza, and COVID-19. It has been gener-
alized and combined with the complex network theory to
analyze the transmission capacity of networks and evaluate
node performance.

3.1. Improving the SEIR Model. To adapt the SEIR model to
the actual civil aviation operation control, adjustments are
made in conjunction with the actual civil aviation operation
control. -e specific improvement measures are as follows:

3.1.1. Susceptible Node (S). A susceptible node is defined in
the model as a node that is connected to an infected node
and is susceptible to infection by the infected node, be-
coming a latent node. In practice, it means that it is
temporarily unaffected by other adverse factors. However,
there is a risk of interference from other factors, which
may further interfere with controller workload and other
factors, leading to a vicious circle and overloading of
controllers.

-e probability of infection between nodes is reflected in
the model by the weights of the edges attached to the nodes.
-e higher the edge weight, the higher the probability of
infection. (6) is used for calculating the probability of the
infection of node PSE.

PSE � ρ, (6)

where PSE is the probability of a node changing from a
susceptible state to a latent state.

3.1.2. Exposed Nodes (E). An exposed node is the one that
has a potential risk of transmission. In practice, it means that
it has been affected by a factor but has not actually placed an
additional burden on the controller’s work, nor has it had a
negative outcome on other factors.

At this stage, the node has the potential to recover,
enter the contagious phase, and remain latent at the same
time. Set the probability of recovery PER at 10%. Equations
(7) and (8) are used to calculate the probability of entering
the contagious phase PEI and the probability of remaining
latent PEE.

PEI + PEE + PER � 100%, (7)

PEI � exp S
2
i􏼐 􏼑, (8)

where PER is the probability of the node changing from the
latent state to the immune state. PEE is the probability of
maintaining the latent state. PEI is the probability of the
node changing from the latent state to the infectious state. S2i
is the variance of the node.

3.1.3. Infected Nodes (I). An infected node is the one that has
been affected and will affect other nodes. Infected nodes
include two categories in the model, namely initially infected
nodes and infected nodes. -e initially infected nodes refer
to the earliest nodes that are in the infected state.

-e presence of an initially infected node should be
inversely proportional to the standard deviation of the node.
-e larger the standard deviation, the greater its impact on
the controller workload. Equation (9) is used for the cal-
culation of the initial probability of infection PI of a node.

PI � exp −Si( 􏼁, (9)

where PI denotes the probability of a node becoming ini-
tially infected and Si is the standard deviation of the node.

An infected node represents a node that has been in-
fected by another node and has moved from the latent to the
infected stage, and it is infectious and self-healing. -e
probability of recovery PIR is set at 20% in the model. In
practice, it is shown as being affected by a link, but relevant
measures are taken to adjust it and terminate the mis-
communication without causing additional disruption to the
controller. -e probability of a node remaining infected PII

is 80%.

3.1.4. Recovered Nodes (R). A recovered node refers to a
node that is in an immune state and no longer has the ability
to be infected, and it is also protected from infection by the
spreading node I. In practice, it is shown to have taken
relevant measures for factor control, and the impact has been
contained. Its interference with the controller workload has
been circumvented.

3.2. Improving the SEIR Model. We performed 500 propa-
gation experiments following the propagation rules

Figure 1: Complex network based on MIC.
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described in 2.1. -e results obtained after averaging the
propagation results are shown in Figure 2.

-e trend of the curve smoothed out as the transmission
time progressed. With susceptibility, the node curve grad-
ually stabilized and reached immunity at a later stage. -e
peak value of the transmission node curve is 12.05, and the
time taken to reach the peak is 11.

4. Nodes Identification and Control

4.1. Key Nodes Identification. In previous research, the
identification of key nodes was mainly done by the char-
acteristics of the nodes in a complex network. For example,
the degree value of the node, point strength, and other
indicators are judged. Although this method is relatively
simple, the importance of the key nodes does not actually
correspond exactly to the degree value and other indicators.
-is leads to incomplete identification of key nodes when
this method is used.

-erefore, infectivity was chosen as the metric for
evaluating key nodes. We define infectivity as the ability of a
node to infect other nodes and be infected by other nodes
throughout the propagation cycle. Infectivity can be used as
an important indicator to evaluate the role of a node in the
propagation cycle and is calculated as shown. Equation (10)
is used for the calculation of infectivity Ii.

Ii �
1
T

􏽘

T

t�1
mi(t) + ni(t)􏼂 􏼃, (10)

where Ii denotes the infection capacity of a node, mi(t)

denotes the number of times a node is infected by other
nodes during the ith propagation, ni(t) denotes the number
of times a node infects other nodes during the ith propa-
gation, and T denotes the propagation period.

