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�e strength failure of brittle materials under complex stress is an important problem. Herein, we propose a novel three-parameter
twin τ2 strength theory considering the in�uence of hydrostatic pressure and normal stress on the principal shear-stress surface,
derive a mathematical expression for the strength theory, and compare the theoretical predictions under several stress states with
existing experimental data. �e results show that di�erent ultimate stress ratios, α and β, correspond to di�erent strength theories
for brittle materials. �e principal stress σ1 increases gradually with an increase in σ2 (�σ3) under the stress state σ1> σ2� σ3; σ1
(�σ2) increases gradually with an increase in σ3 under the stress state σ1� σ2> σ3. Furthermore, the biaxial compressive strength is
considerably higher than the uniaxial compressive strength under the biaxial compressive stress for σ1> 0, σ2> 0, and σ3� 0.
When σ3 is �xed and σ2 is relatively small under the stress states of σ1> 0, σ2> 0, and σ3> 0, the maximum principal stress σ1
increases with the increasing σ2. When σ2 is relatively large and as σ1 gradually decreases with the increasing σ2, the e�ect law of
intermediate principal stress σ2 is obtained.

1. Introduction

With the rapid development of science and technology,
brittle materials such as rock and concrete are being used
more widely. To maximize the potential of engineering
materials, it is necessary to gain further insight into the
strength theories of rock-like brittle materials. �e strength
theories of materials are essential for materials science and
form the basis for designing the various types of engineering
structures. Hence, development and innovation in this area
are of great academic signi�cance, have a high application
value in theoretical and practical engineering, and improve
economic e�ciency [1].

Currently, the commonly usedmaterial strength theories
can be classi�ed as one-, two-, three-, and four-parameter
theories according to the number of formula parameters.
�ere are even �ve-parameter theories for special cases. A
multiparameter strength theory is required to describe the
failure characteristics of some brittle materials with di�erent
tensile and compressive strengths. In the past century, based
on the traditional maximum tensile stress, maximum strain,

maximum shear stress, and shape strain energy theories [2],
research on strength theories has garnered the attention of
many scholars. Various strength theories that re�ect the
failure laws of brittle materials, such as rock and concrete,
have been proposed. For example, Mohr [3] suggested the
famous Mohr–Coulomb strength theory by considering the
e�ects of the maximum principal stress σ1 and minimum
principal stress σ3 on rock. �e strength criterion of the
Hoek–Brown strength theory [4–6] re�ects the relationship
between σ1 and σ3 based on the results of tests such as the
triaxial con�nement tests of rocks.�is theory also considers
factors such as the rock strength, stress state, and structural
surface. �e Hoek–Brown strength theory also describes the
failures in fractured and anisotropic rock masses without
considering the e�ects of the intermediate principal stresses
on the material strength.�erefore, the theoretical results do
not truly re�ect the material stresses. Recently, new strength
theories have been continuously proposed. For example,
Ding et al. [7] summarized the classical strength theories and
two types of modern strength theories for concrete and
isotropic rocks.�ey divided each isotropicmodern strength
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theory into shear stress, octahedral, and principal stress
strength theories, and they discussed, compared, and
reviewed these theories using relevant triaxial test data
obtained fromChina and other countries. Jiang and Yang [8]
proposed a three-dimensional Hoek–Brown failure criterion
by introducing additional coefficients to explore failure in
rock and concrete under multiaxial stress states. In addition,
Wu et al. [9] studied the instantaneous equivalent
Mohr–Coulomb parameters used to modify the Hoek–
Brown criterion. )ey also discussed the rationality of the
calculation method and the relationship between the in-
stantaneous equivalent Mohr–Coulomb parameters and
rock strength characteristics. Furthermore, Wu et al. [10]
proposed an improved Hoek–Brown criterion by reviewing
the development history of the Hoek–Brown criterion as
well as its meridian and universal partial functions. Lu and
Du [11] suggested a physical model for the unified strength
theory and established a generalized nonlinear strength
theory, in which two transformed stress spaces were pro-
posed. )rough testing, Lu concluded that this theory could
be applied to the Mohr–Coulomb and Drucker–Prager
criteria. Li et al. [12] introduced the critical confining
pressure, and Singh intermediate principal stress methods
proposed by Barton to improve the Hoek–Brown criterion,
making it more suitable for predicting the triaxial strength of
intact rock. Furthermore, You [13] developed linear and
nonlinear unified strength theories directly based on prin-
cipal stress to determine the material parameters for mul-
tiple strength criteria. Wang and Hiwada [14] established a
multiaxial strength criterion for lightweight aggregate
concrete based on the unified strength theory, and Yang et al.
[15] proposed a generalized form of the twin shear strength
criterion for rock and proposed a functional expression for
it: τ8 � g(θσ) · f(σm). Gao et al. [16] defined a Druck-
er–Prager series yield criterion that considers the influence
coefficient of the intermediate principal stress and can
maximize the strength potentials of materials compared with
the conventional criterion. By introducing deformation
parameters, Guo et al. [17] established a semitheoretical and
semiempirical generalized unified strength theory that can
reflect the high accumulation of strain energy in deep rock
masses, integrity and elastic modulus of rock masses, strain
energy released from seismic sources, and resistance energy
of supporting structures. )ey proposed four threshold
values (0.9, 1.0,1.0,1.2, and 1.9) for five levels of activity (i.e.,
expansion, yield or failure, weak rock burst, moderate rock
burst, and high rock burst) in deep rock masses. )e results
showed that the generalized unified strength theory agrees
well with actual scenarios. )e Chinese scholar Yu et al.
consecutively proposed the twin shear stress yield criterion,
twin shear-stress strength theory, and unified strength
theory between 1961 and 1990 [1, 18–22]. Yu published
theses that proposed the twin shear stress yield criterion in
1961 and the generalized twin shear strength theory in 1985.
Subsequently, a new system of unified strength theory was
gradually developed, and improved strength theories for
metals and other geotechnical materials were realized. Chen
and Yu [23] offered a single-parameter double τ2 yield
criterion in 1994. )is theory holds that the main factor that

