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Deconvolution-related methods are the mainstream choice when it comes to enhancing the pulse impact of bearing fault and
reducing noise interference. Kurtogram algorithm is used to optimize the minimum generalized Lp/Lq deconvolution to improve
the nonconvexity of other optimization criteria. However, it has low computational efficiency and poor diagnostic accuracy under
strong background noise. *e paper proposes an optimized method using protrugram algorithm that combines fast iterative filter
decomposition (FIFD) with minimum generalized Lp/Lq deconvolution (OMGD) for the 1.5-dimension Teager energy spectrum
demodulation. Here is the specific process of the application: Fast iterative filtering (FIF) was used to reduce noise interference
before using the maximum kurtosis to obtain the center frequency and frequency band and optimize the filter design, which was
for theMGD initialization operation to prevent the result from falling into the local optimal solution and check the interference of
impulse noise to a certain extent. *e 1.5-dimension Teager energy spectrum was then used for demodulation analysis to extract
small fault features of rolling bearings.*e verification of simulation signals and actual data showed that this method was better in
terms of extraction effect and efficiency than the use of fast kurtogram algorithm to optimize minimum generalized Lp/Lq
deconvolution when it comes to extracting microfault features with high interference of background noise.

1. Introduction

*e bearing is an indispensable component in the me-
chanical system. It is prone to all types of failure because of
its fast motion speed, large load, and complex structure [1].
All failures start from small faults (early faults or initial
faults) according to the final analysis. However, when the
bearing signals are being collected from sensors, the signals
will inevitably be mixed with other vibration interference
components. Besides, one of the characteristics of microfault
is small amplitude, which can make the fault impulse re-
sponse very weak. *us, it is easy to drown in the strong
background noise, and it is too hard to find and solve timely.
Over time, the equipment may be damaged or shut down,
even bringing significant personal casualty and huge eco-
nomic loss. For example, from September 2003 to October
2004, major accidents of freight train derailment caused by
bearing fatigue fracture occurred many times in some

important sections of China, resulting in economic losses of
more than 2 billion yuan [2]; in 2010, a Russian airliner had
an accident during landing due to motor shaft failure,
resulting in 132 deaths [3]; in 2015, a serious leakage ac-
cident occurred in a petrochemical company in China due to
the rupture of the ball caused by the distortion and fracture
of the bearing inner ring [4]. In addition, the operational
safety of modern engineering system which has large scale
and complexity has gradually reduced [5]. *erefore, the
study on microfaults of rolling bearings is helpful to prevent
equipment accidents and ensure the operation safety of
mechanical systems [6–9]. However, how to detect and
enhance fault impulse response and extract fault features
effectively has always been an important concern in bearing
microfault diagnosis, and it is also a popular subject in the
study of nonlinear vibration signals.

Due to the background noise and interference, noise
reduction filtering is a necessary step before extracting the
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features of microfaults of rolling bearings. Wavelet can be
used to denoise nonstationary signals [10]. However, its
transform results depend on wavelet basis and lack adapt-
ability. Furthermore, energy leakage occurs easily during the
signal transformation [11], which leads to the nonideal
results of denoising. *erefore, some decomposition
methods are proposed to denoise the signal, such as em-
pirical mode decomposition (EMD) [12], ensemble empir-
ical mode decomposition (EEMD) [13], complementary
ensemble empirical mode decomposition (CEEMD) [14],
complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) [15], and variational mode
decomposition (VMD) [16]. Most decomposition technol-
ogies break down the signal into some IMFs. In order to
achieve noise reduction, the components with more useful
information are retained and the those with more noise are
discarded. However, such decomposition methods only
work better for the signals that have very short data points.
When long data points are involved, they will have various
problems, such as poor decomposition effect and long de-
composition time [17]. Considering that the iterative fil-
tering (IF) method is an iterative decomposition method
inspired by EMD and that it can ensure convergence and
stability [18], paper [19] has proposed an iterative decom-
position method based on fast Fourier transform (FFT),
namely, fast iterative filtering decomposition (FIFD)
method. *is method has excellent rapidity and accuracy in
signal decomposition.

