
Review Article
Prediction of the Remaining Useful Life of Supercapacitors

Zhenxiao Yi ,1,2 Kun Zhao ,3 Jianrui Sun ,3 Licheng Wang ,4 Kai Wang ,2

and Yongzhi Ma 1

1College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266000, China
2School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
3Shandong Wide Area Technology Co., Ltd, Dongying 257081, China
4School of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Correspondence should be addressed to Kai Wang; wkwj888@163.com and Yongzhi Ma; hiking@126.com

Received 25 January 2022; Revised 1 March 2022; Accepted 10 April 2022; Published 11 May 2022

Academic Editor: Ali Ahmadian

Copyright © 2022 Zhenxiao Yi et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a new type of energy-storage device, supercapacitors are widely used in various energy storage �elds because of their advantages
such as fast charging and discharging, high power density, wide operating temperature range, and long cycle life. However, the
degradation and failure of supercapacitors in large-scale applications will adversely a�ect the operation of the whole system. To
maximize the e�ciency of supercapacitors without damaging the equipment and to ensure timely replacement before reaching the
end of their useful life, it is critical to accurately predict the remaining useful life of supercapacitors. �is paper presents a
comprehensive review of model-based and data-driven approaches to predict the remaining useful life of supercapacitors,
introduces the characteristics of the various methods, and foresees future trends, with the expectation of providing a reference for
further research in this �eld.

1. Introduction

With the rapid development of the global economy, the
living standard of human beings has been improving, and
the consumption of resources has been further increased.
For example, the massive burning of coal will also produce
numerous solid wastes [1], the generation and discharge
of industrial wastewater and cause serious water pollution
[2], and the problems of energy crisis and environmental
pollution are becoming more and more serious [3, 4]. In
this context, the concept of green environmental pro-
tection, energy-saving, and low carbon has gradually
become popular. Tens of thousands of plastics produced
by humans have caused immeasurable harm to the en-
vironment, while energy consumption is becoming more
and more serious, and a study has proposed a triboelectric
nanogenerator (TENG) based entirely on waste plastic
bags [5]. In addition, a study has formed high-e�ciency
photovoltaic cells based on PdSe2 [6]. Some studies
combine energy storage elements with material directions

in an attempt to develop e�cient and low-cost energy-
consuming devices [7–12].

In addition, new high-performance, low carbon, and
green energy storage power systems are a key approach to
improve this situation [13]. Similarly, energy-storage power
systems have a wide range of applications in biomedical and
medical devices and motion sensors [14, 15]. Energy storage
systems also have unique advantages in industrial, military,
transportation, and power �elds [16–18]. Lithium batteries
[19, 20] and capacitors play an important role in new energy-
storage power systems, where capacitors are mainly classi-
�ed as dielectric energy storage capacitors and widely
studied supercapacitors [21]. To solve the problem that
electrical conductivity and cycle life cannot meet the re-
quirements of applications, various types of metal-organic
frameworks (MOFs) materials [22] have been tried to be
used in supercapacitors and metal cells to explore their
electrochemical energy storage mechanisms, stability of
electrode materials, charge transfer pathways, mass transfer,
and electrochemical reactions. Dielectric energy storage
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capacitors are mainly lead-free energy storage ceramics [23],
which have a certain potential for application due to their
higher effective energy storage density compared to con-
ventional linear dielectrics. Lead-free energy storage ce-
ramics are both environmentally friendly and less dense than
lead-based materials because they are lead-free materials,
which facilitates lightweight in applications [24]. Super-
capacitors (SCs), as a new type of energy storage device, have
the advantages of fast charging and discharging, high power
density, wide operating temperature range, long cycle life,
and high reliability [25].

At this stage, ultracapacitors are widely used in standby
or emergency power, alone or mixed with batteries as peak
power, as well as in control systems, communication fields,
hybrid electric vehicles, and smart grids. Meanwhile, a study
has proposed an optimized power distribution method for
hybrid energy-storage systems for electric vehicles (EVs)
[26]. /e hybrid energy storage system (HESS) uses two
isolated soft-switched symmetrical half-bridge bidirectional
converters connected to a battery and a supercapacitor (SC)
as a protection structure for the composite structure. It helps
to improve energy utilization and reduce the battery aging
effect.