causes the yield failure of a material is the sum of the squares
of the two principal shear stresses with the largest absolute
values. Hence, until the sum of the squares of these twomain
shear stresses reaches a threshold determined by the
properties of the material, the material yields and fails,
regardless of its stress state. )e two principal shear stresses
are the maximum principal shear stress τ13 and the inter-
mediate principal shear stress τ12 or τ23, which are expressed
mathematically as shown in the following equation:

f1 � τ213 + τ212 � C; τ12 ≥ τ23,

f2 � τ213 + τ223 � C; τ12 ≤ τ23,

⎧⎨

⎩ (1)

where C is the experimentally determined material constant.
)e single-parameter double τ2 yield criterion considers the
effect of the intermediate principal stress σ2 on the material
yield and failure, and the theory of equation (1) applies to
plastic materials. Another two-parameter unified yield cri-
terion was established by Chen et al. [24]; this criterion is
mathematically expressed in the following equation:

f1 � τ213 + τ212 + Aτ13τ12 � B; τ12 ≥ τ23,

f2 � τ213 + τ223 + Aτ13τ12 � B; τ12 ≤ τ23,

⎧⎨

⎩ (2)

where A and B are material constants that are determined
experimentally.)e theory is a one-parameter yield criterion
in the case of A� 0 (i.e., equation (1)). Subsequently, Chen
et al. [25, 26] proposed a two-parameter τ2 strength theory
for brittle materials with different tensile and compressive
ultimate strengths based on a two-parameter unified yield
criterion, as shown in the following equation:

f1 � τ213 + τ212 + Aσm � B; τ12 ≥ τ23,

f2 � τ213 + τ223 + Aσm � B; τ12 ≤ τ23,

⎧⎨

⎩ (3)

where A and B are the experimentally determined material
constants. σm � 1/3(σ1 + σ2 + σ3) is the average stress.