Furthermore, because the generalized Lp/Lq norm ap-
plied in blind deconvolution performs well in extracting
sparse features from noise signals [20], the generalized Lp/Lq
norm sparse filtering method for pulse feature enhancement
is applied to rolling bearing fault diagnosis successfully [21].
Based on the contributions of the above papers, paper [22]
has proposed the minimum correlation generalized Lp/Lq
deconvolution method, which can successfully extract the
fault features and complete the detection of composite faults.
Because the objective function of the minimum generalized
Lp/Lq deconvolution (MGD) is nonconvex, the result may
fall into the local optimal solution if improper initial values
are selected. *erefore, paper [9] has used the filter designed
by fast kurtogram to provide appropriate initialization and
achieve adaptive adjustment. It is helpful to find the fre-
quency band of the best filter and optimize MGD.*erefore,
it is very important to adopt an appropriate method based on
deconvolution to enhance the impact of bearing fault pulse.

Moreover, since the nonlinear signal can modulate
amplitude and modulation frequency, the nonlinear
broadband component can be converted into narrowband
component through demodulation technology; that is, the
concentrated spectrum can be obtained [23]. *erefore, the
traditional demodulation technology, such as Hilbert
transform (HT) [24] and Teager energy operator (TEO)
demodulation [25], is usually applied to the bearing fault
signal that can modulate amplitude and modulation fre-
quency after noise reduction and brings out the fault fea-
tures. However, considering the poor noise resistance of
these demodulation methods, the paper [26] has proposed
that the 1.5-dimension energy spectrum be applied to

analyze the bearing fault, since it can reduce noise well and
recover nonlinear features. *us, it works well in extracting
the frequency doubling information of fault feature
frequency.

To sum up, in order to solve the computational efficiency
loss in the above optimization methods, this paper has pro-
posed MGD optimization based on the protrugram algorithm
(referred to as OMGD herein). It is used to obtain the center
frequency and the corresponding frequency band at the
maximal kurtosis [27, 28]. Moreover, we can use the filter
parameters obtained from this algorithm to design the filter
and then to complete MGD optimization. *is method does
not achieve calculation accuracy at the expense of calculation
efficiency. On the contrary, it ensures not only the accuracy of
the diagnosis results, but also the calculation speed. However,
the optimization method alone is not enough to process the
signal under strong background noise. *erefore, in order to
maintain the performance of deconvolution when the signal is
affected by strong background noise, this paper has proposed a
combination of OMGD and FIFD. First, we used FIFD to
eliminate the noise and other signal interference, improve the
signal-to-noise ratio, and reduce the number of objective
functions converging to the local optimal solution. *en, the
deconvolution method was used to make it easier to converge
to the global optimal solution and then to enhance the pulse
characteristics of small faults. Finally, we used the 1.5-di-
mension Teager energy spectrum for demodulation analysis to
complete the feature extraction of microfaults. With the
proposed FIFD-OMGD-1.5-dimension Teager energy spec-
trum, we could extract themicrofault features of rolling bearing
efficiently and accurately even with serious interference of
noise.

*e rest of the content is arranged in the following order:
first, an introduction of the formula derivation of FIFD
method is presented in Section 2. Second, an introduction of
the derivation process of OMGD is provided in Section 3.
Finally, an introduction of the 1.5-dimension energy spec-
trum is given in Section 4. In Sections 3 and 4, we use the
abovementioned methods to analyze and verify the analog
signal and actual signal, respectively. Finally, we summarize
the study in Section 5.

2. Methodology

2.1. Fast Iterative Filtering Decomposition Method. Fast it-
erative filter decomposition (FIFD) is essentially the discrete
version of iterative filter decomposition (IFD) based on fast
Fourier transform (FFT).

