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Marine ambient noise (AN) is a nonlinear and unstable signal, traditional dispersion entropy can only analyze the marine AN
from a single scale, which is easy to cause the loss of information. To address this problem, we introduced multiscale dispersion
entropy (MDE), and then a new feature extraction method of marine ambient noise based on MDE is proposed. We used MDE,
multiscale permutation entropy (MPE), multiscale permutation Lempel–Ziv complexity (MPLZC), and multi-scale dispersion
Lempel–Ziv complexity (MDLZC) to carry out feature extraction and classi�cation recognition experiments for six ANs.  e
experimental results show that for the feature extraction methods based on MDE, MPE, MDLZC, and MPLZC, with the increase
of the number of features, the feature extraction e�ect becomes better, and the average recognition rate (ARR) becomes higher;
compared with other three feature extraction methods, the feature extraction method based on MDE has the best feature
extraction e�ect and the highest ARR for the six ANs under the same feature number.

1. Introduction

 e marine animals living in the sea have an extremely
sophisticated vocal system and sound processing system.
 ey can use sound to achieve the purpose of communi-
cation, navigation, positioning, looking for food, and es-
caping natural enemies [1–3]. However, serious noise
pollution will damage the auditory system of marine animals
and even cause the death of life. In order to protect the
diversity of marine organisms, it is necessary to study the
marine ambient noise (AN) [4–6].

 e marine AN is a nonlinear and unstable signal, the
traditional feature extraction methods are mainly aimed at
linear and stable signals, and it is di�cult to analyze marine
AN [7–10].  e feature extraction method based on non-
linear dynamics can e�ectively analyze the marine AN.  e
common nonlinear dynamic parameters include Lem-
pel–Ziv complexity (LZC), sample entropy (SE), and per-
mutation entropy (PE). LZC relies on binary conversion and
has weak antinoise ability, which often leads to the loss of
some useful information of the time series [11–14].  e
calculation process of SE is complex and time-consuming,

and SE is not suitable for real-timemonitoring. Although the
calculation steps of PE are simple, the magnitude rela-
tionship between amplitudes is not considered [15–18].

Dispersion entropy (DE) is another important indicator
of signal complexity [19]. Compared with LZC, SE, and PE,
DE considers the magnitude relationship between ampli-
tudes and has fast calculation speed as well as strong an-
tinoise ability; therefore, DE has been widely used in the �eld
of underwater acoustic and fault diagnosis [20–22]. How-
ever, the marine ANs are extremely complex, and DE only
analyzes the marine ANs from a single scale; it cannot fully
re¢ect the e�ective information of marine ANs, so we
adopted a feature extraction method based on multiscale
dispersion entropy (MDE) for ANs. Since MDE is based on
multiscale analysis, it can more comprehensively re¢ect the
ANs [23].

At present, MDE is widely used in the �eld of medicine
and fault diagnosis, but it has not been used in marine AN
[24–28]. In this paper, MDE is used to study the marine AN
for the �rst time and has achieved good results.  e general
structure of this paper is as follows: Section 2 introduces the
basic principle of DE in detail; in Section 3, a feature
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extraction method based on MDE is proposed, and the
specific steps are introduced; Section 4 carries out the ex-
periments of feature extraction and classification for six
ANs; finally, Section 5 summarizes this paper.

2. Theory

2.1. Dispersion Entropy. DE is one of the physical quantities
to measure the complexity of time series. It considers the
relationship between amplitudes and has the characteristics
of high stability and fast operation. *e specific calculation
steps are as follows:

(1) Given a time series X � x(j), j � 1, 2, . . . , N􏼈 􏼉,
map it to y according to the normal distribution
formula. Assuming that the expectation is μ and the
variance is σ2, the mapping result is as follows:

y(j) �
1

σ
���
2π

√ 􏽚
x(j)

− ∞
e

− (t− μ)2/2σ2
j � 1, 2, . . . , N, (1)

where y(j)ϵ(0, 1).
(2) y is linearly transformed to zc

j:

z
c
j � R(c · y(j) + 0.5), (2)

where the range of zc
j is within [1, 2, . . . , c]; R

represents a rounding function; c indicates category.
(3) Embedded a vector zm,c

i :

z
m,c
i � z

c
i ,z

c
i+d, . . . ,z

c
i+(m− 1)d􏽮 􏽯, i � 1,2, . . . ,N − (m − 1)d,

(3)

where m represents the embedding dimension; d

represents the time delay.
(4) *e number of dispersion patterns corresponding to

the embedded vector: assuming zc
i � v0, zc

i+d � v1,

zc
i+(m− 1)d � vm− 1, the dispersion pattern correspon-

ding to zm,c
i is πv0v1vm− 1

. It is composed of c parts, in
which each part has m values. *erefore, there are cm

dispersion patterns corresponding to zm,c
i .