However, since an energy storage system consisting of
ultracapacitors is a complex nonlinear system, degradation
and failure of individual ultracapacitors in an application
will adversely affect the operation of the entire system.
/erefore, accurate prediction of the remaining useful life
(RUL) of ultracapacitors is crucial to improve the reliability
of energy storage systems and effectively reduce the oc-
currence of failures.

/e mainstream methods are mainly model-based and
data-driven approaches. /e model-based approaches
consider the battery loading conditions, material properties,
and degradation mechanisms, mainly including equivalent
circuit models, electrochemical models, and empirical
degradation models [27, 28]. However, the principles of
model-based approaches are complex and vulnerable to
external factors, making it difficult to build stable models.
Notably, data-driven methods do not require complex
modeling and internal mechanism analysis, are highly
flexible and scalable, and have been widely used in recent
years [29].

/is paper reviews model-based and data-driven ap-
proaches to predict the remaining useful life of super-
capacitors and analyzes the characteristics and problems of
each approach as well as future research trends.

2. Operating Principle and Aging Mechanism

2.1. Operating Principle. According to the energy-storage
mechanism, supercapacitors are divided into double-layer
capacitors and Faraday capacitors. /e double-layer ca-
pacitor uses carbon material as an electrode to store elec-
trical energy by electrostatic effect, and the physical reaction
occurs and the process is reversible. /e energy storage is
achieved by the potential difference between the two solid
electrodes due to the adsorption of positive and negative ions
on the surface between the solid electrode and the

electrolyte, respectively. During charging, the anions and
cations in the electrolyte gather on the surfaces of the two
solid electrodes under the effect of charge gravity on the solid
electrodes; during discharging, the anions and cations leave
the surfaces of the solid electrodes and return to the elec-
trolyte body, while the stored charge is released through an
external circuit. /e changes in the supercapacitor before
and after charging are shown in Figure 1.

When a Faraday capacitor is charged, the ions in the
electrolyte diffuse into the solution under the action of the
applied electric field to the electrode/solution interface and
then enter the electrode surface-active oxide through the
electrochemical reaction at the interface; if the electrode
material is an oxide with a large specific surface area, a
considerable number of such electrochemical reactions take
place and a large amount of charge is stored in the electrode.
When discharging, these ions that enter the oxide are
returned to the electrolyte, while the stored charge is released
through the external circuit. /us, it is able to supply power
to the load.

/erefore, electrode materials and electrolytes can have a
huge impact on the electrochemistry of supercapacitors and
are also important factors in the aging of supercapacitors.

2.2. AgingMechanism. /e study of the aging mechanism of
supercapacitors is important for the accurate prediction of
the remaining service life of supercapacitors.

Supercapacitors consist of electrodes, electrolyte, dia-
phragm, and fluid collector, so the aging characteristics of
supercapacitors usually refer to case damage, electrolyte
decomposition, and electrode degradation [30]. In practical
applications, their service life is also influenced by external
stresses. For example, voltage, current, and temperature are
the main factors affecting the aging of supercapacitors.
Water decomposition of supercapacitors generates a certain
amount of air pressure inside the case, which may damage
the case with long-term use or in extreme cases. In the
temperature range, high temperatures will promote the
chemical activity of activated carbon electrodes and accel-
erate their aging. /e capacitance value of supercapacitors is
directly proportional to the specific surface area of the
electrode material, so changes in the electrode material often
cause a decrease in the specific surface area and thus the
capacity of supercapacitors [31]. /e by-products of aging of
supercapacitors and polymers will result in a smaller pore
structure on the electrode surface, and impurities from
electrolyte decomposition reduce the ability of ions to reach
the cavities, leading to an increase in the equivalent series
resistance (ESR). /is affects the normal embedding and de-
embedding of ions and makes the performance of the
supercapacitor degraded.

In addition, during the preparation of electrode mate-
rials, a small number of impurities as well as oxygen-con-
taining functional groups, remain on the electrode surface,
which can lead to a faster decrease in capacitance value of
supercapacitors in the early stages of aging [32].

Under the influence of these aging factors, the RUL of
supercapacitors gradually degrades along a certain nonlinear
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curve until it reaches the critical allowable use range [33].
/erefore, it is important to accurately predict the RUL of
supercapacitors to ensure the safety and reliability of their
operation.