In 2005, Chen et al. [27] suggested a three-parameter τ2
strength theory applicable to rock materials. )is theory is
mathematically expressed in the following equation:

τ213 + τ212 + Aσ2m + Bσm � C; τ12 ≥ τ23,

τ213 + τ223 + Aσ2m + Bσm � C; τ12 ≤ τ23,

⎧⎨

⎩ (4)

where A, B, and C are experimentally determined material
constants. When A� 0 (i.e., equation (3)), it is a two-parameter
τ2 strength theory. Recently, Chen et al. gradually developed a
new strength theory system based on the double τ2 strength
theory, and scholars such as Li [28], Sun [29], Kong et al. [30],
and Chen et al. [31, 32] proposed a different three-parameter
double τ2 strength theory, which has been widely used for the
strength analysis of brittle materials such as rock and concrete.
Wang and Chen [33] successfully applied the double τ2
strength theory for different purposes such as elastic-plastic
constitutive modeling, tunnel rock burst prediction, and
establishing and analyzing the constitutive integral algorithm.

Although a variety of strength theories have been pro-
posed worldwide, they all have some limitations or defects.
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For example, some theories are more applicable to specific
types of material (e.g., metallic materials) and less applicable
to others (e.g., brittle materials such as rock and concrete). In
addition, some theories only consider the effects of themajor
and minor principal stresses without accounting for the
effects of the intermediate principal stresses. As strength
theories are extremely complex, it is impossible to suc-
cessfully apply a single theory to all engineering materials.
)erefore, further studies are essential. )us, we derived a
new expression based on the critical stress ratio for the three-
parameter double τ2 strength theory founded on the the-
oretical ideas of the single-parameter, two-parameter, and
three-parameter double τ2 strength theories. We conducted
a comparative analysis with the experimental data of brittle
materials such as rocks and concrete under various stress
states.)e results demonstrate that the new theory is feasible
and supplementary to the development of strength theories
and has great theoretical significance and application value.

2. Derivation of Strength Theory

According to the three-parameter twin τ2 strength theory
concept described in the Introduction section, the variation law
of the limit surface of brittle materials is completely considered.
Moreover, the change in the strength of thematerials under the
weighted combination of different hydrostatic pressure func-
tions of the Tennessee andCompressiveMeridian is considered
to propose the new three-parameter twin τ2 strength theory.

)is theory states that the failure of materials depends on the
action of principal shear stresses (τ13, τ12, and τ23). Meanwhile,
the normal stress (σ13, σ12, and σ23) and hydrostatic pressure
(σm) on the surface of the principal shear stresses all affect the
failure of materials. )is theory is mathematically expressed as
follows:

τ213 + τ212 + A σ213 + σ212 + σ223  + Bσm � C; τ12 ≥ τ23,

τ213 + τ223 + A σ213 + σ212 + σ223  + Bσm � C; τ12 ≤ τ23,

⎧⎪⎨

⎪⎩

(5)

where A, B, and C are the material coefficients, which are
experimentally determined; τ13 � σ1 − σ3/2, τ23 � σ2 − σ3/2
, and τ12 � σ1 − σ2/2 are the maximum, intermediate, and
minimum principal shear stresses, respectively; σm is the
average stress (hydrostatic pressure),
σm � 1/3(σ1 + σ2 + σ3), and σ1, σ2, and σ3 are the maxi-
mum, intermediate, and minimum principal stresses, re-
spectively; σ13, σ23, and σ12 are the corresponding normal
stresses on the principal shear-stress surfaces τ13, τ23, and
τ12, respectively; and σ13 � σ1 + σ3/2, σ23 � σ2 + σ3/2, and
σ12 � σ1 + σ2/2. When the principal shear stresses τ12 ≥ τ23,
the theory considers the first expression given in equation
(5), and when the principal shear stresses τ12≤ τ23, the
theory considers the second expression given in equation
(5). )us, equation (5) can be expressed with the corre-
sponding principal stress as follows:

1
4
σ1 − σ3( 
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+
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+
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A σ1 + σ3( 
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B σ1 + σ2 + σ3(  � C; τ12 ≥ τ23,

1
4
σ1 − σ3( 
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+
1
4
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+
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A σ1 + σ3( 
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+ σ1 + σ2( 
2

+ σ2 + σ3( 
2

  +
1
3

B σ1 + σ2 + σ3(  � C; τ12 ≤ τ23.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

From equation (5), depending on the values of A and B,
different strength theories can be obtained as follows.