We ran 500 propagation simulations of the model fol-
lowed by data statistics. Plot the results of the propagation
simulations as a scatter plot.

It is important to note that when performing the in-
fectivity calculations in this paper, nodes that have already
been infected or have achieved immunity will not be
reinfected as they are already infected. However, the
propagation process may still be carried out on them. It is
only because they are already infected or immune that no
further changes occur and the transmission process actually
occurs. -is “number of infections” should, in fact, also be
taken into account. -erefore, in this paper, the number of
infections of a node is calculated by including the number of
times it was infected for the first time and the number of
times it was “infected” when it was immune or infected, and
the results are shown in Figure 3.

Figure 3plots the number of times a node is infected by
other nodes as the horizontal axis and the number of times
a node infects other nodes as the vertical axis. -e node is
positioned near the top right corner of the graph and is
more infectious when both the number of times it has
been infected by other nodes and the number of times it
has infected other nodes are larger. Conversely, when the
node’s position is near the origin and the value of both

indicators is small, it is less infectious. -e data of some of
the nodes with higher infectious capacity are shown in
Table 2.

From the calculation of infection capacity and the data in
the table, it can be found that the number of infections and
the number of infections of other five nodes, i.e., NO. 1, NO.
9, NO. 21, NO. 4, and NO. 25, are relatively high. -eir
infection capacity is also at a high value. It proves that they
will play a key role in the propagation process and have a
high influence capacity. -erefore, they are defined as
critical nodes.

In previous studies, sleep quality, circadian rhythm, and
environmental factors were identified as factors affecting
controller workload [32]. Compared with the traditional
results of controller workload influencing factor identifi-
cation, the new item of duty system (NO. 25) is added to the
key factors identified in this paper. In practice, the rea-
sonableness of the duty system will largely affect the
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Figure 3: Scatter diagram of propagation results.
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controller workload. It is also more relevant to reality. It also
indirectly proves the feasibility of the method.

At the same time, our study ranked all the factors af-
fecting controllers’ workload by the indicator of infectivity.
It is possible to clearly analyze exactly which influencing
factors are important and which ones can be ignored. It was
missing in the previous study.

4.2. Critical Node Control. According to the Civil Aviation
Administration of China (CAAC) management manual, the
control measures for critical nodes include two main
categories.

4.2.1. Preventive Measures. -ese include personnel ca-
pacity enhancement, team building, and staffing, as well as
system and system construction and maintenance.

-ey mainly refer to improving controllers’ business
capabilities by organizing personnel to attend business
training, improving the construction of hardware facilities to
improve controllers’ resting environment, increasing per-
sonnel reserves, and reasonably arranging the duty system to
reduce the occurrence of long hours of continuous work
because of unreasonable scheduling or insufficient personnel
reserves. It is expressed in the model as reducing the in-
fection probability of the nodes, setting the initial propa-
gation probability of the control nodes to 0 and their
infection probability to 10%.

4.2.2. Emergency Disposal Measures. -ey are the emer-
gency measures to adjust the nodes to return to normal state
after they have already been disturbed. In practice, it is
expressed as a temporary increase of controllers, emergency
arrangement of technical support, etc. In the model, the
recovery probability of the node is increased and adjusted to
80%.

-e five nodes with the top infectivity in Table 2 were
artificially controlled, and the results of network propagation
after control are shown in Figure 4.

As can be seen in Figure 4, after the implementation of
control measures at key nodes, the peak propagation was
reduced to 2.425, and the propagation cycle was delayed
until the 15th cycle. It proves that the control measures are
effective in reducing the risk of propagation and have had a
good effect.

In previous studies, the control of controller influence
factors was not as effective as the results in this paper. In
terms of convergence speed and convergence effect, this

paper achieves the best results for the control of the iden-
tified nodes.

5. Neural Network-Based Analysis
and Validation

To verify the impact of the identified nodes on the controller
workload in actual operation, this paper chose to construct a
BP neural network and select the identified nodes as the
input layer for the controller workload prediction. A
comparison experiment was set up to verify the validity of
the identified nodes by selecting other nodes as the input
layer.

5.1. Principle of BP Neural Networks. First proposed by
Rumelhart in 1986, BP neural networks are multilayer feed-
forward neural nets trained according to the error back-
propagation algorithm [33].

-is paper uses MATLAB 2018b software to implement
the design, training, and validation of the BP neural network.

5.1.1. Data Normalization Process. When using a BP neural
network for prediction, the data should be normalized first.
Equation (11) is used to calculate the data normalization
result.

Table 2: Nodes with strong infection ability.