Assuming that the signal is s(x), x ∈ R, we sample it at n

points xj � j/n − 1 to ensure that the sampling rate captures
all its details. *e main objective of FIFD is that vector IMFs
are obtained by vector [s(xj)]

n−1
j�0 . In addition, it is assumed

that ‖[s(xj)]‖2 � 1 to make the method more general.
For convenience, [s(xj)]

n−1
j�0 is replaced by symbol s to

simplify the formula.
*ere are two “while” loops in the discrete version of the

iterative filter decomposition (DIFD) algorithm. *e first
“while” loop is known as an outer loop, and the second one is
an inner loop.
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In the inner loop, the first IMF can be obtained through
IMF1 � limm⟶∞(I − Cm)sm, where the matrix Cm �

[ωm(xi − xj)]
n−1
i,j�0 represents the discrete convolution opera-

tor, and its structure is determined by the semi-support length
lm at each step m. A nonnegative number is used for ωm. *e
closely supported symmetric filter ωm within area 1 is gen-
erated by the convolution of the symmetric filter hm and itself.
We can use the following equation to calculate ωm(u):

ωm(u) �
ω g

−1
(u) 


1
−1 ω(t) gm

′ (t)


dt
, (1)

where gm is the scaling function, which is considered
monotonically reversible. By linear scaling,
g−1(u) � u/lm, gm

′ (t) � lm ≥ 0. *us, we can rewrite (1) as

ωm(u) �
ω u/lm( 

lm
. (2)

Suppose that for any number m and m≥ 1, there is
C � Cm. Given the semi-simple eigenvalue λp 

p�0,...,n−1 of C

and its eigenvector up 
p�0,...,n−1, we can define the column

of matrix U as the eigenvector up. In addition, suppose there
are k zero eigenvalues in C, where k ∈ 0, 1, . . . , n − 1{ }.

*erefore, in the external circulation, the first IMF is
obtained by the following formula:

IMF1 � lim
m⟶0

(I − C)
m

s

� UQU
T
s,

(3)

where U is known as unitary matrix. Besides, the k elements
in the diagonal of the diagonal matrix Q are equal to 1.

To make DIFD reach the accuracy δ in calculating an
IMF, we need to approximate the number of iterations
through the following equation:

N
N0
0

N0 + 1( 
N0+1 <

δ
‖s‖∞

��������
n − 1 − k

√ , N0 ∈ N, (4)

where s � UTs.
*erefore, we can calculate IMF from the following

formula:

IMF � UP

0

1 − λ1( 
N0

⋱

1 − λn− 1− k( 
N0

1

⋱

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× P
T
U

T
s,

(5)

where the permutation matrix obtained by reordering the
columns of U is represented by P. Since the column of U

corresponds to the eigenvector of C, λ represents the cor-
responding eigenvalues in descending order.

UTs is obtained by DFT of s using FFT algorithm. In
addition, its computational complexity is n log(n).

Multiplying the matrix U on the left side of UTs is equivalent
to calculating the IDFT, which can be completed by using
the IFFT. *erefore, IMF can use the following formula for
rapid calculation:

IMF � 
n−1

k�0
uk 1 − λk( 

N0
σk

� IDFT (I − D)
N0DFT(s) , (6)

where D is a diagonal matrix in which its diagonal includes
the eigenvalue of C, and σk is the k − th element obtained
after DFT of s.

In order to shorten the execution time of the algorithm, a
stop criterion is introduced here, that is,

M
I
(s)(x) − M

I+1
(s)(x)

����
����L2 < δ,∀I≥N0, (7)

where M(sm) � sm − Lm(sm) � sm+1 and Lm(sm)(x)

� 
lm

−lm
sm(x + t)ωm(t)dt.

In order to avoid m unlimited growth, we use the above
stopping criterion to intervene, shown as follows:

S D ≔
sm+1 − sm

����
����2

sm

����
����2

. (8)

When the value of S D is less than or equal to δ, the
process can be stopped, so as to greatly shorten the calcu-
lation time.

2.2. OMGD Method

2.2.1. Generalized Lp/Lq Norm. In some current literature,
the concise sparse representation of signal is expressed by
the following formula:

min
θ

‖θ‖l0
,

‖x − Aθ‖ ≤ ε,
(9)

where A represents the dictionary matrix or base matrix, θ
represents the expected sparse representation, x represents
the input signal, and ε represents the estimation error which
is an infinitesimal positive number.