3. Model-Based Prediction Methods

/e model-based prediction method is an effective way to
evaluate the lifetime of supercapacitor devices by building an
equivalent circuit model based on the electrical performance
or energy storage principle of the supercapacitor. /e
equivalent circuit model uses a parametric RC (capacitor-
resistor) network to model the electrical behavior of the
supercapacitor, and usually uses ordinary differential
equations with simplicity and ease of implementation in the
model formulation.

/e study conducted by Liu et al. [34] can fit the pa-
rameters of the power function model better based on the
decay trajectory of supercapacitor capacitance and extrap-
olate the failure life model which conforms to the Weibull
distribution. /e validation results of the life model show
that the relative error decreases as the number of cycles
increases, and the cycle life of supercapacitors can be better
predicted by choosing the appropriate number of cycles. In
the literature [35], a prediction model of supercapacitor
capacity decay including temperature, current intensity, and
cycle number factors was established based on the classical
Arrhenius model through the performance decay law
exhibited by supercapacitors under different charging and
discharging currents and temperature conditions. /e val-
idation results show that the fitted results are in good
agreement with the actual decay data, and most of the
relative errors are within 3%. In the literature [36], an online
estimation scheme based on particle filtering (PF) is pro-
posed to estimate the state of health (SOH) of SC by
combining the electrical equivalent circuit model (ECM)

and thermal model and to monitor the SOH of SC by es-
timating the equivalent series resistance (ESR) and device
capacity in real-time.

Based on this, a supercapacitor RUL prediction model
considering aging conditions such as temperature and
voltage was proposed in the literature [37]. Experiments
conducted under different aging conditions found that the
method can predict the capacitance and resistance as well as
the RUL under different initial conditions well in addition to
considering voltage and temperature, an improved reliability
model was proposed in the literature [38], which simulates
the voltage, temperature, and humidity levels to which the
supercapacitor is exposed during operation under actual
operating conditions, further improving the prediction ac-
curacy of the model.

Model-based prediction methods usually combine dif-
ferent models and filtering methods to achieve data tracking
and prediction of the remaining lifetime of supercapacitors.
However, model-based prediction methods are very com-
plex and difficult to implement due to the complexity of
supercapacitors.

4. Data-Driven Forecasting Methods

Compared with model-based methods, data-based methods
do not require complexmathematical models to simulate the
internal aging mechanism of supercapacitors. /ey are
methods to predict the trends of device parameters during
the aging process mainly based on historical data of
supercapacitor aging process and state data, such as artificial
neural networks and fuzzy logic.

A simple recurrent neural network (SIM RNN) was
proposed in the literature [39] for supercapacitor lifetime
prediction, but SIM RNN has the disadvantage of long-
term dependent learning. If the information is stored for
too long, the gradient will disappear and the SIM RNN
cannot continue to learn. Zhao et al. [40] proposed a
lifetime prediction method based on long short-term
memory neural network (LSTM RNN), which used the
Dropout algorithm to prevent overfitting and optimized
the neural network using Adam’s algorithm. /e input of
the neural network is the measurement data under dif-
ferent operating conditions that are divided into training
and prediction sets, and the root mean square error
(RMSE) of the prediction results is about 0.0261. /e life
prediction of offline data has a mean absolute error (MAE)
of about 0.0338, which proves the applicability of the
algorithm. /e gated recurrent unit (GRU) structure is
simpler than the LSTM. /e advantage of the GRU is that
it is a simpler simple model with fewer parameters, and
GRU is more likely to converge. However, the LSTM RNN
has better performance when the data set is larger [41].
/erefore, the long-short memory neural network is very
suitable for the prediction of the remaining lifetime of
supercapacitors.

Zhou et al. [42] proposed an algorithm combining a long
short-term memory neural network and a hybrid genetic
algorithm, whose structure is shown in Figure 2. /e se-
quential quadratic programming is used as a kind of local
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Figure 1: Principle of operation of supercapacitors.
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search operator of the genetic algorithm, which enhances its
global search capability and enables it to search the local
optimal solution quickly by the exit probability and the
number of hidden layer units. /is prediction method can
estimate the remaining lifetime of supercapacitors in steady-
state charging mode well, and also works well for super-
capacitors with dynamic operation cycles.