For A�B� 0, equation (5) is a single-parameter twin τ2

yield criterion. For A� 0, equation (5) is the generalized
expression of the double-parameter twin τ2 strength theory.

Generally, during the stress analysis of rock and concrete
materials, the compressive stress is positive, and the tensile
stress is negative. To determine the material coefficients, A,
B, and C, Using the three special points in the experiment:

(1) )e three principal stresses are σ1� σc (σc is the ultimate
stress under uniaxial compression), and because
σ2� σ3� 0, equation (5) can be expressed as follows:

1
2
σ2c +

1
2

Aσ2c +
1
3

Bσc � C. (7)

(2) )e three principal stresses are σ1 � τk, σ2 � 0, and
σ3 � −τk (τk is the ultimate stress of uniaxial com-
pression) under pure shear ultimate stress, and be-
cause σ2 � (σ1 + σ1)/2, equation (5) can be expressed
as follows:

5
4
τ2k +

1
2

Aτ2k � C. (8)

(3) )e three principal stresses are σ1 � σ2 � 0 and
σ3 � −σt (σt is the ultimate stress of uniaxial com-
pression) under uniaxial tensile ultimate stress, and
because σ2> (σ1 + σ3)/2, equation (5) can be
expressed as follows:

1
2
σ2t +

1
2

Aσ2t −
1
3

Bσt � C. (9)
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By substituting equations (7)–(9) in equation (5), the
material coefficients are obtained as follows:

A �
5τ2k − 2σcσt

2 σcσt − τ2k 
,

B �
9τ2k σt − σc( 

4 σcσt − τ2k 
,

C �
3σcσtτ

2
k

4 σcσt − τ2k 
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Assuming that the ultimate stress ratios of the material
are α and β, where α � σc/σt and β � τk/σt, equation (10) can
be expressed as follows:

A �
5β2 − 2α
2 α − β2 

,

B �
9β2σc(1 − α)

4α α − β2 
,

C �
3β2σ2c

4α α − β2 
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where the ultimate stresses σc, σt, and τk are experimentally
determined. After obtaining the ultimate stress ratios α and β
for different materials, a new three-parameter twin τ2

strength theory that can be applied to different materials is
obtained.

3. Limit Trace Equation and Limit Surface of
Strength Theory

As the mechanical properties of various engineering ma-
terials are related to the magnitude of hydrostatic pressure,
the stress space with the hydrostatic pressure axis as the
principal axis is usually adopted in the study of strength
theory and, particularly, in the study of the failure criterion
and constitutive relation of brittle materials.)e coordinates
of the π-plane can be expressed using Cartesian (x, y) or
cylindrical coordinates (r, θ) (Figure 1).

)e relationship between the Cartesian coordinates of
the π-plane and the principal stress is as follows:

x �
σ3 − σ2�

2
√ ,

y �
2σ1 − σ2 − σ3�

6
√ ,

z �
σ1 + σ2 + σ3�

3
√ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

After transformation, we obtain
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6
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�
2
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x

6
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

As shown in Figure 2, the π-plane limit line of the four-
parameter twin τ2 strength theory is similar to that of the
three-parameter twin τ2 strength theory. For 0<A< 1, the
π-plane limit line approaches a curved triangle within the
range of low hydrostatic pressures. With an increase in hy-
drostatic pressure, the limit line transitions to a nonequilateral
dodecagon of the curved surface. When the hydrostatic
pressure is sufficiently high, the graph approaches a regular
dodecagon of the curved surface. When A� 0 and B� 0, the
graph becomes a regular hexagon of the curved surface.

Assuming α� 2 and β� 1.8, the space and π-plane limit
lines can be obtained as shown in Figures 2 and 3,
respectively.

)e limit curve on the π-plane can also be expressed
using cylindrical coordinates; the relationship between the
cylindrical coordinates (ξ, r, and θ) and principal stresses
(σ1, σ2, and σ3) is as follows:

ξ � |ON| �
1
�
3

√ σ1 + σ2 + σ3(  �
�
3

√
σm,

r � |NP| �
1
�
3

√ σ1 − σ2( 
2

+ σ3 − σ2( 
2

+ σ1 − σ3( 
2

 
1/2

,

θ � arctan
x

y
.