(5) *e probability of each dispersion pattern:

p πv0v1vm− 1
􏼐 􏼑 �

Number πv0v1vm− 1
􏼐 􏼑

N − (m − 1)d
, (4)

where Number(πv0v1vm− 1
) indicates the number of

dispersion patterns πv0v1vm− 1
.

(6) According to the formula of Shannon entropy, DE
can be defined as

DE(X, m, c, d) � − 􏽘
cm

π�1
p πv0v1vm− 1

􏼐 􏼑 · ln p πv0v1vm− 1
􏼐 􏼑􏼐 􏼑.

(5)

2.2.Multiscale Dispersion Entropy. DE can only measure the
time series on a single scale, which often leads to the lack of
series information. In order to solve this problem, the

multiscale idea is infiltrated on the basis of DE, and the series
measurement method of MDE is generated. *e MDE can
reduce the loss of sequence information, have strong anti-
interference ability, and fast calculation speed. *e calcu-
lation process is as follows:

Firstly, given a time series X � x(i), i � 1, 2, . . . , N{ }.
*e total length of the time series is N, and the results of
coarse graining are as follows:

yj(τ) �
1
τ

􏽘

jτ

i�(j− 1)τ+1
x(i), j � 1, 2, . . . ,

N

τ
􏼔 􏼕, (6)

where τ represents the scale factor, τ � 1, 2, . . .; [N/τ] is the
integer of N/τ, indicating the length of coarse granulation
series.

Secondly, the coarse-grained sequences corresponding
to different scale factors have different DEs. *e DEs of all
coarse-grained sequences are calculated.

Finally, the average value of DE of all coarse-grained
sequences is taken as the result of MDE, which is expressed
as follows:

MDE(X, m, c, d, τ) �
1
τ

􏽘

τ

k�1
DE(y(τ), m, c, d), (7)

where X represents the original time series; m represents the
embedding dimension; c represents the category; d repre-
sents a time delay.

3. Feature Extraction Method of ANs

*e flow chart of feature extraction method of six ANs based
on MDE is shown in Figure 1, where SF1 is the abbreviation
of scale factor 1, SF2 is the abbreviation of scale factor 2, and
so on. MDE1 stands for the MDE under SF1, MDE2 stands
for the MDE under SF2, and so on. *e specific steps are as
follows:

(1) Six ANs are sampled with 5000 sampling points, 100
samples of each AN are obtained and inputted

(2) *e MDE of each AN from SF1 to SF10 are calcu-
lated, then MDE1 to MDE10 are obtained

(3) *e single feature extraction, double feature ex-
traction, and multifeature extraction are carried out
respectively

(4) *e best feature or feature combination which
corresponds to the highest average recognition rate
(ARR) is selected

(5) K-nearest neighbor (KNN) classifier is adopted to
classify each AN

(6) *e highest ARR for six ANs are got

4. Feature Extraction of ANs

4.1. Six ANs. Six different ambient ANs were selected as the
research object in this paper, which came from the National
Park Service. *e selected data are heavy rain on sea surface
(HR), light rain on sea surface (LR), light wind at the sea
surface-underwater recording (LW), moderate wind on the
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sea surface-underwater recording (MW), snowfall on sea
surface (SN), and wind and ship noise on underwater hy-
drophone (W–S). 500000 sampling points are taken for each
AN. Figure 2 shows the time domain waveform of six ANs.

4.2. Single Feature Extraction and Classification. In order to
compare the feature extraction effect of four complexity
parameters for each AN, the common parameters of mul-
tiscale permutation entropy (MPE), MDE, multiscale per-
mutation Lempel–Ziv complexity (MPLZC), and multiscale
dispersion Lempel–Ziv complexity (MDLZC) are set to m �

3 and d � 1, where the category of MDE andMDLZC are set
to c � 6; MPE and MPLZC do not need to set parameter c.
For each group of feature extraction experiments, we take
100 samples for each type of AN, and each sample contains
5000 sampling points, and MPE, MDE, MPLZC, and
MDLZC of the six kinds of ANs are extracted with from SF1
to SF10. In order to compare the recognition ability of four
complexity parameters for six ANs, six ANs are classified
and identified by the KNN algorithm. For each complexity
parameters, 50 samples of each AN are selected as training
samples, and then the remaining 50 samples of each AN are
used as test samples. Figure 3 shows the single feature
distributions and classification results corresponding to the
highest ARR.