/e study by Liu et al. [43] uses a stacked bidirectional
long- and short-term memory recurrent neural network
model, which adds a reverse recurrent layer with t-time and
subsequent time values in the input sequence to the tra-
ditional long- and short-term memory recurrent neural
network. Among them, the stacked network can ensure
sufficient capacity space. When the number of hidden
layers is 2, the predicted RMSE and MAE are 0.0275 and
0.0241, respectively, indicating that the network has better
performance. A method for predicting the life of super-
capacitor modules based on the monitoring data of buses
under actual service conditions is proposed in the literature
[44]./e qualified memory least squares method is used for
parameter identification of service condition data to obtain
the resistance and capacitance values with time-series and

seasonal characteristics, and then, the RUL is predicted
based on this method using the Prophet algorithm. /e
forward chain method is also introduced to validate the
results, which is better than the cross-validation method in
machine learning that ignores the time-series character-
istics of the time-series data./e running time of Prophet is
only about 20% of the running time of LSTM RNN, and the
prediction accuracy is higher and the time required is
shorter for data with periodic and seasonal characteristics,
provided that the model remains unchanged and the same
prediction accuracy is obtained. /e structure diagram of
Prophet and the flow chart of the forward chain method are
shown in Figure 3.

Haris et al. [45] proposed a new deep learning algorithm,
deep belief network (DBN) combined with Bayesian Opti-
mization and HyperBand (BOHB), with the structure shown
in Figure 4, for predicting the RUL at the early stage of
supercapacitor degradation. Compared with previous
studies, the development time of the RUL prediction model
was reduced by 54%, largely saving the time required to
collect and measure supercapacitor cycle data, and the
proposed model has good accuracy and robustness.
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Figure 2: A structural diagram of the long short-termmemory, a type of neural network. Here, a gate component is embedded to process the
memorizing and forgetting and input as well as output inside such active memory [42]. Reproduced with permission. Copyright 2020,
applied energy.
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Ren et al. [46] presented a neural network-based RUL
predictionmethod for supercapacitors that does not strongly
depend on the data distribution and is less dependent on the
correlation between variables and features, and the proposed
model is suitable for data sets with a wide training distri-
bution and has an accurate early diagnosis and prediction
capability for the performance of complex supply chain
systems. /e testing error is less than 10.9%, and this error
can be further adjusted by the dataset.

/e above methods enable a significant reduction in the
length of the input cycle, but they still require a large amount
of data for their extraction. Since manually produced fea-
tures inevitably lose aging information, the accuracy of
prediction results is limited. In addition, manual feature
extraction is cumbersome because it requires domain-spe-
cific knowledge and a long processing time. An end-to-end
RUL prediction method based on convolutional neural
networks (CNNs) is proposed in the literature [47]. /e
method has higher accuracy while requiring significantly
fewer input data. Also, the method effectively reduces the
need for data and improves prediction accuracy, which helps
in the diagnosis and prediction of supercapacitors. /e
framework of the proposed CNN is shown in Figure 5.

Using a data-driven approach that does not require physical
modeling of the component and is designed to simulate the
relationship between measurement data and component deg-
radation, it can effectively predict energy storage lifetime and
discharge behavior without the need for detailed studies of
internal chemical changes and side reaction disturbances.

5. Conclusion

Supercapacitors are widely used in many fields because of
their advantages such as high power density, fast charging
and discharging speed, and wide operating temperature
range. Since the supercapacitors storage system is composed
of a set of basic units, the inconsistent parameters of each
unit, uneven charging voltage, and the difference in internal
temperature in large-scale applications will lead to the
degradation of its performance and the aging of the device.
/erefore, accurate prediction of the remaining service life
of supercapacitors can effectively reduce the occurrence of
failures and accidents. Currently, there are mainly model-
based and data-driven prediction methods. Due to the
complexity of supercapacitors, model-based prediction
methods are complicated to implement. /e data-based
approach does not require complex mathematical models to
simulate the internal aging mechanism of supercapacitors,
and combined with artificial neural networks can have better
prediction accuracy and efficiency, which is the focus of
future research. However, since the method relies only on
relevant historical data to complete the prediction, the
quality of the assessment depends heavily on the accuracy of
the historical data. Because of the long lifetime of super-
capacitors, it takes longer to collect cycle life data, which will
increase the possibility of noise pollution and affect the
prediction results. Also, the difficulty of obtaining high-
precision historical data is a technical problem that needs to
be broken in the process of achieving accurate evaluation.

Combining with transfer learning techniques to reduce the
reliance on data will be a future research trend.
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