Node number Number of times infected by other nodes Number of times infected by other nodes Infection capacity
1 403 4277 9.36
9 428 4126 9.108
21 451 4081 9.064
4 396 4117 9.026
25 416 4093 9.018
2 376 3367 7.486
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Figure 4: Comparison of SEIR model propagation process.
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Z � Zmin +
Zmax − Zmin

Xmax − Xmin
X − Xmin( 􏼁, (11)

where X is the initial data, Xmax and Xmin are the maximum
and minimum values in the initial data, respectively, Z is the
data after normalization, Zmax and Zmin denote the maxi-
mum and minimum values when normalized, respectively,
and the values of both are 1 and -1, respectively.

5.1.2. Construction of the BP Neural Network. Hecht com-
pleted the proof that a 3-layer BP neural network can achieve
the approximation of an arbitrary nonlinear function in
1987 [34].

-erefore, the BP neural network established in this
paper is a 3-layer network structure of BP neural network. At
the same time, since the number of nodes in the input layer L
takes the number of evaluation indicators, the number of
nodes in the output layer N takes the number of categories
classified. For a specific item, L and N are fixed values.
Hence, to obtain a better training effect and prediction
accuracy, it is necessary to determine the number of nodesM
of the hidden layer. Equation (12) is used for calculating the
number of nodes M of the hidden layer.

M<
�����
L + N

√
+ A, (12)

where A is a constant that takes values between 1 and 10.

5.1.3. Training the BP Neural Network. -e transfer function
between the input layer and the hidden layer and between
the hidden layer and the output layer uses a nonlinear
transformation function, i.e., the sigmoid function (i.e., S
function). At the same time, to make the number of iter-
ations lower and improve the convergence accuracy, the
adaptive learning gradient descent algorithm with an ad-
ditional momentum factor is used in the training process in
this paper.

5.2.DataAcquisition. To verify the validity of the model and
the reasonableness of the assessment method, data from
Xiamen Gaoqi International Airport was selected for
modeling analysis in this paper. Xiamen Gaoqi International
Airport is located in Xiamen, Fujian Province, and as a Class
4E civil international airport, it plays an important role as a
regional aviation hub in the southeast coastal region of
China. In the year 2020, Gaoqi Airport completed a total of
16,710,197 passengers, 278,336.4 tons of cargo and mail
throughput, and 139,827 take-offs and landings, all of which
are among the top in China.

In this paper, a total of 11,643 sets of valid data were
collected, 90% of which (10,479 items) was used for BP
neural network building and model training, and the
remaining 10% (1,163 items) was used for model validation
analysis.

5.3. Neural Network Prediction. After the normalization of
data according to the above steps, all independent variables

are selected for neural network prediction. -e number of
neurons in the input layer is 9, the number of neurons in the
output layer is 1, and the number of neurons in the hidden
layer can be found in the range [4, 13] according to equation
(12).

In the process of network training, the additional mo-
mentum factor was set to 0.9, the initial value of learning rate
was set to 0.01, the training error convergence accuracy
target was 10-5, and the maximum number of iterations was
set to 1000.

After training, testing, and validating the network for
different numbers of hidden layer neurons within the range
of values, it was concluded that the training and testing
errors of the BP neural network reached a small level when
the number of hidden layer neurons was 10.

To assess the predictive accuracy of the model, the
program was used to perform a goodness-of-fit analysis of
the output results.

-e prediction performance of the model is shown in
Table 3 after selecting different nodes for multiple prediction
validation.

-e comparative experiments showed that when using
neural networks for prediction, the training and test sets had
the highest accuracy when the five identified nodes were
chosen as the input layer, while the accuracy decreased with
varying degrees when other nodes were chosen as the input
layer.

-e fitting results show that the identified nodes of the
model constructed in this paper perform better in the fitting
experiments, with better fitting results and higher confi-
dence in the prediction results. It proves that the identified
key factors affecting the controller workload are feasible.

6. Discussion

-is paper focuses on the main factors that influence the
controller workload in controller work. -e results of the
experiment show the five factors, namely physiological
rhythm, duty length, sleep status, duty scheduling, shift
system, and flight flow, as the main factors that significantly
affect the controller workload. -e relationship between the
different factors is bidirectional. It indicates that they in-
fluence each other, interfere with each other, and ultimately
act together to the controller workloads.

-e first part is the construction of a complex network
based on MIC, which well explains the closeness of the
relationship between the different factors. It explains the
degree of influence between different factors. -e larger
the value of MIC between different factors, the stronger
the connection and the stronger the influence on each
other.