Comparing each feature distribution map and the cor-
responding highest ARR classification recognition results,
we can see that the MPLZC of six ANs are mixed together,
and the number of misidentified samples of each AN is the
largest; the MPE of LR, LW, MW, and W–S are mixed
together, and the number of misidentified samples of each
AN is quite large; MDE and MDLZC have less overlap than
MPE and MPLZC in the feature distribution of the six ANs,
but the number of misidentified samples of each AN is still
large. It concluded that the discrimination effect of MPLZC
MPE, MDE for the six ANs, and MDLZC is poor, and
MPLZC has the worst discrimination effect.

To compare the recognition results of each complexity
parameter for six ANs more easily, we calculate the highest
ARR each AN under four complexity parameters. Table 1
shows the highest ARR of the single feature.

It can be observed from Table 1 that the ARR of the four
feature extraction methods for the six ANs is lower than
75.0%, and among them, the MDE-based feature extraction
method has the best result, but the recognition rate only
reaches 72%,�which is much lower than 89%; the recog-
nition rate of MPLZC to MW and W–S is 0, and the ARR of
MPLZC to six ANs is the lowest; in addition to MPLZC, the
other three feature extraction methods have the lowest
recognition rate for LR. It can be concluded that it is difficult
to accurately distinguish six ANs by using the single feature
extraction method.

4.3.Double Feature Extraction andClassification. In order to
further improve the recognition rate of the six ANs, we used
the double feature extraction method based on MPE, MDE,
and MPLZC and used MDLZC to extract and classify the six
ANs. Figure 4 shows the double feature distributions and
classification results corresponding to the highest ARR.

From Figure 4, we can find that compared with the single
feature extraction method, each double feature extraction
method can distinguish more samples of ANs and has better
discrimination effect on six ANs; compared with MPLZC
and MPE, the overlapping parts of MDE and MDLZC of the
six ANs are less; MDE and MDLZC have better ability to
distinguish LR than MPE and MPLZC; compared with
MPLZC and MPE, MDE and MDLZC have a better dis-
crimination effect on LW and MW; MPLZC has the most
misidentified samples for six kinds of AN, and MDE has the
least misidentified samples; among the six ANs, HR has the
least number of samples that are misidentified. Results show
that compared with MPE and MPLZC, MDE and MDLZC
can better distinguish six ANs.

*e highest average recognition rates of double features
for six ANs are calculated, in which (1, 4) represents double

Calculate the MDE
from SF1 to SF10

Obtain MDE1 to
MDE10

Select the best
feature combination

Get the ARR

Classifing by KNN

Input ANs

Select the best
feature

Classifing by KNN

Get the ARR

Double feature
and

multi-feature
extraction

Single feature
extraction

Figure 1: Feature extraction method of six ANs based on MDE.
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features of complexity parameter under SF1 and SF4 and so
on. Table 2 shows the highest ARR of double features.

As shown in Table 2, the recognition rate of the MPE-
based feature extraction method for HR and SN is 100%, the
recognition rate of the feature extraction method based on
MDE for HR and W–S is 100%, the recognition rate of the
feature extraction method based on MPLZC for HR;
compared with the other three feature extraction methods,
MPLZC has the lowest recognition rate for the six ANs; the
four feature extraction methods have the highest recognition
rate for HR and the lowest recognition rate for LR, and this is
consistent with Figure 3. *e results showed that the double
feature extraction method can better identify six ANs,
compared with MPE, MPLZC, and MDLZC, and MDE can
better distinguish six ANs.

4.4. Multifeature Extraction and Classification. To further
verify the effectiveness of MDE in distinguishing six ANs,
the multifeature extraction method based on four com-
plexity parameters mentioned in section 4.2 is adopted.
Figure 5 indicates that triple feature distributions and
classification results correspond to the highest ARR.

It can be seen from Figure 5 that after the three feature
extraction method is adopted, the recognition effect of six
ANs is further improved; theMDE distribution andMDLZC
distribution of the six ANs are linear, and the MPE dis-
tribution and MPLZC distribution are blocky; for MDE and
MDLZC, the overlapping parts of feature distributions for
the six ANs are less than that in MPE and MPLZC; the
overlapping of theMPLZC distributions of the six ANs is the
most serious, and the number of misidentified samples for
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Figure 2: *e time domain waveform of six ANs. (a)HR, (b) LR, (c) LW, (d) MW, (e) SN, and (f) W–S.
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Figure 3: Continued.
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Figure 3: *e single feature distributions and classification results corresponding to the highest ARR.