(14)

)erefore, the corresponding three principal stresses can
be expressed as follows:

P (σ1, σ2, σ3)

σ 1=
σ 2=

σ 3

ξ

σm
z

r

r

σ3

σ1

σ’1

σ’3

σ’2 σ2

σ

θ

π0 plane

π plane (σ1+ σ2+ σ3)

=√3ξ

Figure 1: Principal stress space and the π plane.
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(15)

)e corresponding three principal shear stresses can be
expressed as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

By substituting equations (15) and (16) into equation (5),
the cylindrical coordinates of the three-parameter twin τ2
strength theory can be expressed as follows:
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⎪⎪⎪⎪⎪⎪⎩

(17)

)e angle θ shows the positions of the angular point of
the limit trace on the π-plane. Substituting θ� 0° and 60° into
equation (17), the following equations can be obtained for
the tensile and compressive meridians:

For θ� 0°,

1
4
r
2

+
1
4

A 4ξ2 + r
2

  + B
ξ
�
3

√ � C. (18)

For θ� 60°,

1
2
r
2

+
1
4

A 4ξ2 + r
2

  + B
ξ
�
3

√ � C. (19)

)e tensile meridian (θ� 0°) and compressive meridian
(θ� 60°) on the meridian plane are given by equations (18)
and (19), respectively, as shown in Figure 4.

)e figure shows that the meridian of the three-pa-
rameter twin τ2 strength theory represents a partial parabola.

4. Theoretical Analysis and Experimental
Verification of Strength

To analyze the variation law of the three-parameter twin τ2
strength theory under a complex stress state, we discuss the
theoretical prediction curves of this theory under several
common stress states.

4.1. Stress State of σ1> σ2 � σ3. )e stress state σ1> σ2 � σ3 is
common in practical engineering, which can be obtained by
simplifying the first part of equation (6).
1
4
σ1 − σ3( 

2
+
1
4
σ1 − σ2( 

2
+
1
4

A σ1 + σ3( 
2

+ σ1 + σ2( 
2

+ σ2 + σ3( 
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3

B σ1 + σ2 + σ3(  � C.

(20)

σ1= σ2= σ3

σ1

σ3

σ2

Figure 2: Space limit line.

Double-shear strength theory

Tri-parameter twin τ2 theory

Tresca yield criterion

σ1

σ3
σ2

Figure 3: π-Plane limit line.
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K. Newman and J.-B. Newman [34] performed several
experiments on plain concrete in 1971 under this stress state
and obtained some experimental data. For plain concrete,
the coefficients A, B, and C can be obtained by substituting
α� 10 and β� 1.5 into equation (11). )ereafter, this
equation is substituted into equation (22). )e theoretical

prediction curve is compared with the experimental data, as
shown in Figure 5.

4.2. Stress State of σ1 � σ2> σ3. For the stress state
σ1 � σ2> σ3, the second part of equation (5) is simplified as
follows:

1
4
σ1 − σ3( 

2
+
1
4

A σ1 − σ3( 
2

+
1
3

B 2σ1 + σ3( 

+
1
9

C 2σ1 + σ3( 
2

� D.

(21)

For the triaxial extrusion tensile state, three groups of
experimental data of concrete were taken from Balmer [35],
and the ultimate stress ratios α and β were 10 and 1.8, re-
spectively. )e comparison between the experimental data
and theoretical prediction curve for the three-parameter
twin τ2 strength theory is shown in Figure 6.

)e figure shows that the strength of concrete σ1/σc � σ2/
σc increases with an increase in σ3/σc.)is behavior indicates
that the theoretical prediction curve of the three-parameter
twin τ2 strength theory is consistent with the experimental
data.

4.3. Biaxial Stress States of σ1> 0, σ2> 0, and σ3 � 0. By
substituting σ3 � 0, σ1> 0, and σ2> 0 into equation (6), we
obtain the following equations:
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(22)

Assuming α� 2; β� 2 and α� 9; and β� 2, the theoretical
curve and Qu’s experimental data [36] can be obtained, as
shown in Figure 7.