-e second part is the identification of key nodes based
on the SEIR model. In the SEIR model, we define infection
capacity. -e stronger the infectivity, the greater the role of
the node in the model. -e final results show five factors,
namely physiological rhythm, duty length, sleep status, duty
scheduling, shift system, and flight flow, as the main factors
that have a significant impact on the controller workload. In
practical terms, these five factors will directly affect the
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controller’s state at work. -ey also have a strong influence
on other factors. -erefore, the identified results are reliable.

Finally, the validation results based on the BP neural
network further prove that these five factors are the most
important factors affecting the controller workload.

In the study of this paper, there are still some problems
that can be optimized. Firstly, the statistics on the factors
affecting the controller load can still be optimized. -e
thirty indicators in this paper should be only some of the
many factors that affect controller load. -ese indicators
can still be enriched and improved. Secondly, the specific
propagation rules can be improved in the process of using
the SEIR model. In detail, the probabilities of mutation,
infection, and propagation of various nodes in the model
can be further optimized. -ese probabilities should be
derived based on the actual situation. -e third aspect is
that when calculating the correlation coefficient between
factors, this paper chooses to deal with the correlation
negligible when the correlation coefficient is smaller than
0.2 as proposed by Buda Andrzej. However, this specific
criterion should be open to further discussion in the course
of specific analysis.

Moreover, this paper provides ideas for the next di-
rection of research: controller workload assessment by an-
alyzing the influencing factors. In other words, by
quantifying the influencing factors, the controller workload
can be evaluated and predicted. In the following study, the
first research can be carried out on the link of using the
influencing factors to achieve the prediction of controller
workload. -ere is also further optimization of the SEIR
model for more accurate identification of the interaction
pattern between the influencing factors. -e identified
factors can be effectively controlled to reduce controller
workload and improve control efficiency and safety. At the
same time, we should optimize the construction of complex
networks, i.e., we should study the third deficiency point
presented above. -e determination of the correlation co-
efficient criteria is carried out for this study. Determine what
the correlation coefficient is when the factors are negligibly
correlated with each other.

7. Conclusions

Considering the development of civil aviation in a com-
prehensive manner, the airport authorities want to in-
crease the traffic as much as possible within the
permissible limits of ensuring safety, low delays, and
controller workload. For this purpose, a study of con-
troller workload is needed. However, the key influences on

controller workload have not been considered in the
relevant literature. However, in the process of controller
workload generation and development, a few key factors
determine the overall generation and development pro-
cess. To explore the process of controller workload gen-
eration and development and to solve the problem of
controller workload evaluation, a controller workload
influencing factor identification method based on the
SEIR model is proposed. -e method overcomes the
subjectivity of traditional methods in a better way. -e
method has strong strategic and tactical significance. It
can provide a basis for the controller workload generation,
and development process and can better identify the key
aspects of the process. -e method consists of two main
parts, complex network modeling based on actual oper-
ational data and critical node identification based on the
SEIR model.

-e structure of the complex network modeling based
on actual operational data consists of nodes and con-
nected edges. -e nodes are the factors that may affect the
controller workload analyzed by collecting the actual
operational data. -e edges are described by the corre-
lation between the factors represented by the nodes. In
analyzing the correlations, we compare various methods,
such as the empirical method and the correlation coef-
ficient method. -e MIC was finally chosen as the indi-
cator to evaluate the correlation. -e calculated results
were filtered to retain the stronger correlations and to
remove the weaker ones.

In the identification of key nodes based on the SEIR
model, we made adjustments to the SEIR model in
conjunction with the actual civil aviation situation. It
enables the SEIR model to be more relevant to the civil
aviation reality. To analyze the model propagation results,
we defined contagion capacity indicators. -e indicators
with high contagion capacity are controlled as key nodes,
and the controlled network is again subjected to propa-
gation experiments. We are able to identify the key factors
affecting controller load by this method. It allows a
comparison of the position of the identified nodes in the
network. -e experimental results show that our approach
works and that the identified nodes have an important role
in the network.

Finally, we use BP neural networks for the validation
of the node identification results. By selecting indepen-
dent data and constructing comparison experiments, we
verified that the identified nodes have a strong effect on
the controller workload and that the method is feasible
and effective.

Table 3: Prediction performance of different models.

Prediction model Input layer nodes Training set accuracy Test set accuracy
1 1, 4, 9, 21, 25 0.99 0.99
2 1, 2, 4, 9, 21 0.95 0.93
3 1, 2, 6, 4, 9 0.94 0.91
4 1, 2, 3, 4, 10 0.94 0.91
5 1, 2, 3, 10, 17 0.91 0.91
6 2, 6, 10, 17, 23 0.91 0.91
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