Table 1: *e highest ARR of the single feature.

Single feature SF
Signal type

ARR (%)
HR (%) LR (%) LW (%) MW (%) SN (%) W–S (%)

MPE 1 96.0 44.0 82.0 48.0 88.0 48.0 67.7
MDE 2 76.0 44.0 76.0 88.0 70.0 82.0 72.7
MPLZC 2 92.0 4.0 32.0 0.0 28.0 0.0 26.0
MDLZC 1 94.0 24.0 80.0 82.0 62.0 74.0 69.3
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Figure 4: Continued.
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Figure 4: *e double feature distributions and classification results corresponding to the highest ARR.
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Table 2: *e highest ARR of double features.

Double feature SF combination
Signal type

ARR (%)
HR (%) LR (%) LW (%) MW (%) SN (%) W–S (%)

MPE (1, 4) 100 48.0 74.0 50.0 100 94 77.7
MDE (1, 5) 100 80.0 88.0 96.0 98.0 100 93.7
MPLZC (2, 6) 66.0 32.0 34.0 34.0 64.0 24.0 42.3
MDLZC (1, 5) 100 82.0 90.0 92.0 96.0 98.0 93.0
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Figure 5: Continued.
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each AN is the largest; for MPE, the total number of mis-
identified samples of the six ANs is greater than that in MDE
and MDLZC; for MDE, the samples of HR, SN, andW–S are
not identified incorrectly, and only one sample of MW is
misidentified. To summarize, compared with MPE, MPLZC,
andMDLZC,MDEhad the best recognition effect for sixANs.

We calculate the highest average recognition rate under
different number of features separately, as shown in Table 3.
Where (1, 4, 5) denotes triple features for complexity parameters
under SF1, SF4, and SF5, (1, 3, 4, 5) denotes four features for
complexity parameters under SF1, SF3, SF4, SF5, and so on.
Table 3 shows the highest ARR of multifeatures for six ANs.
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Figure 5: *e triple feature distributions and classification results corresponding to the highest ARR.

Table 3: *e highest ARR of multifeatures for six ANs.

Multi-feature Parameter
Number of extracted features

3 4 5

MPE ARR (%) 81.7% 82.7% 83.7%
SF combination (1, 4, 5) (1, 3, 4, 5) (1, 2, 4, 5, 6)

MDE ARR (%) 95.0% 96.0% 96.3%
SF combination (1, 2, 10) (1, 4, 6, 10) (1, 4, 5, 6, 10)

MPLZC ARR (%) 47.3% 49.7% 50.7%
SF combination (1, 2, 3) (1, 2, 3, 7) (1, 2, 3, 5, 6)

MDLZC ARR (%) 92.7% 93.7% 93.7%
SF combination (1, 5, 10) (1, 2, 5, 6) (1, 2, 3, 5, 6)
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It can be seen from Table 3 that for the multifeature
extraction methods based on MPE, MDE, MPLZC, and
MDLZC, respectively, the recognition rate of the six ANs
increased with the increase of the number of features; under
the same number of features, the multifeature extraction
method based on MPLZC has the lowest recognition rate,
and the recognition rate of multifeature extraction method
based on MDE is the highest and reaches 96.3% when the
number of extracted features is 5; the highest recognition
rate of the proposed method is at least 2.6% higher than that
of the other three multifeature extraction methods. In
conclusion, compared with the other three multifeature
extraction methods, the proposed method has the highest
recognition rate and can distinguish six ANs more
accurately.

5. Conclusions

In this paper, MDE was introduced as an improved algo-
rithm of DE, and we proposed feature extraction methods of
six ANs based on MDE. *e effectiveness of the proposed
method is verified by the feature extraction experiments of
six ANs, and the main conclusions are as follows:

(1) In order to more comprehensively react complexity
of the ANs, the MDE is introduced which combined
with the coarse graining process and DE. Experi-
ments show that MDE can better reflect the com-
plexity of each AN.

(2) In this paper, we proposed a feature extraction
method of six ANs based on MDE. For the single
feature and the double feature extraction experi-
ments, compared with feature extraction methods
based on MLZC, MPE, and MDLZC, the ARR for six
ANs of the feature extraction method based on MDE
is the highest.

(3) In the multifeature extraction experiments, the
proposed method all has the highest ARR under the
same number of features, and the ARR reaches 96.3%
when the number of features is 5. *e proposed
method has the highest ARR and can more accu-
rately distinguish six ANs.
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