4.4. Triaxial Stress States of σ1> 0, σ2> 0, and σ3> 0.
Under the triaxial stress state σ1> 0, σ2> 0, and σ3> 0, rock
materials were selected for comparative analysis. For ex-
ample, we selected You’s fitting analysis for the true triaxial
tests of multiple rocks [13, 37] and Xu and Geng experi-
mental data for weak sandstone [38]. )e theoretical curve
can be obtained from equation (5), as shown in Figure 8,
where σc � 30MPa, α� 10, and β� 2.1. In the figure, the
white circle, black circle, and square represent the rela-
tionship between σ1 and σ2 at confining pressures of σ3 � σ2,
σ3 � 5MPa, and σ3 �10MPa, respectively.

4.5. σ–τ Compound Stress State. Combined torsion and
bending deformation is a common stress phenomena in
engineering components. When a member is subjected to a
combined bending and torsional force, the relationship
between the principal, normal σ, and shear stresses τ can be
obtained based on material mechanics as follows:

σ1 �
σ
2

+

��������

σ
2

 
2

+ τ2


σ2 � 0

σ3 �
σ
2

−

��������

σ
2

 
2

+ τ2


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (23)

On substituting equation (23) into equation (5), we
obtain the following:
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Figure 4: Meridian line.
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(24)

Under σ–τ compound stress, three groups of experi-
mental data for concrete reported by Takao Okashima [39]
were considered. Furthermore, α� 10 and β� 1.2. For

σc � 20, 30, or 40MPa, the experimental data and theoretical
prediction curve of the three-parameter twin τ2 strength
theory are shown in Figure 9.
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Figure 5: Experimental data and theoretical curves showing changes in concrete strength.
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Figure 6: )eoretical curves and experimental data of three-axis extrusion.
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)e above analysis shows that the new three-parameter
twin τ2 strength theory prediction curve proposed herein
agrees with the experimental data obtained for some brittle
materials. )is theory has the following characteristics: first,
the proposed theory is deduced based on the influence of
hydrostatic pressure and principal shear stresses, with a clear
physical concept and a relatively simple mechanical model.
Hence, this theory is convenient for use in engineering ap-
plications. Furthermore, note that the destruction of materials

is related to the nature of materials. )e ultimate stress ratios
α and β of different materials are correspond to different
theoretical expressions of strength. In addition, parameters A,
B, and C are functions of the ultimate stress ratios α and β of
brittle materials. It can be determined by stretching, com-
pression, and shear experiments. )erefore, the proposed
three-parameter τ2 strength theory has a certain universality,
improving and supplementing the strength theory of brittle
materials such as rock and concrete.

5. Conclusions

Herein, we proposed a novel three-parameter twin τ2
strength theory based on the twin τ2 strength theory. )e
following conclusions can be obtained from our analyses:

(1) According to the proposed three-parameter twin τ2
strength theory, the limit surface of the principal
stress space is a curved surface that closes in the
tensile zone, opens in the compression zone, and
increases along the hydrostatic pressure axis. )e
meridian is an elliptic curve, and the shape and size
of the limit surface are determined by the ultimate
stress ratios, α and β, of various brittle materials.

(2) Under the stress state σ1> σ2 � σ3, σ1 increases
gradually with an increase in σ2 (�σ3). Under the
stress state σ1 � σ2> σ3, σ1 (�σ2) increases gradually
with an increase in σ3. Furthermore, under the biaxial
compressive stress σ1> 0, σ2> 0, and σ3 � 0, the biaxial
compressive strength is considerably larger than the
uniaxial compressive strength. Under σ–τ compound
stress, the theoretical value of three-parameter twin τ2

strength is consistent with the experimental data.
(3) Under the stress state σ1> 0, σ2> 0, and σ3> 0, when

σ3 is set as a fixed value and σ2 is relatively small, σ1
increases with σ2, whereas σ1 decreases gradually with
an increase in σ2 if σ2 is relatively large.)e theoretical
values are consistent with the experimental data.
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Figure 8: Experimental data and theoretical curves of the three-
axis stress state.
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