However, because it is difficult to optimize l0, some
literature has proposed to use lp norm (0<p≤ 1) to rep-
resent the sparsity of signal. Because signal sparsity regu-
larization was not applicable in the study, the study in [29]
has proposed to make the signal sparse due to several ad-
vantages of l1/l2 in calculation. Its advantages are as follows:
First, the scale remains unchanged. Second, it has all the
input gradient information and will give an easy minimi-
zation algorithm. According to that, l1/l2 norm is a modified
sparse index. We further extend l1/l2 to the generalized lp/lq
norm, which is a generalized sparse measure. Its definition
can be expressed by the following formula:

Jp,q(x) � log
q

p
  ·

‖x‖lp

‖x‖lq

⎛⎝ ⎞⎠

p

� log
q

p
  ·


N
i xi



p


N
i xi



q

 
p/q,

(10)
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where log(q/p) is a constant with a sign. According to the
above explanations, the minimization method can be used to
replace the optimization method.

2.2.2. OMGD. *e method based on the generalized lp/lq
norm can optimize the sparsity of the input characteristic
matrix. Each increasing diagonal element in the charac-
teristic matrix of the input signal obtained by this method is
a constant. *is matrix is called Hankel matrix, shown as
follows:

H �

x1 x2 · · · xl

x2 x3 · · · xl+1

⋮ ⋮ ⋮ ⋮

xN−l+1 xN−l+2 · · · xN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where x ∈ RN represents the input signal vector and
H ∈ R(N− L)×L represents the Hankel matrix derived from x.
We use f � H · W to describe the signal features, where
W ∈ RL is the weighted vector and f ∈ RN− L+1 represents the
feature vector after sparse learning. *e sparse constraint
applied to the eigenvector f is expressed by the following
equation:

min
f

Jp,q(f) � min
f


N
i fi



p


N
i fi



q

 
p/q

subject to:

f � H · W,

‖W‖L2
� 1, p< q.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Because sparse filtering and deconvolution can be
equated mathematically, the sparse filtering of generalized
lp/lq norm is renamed as minimum generalized lp/lq

deconvolution (hereinafter referred to asMGD) in [8, 9].We
can use the following equation to represent deconvolution:

y � x∗ginv, (13)

where x indicates the input signal, ginv is the inverse filter
that we desire, y is the filtered signal, and ∗ is the con-
volution operator.

In MGD, according to the relationship between sparse
filtering and deconvolution, we can rewrite the convolution
process of the above formula as the following formula by
using Hankel matrix:

y � H · W, (14)

where W ∈ RL is equivalent to ginv in the formula. At this
time, the filtered signal y to which the sparse constraint is
applied has sparse features, which can be indicated as
follows:

min
y,w

Jp,q(y),

subject to
y � H · W,

‖W‖2 � 1, p< q.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

*e reason why we cannot minimize Jp,q(y) is that the
objective function in (15) is not smooth and the function also
has nonconvexity. *erefore, MGD needs to be optimized:

(1) *e nonsmooth problem can be solved by replacing
|yn| with the soft absolute function ci �

�����
y2

n + ξ


,
where ξ is a small number, which is greater than 0
and is generally specified as ξ � 10−8.

(2) We choose to use the gradient descent algorithm to
optimize the nonconvexity of the function. *e
gradient term of the optimization algorithm is as
follows:

zJp,q

zwj

� 
i

zJp,q

zci

·
zci

zyi

·
zyi

zwj

� p 
i

c
p−1
i

i c
q
i( 

p/q −
ici(  · c

q−1
i

ic
q
i( 

p/q+1
⎡⎣ ⎤⎦ ·

fi�����

f
2
i + ε

 · xi+j−1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (16)

However, it is indispensable to confirm the initial value
before gradient descent. A good initial value is very
important to solve the optimal solution. *e initial
value optimization method adopted in [9] is to realize
the design of the filter through the fast kurtogram
algorithm and then take the filter coefficient as the
initial value. However, when the environmental noise
has a great impact and the signal-to-noise ratio is low,
the fast kurtogram can only provide a large bandwidth.
*erefore, it may result in the lack of accuracy of the
center frequency and filter bandwidth and thenmake it
unable to find the parameters correctly.

*erefore, in this paper, we used the protrugram al-
gorithm to find the optimal initial value of MGD. *e
algorithm selects the optimal frequency band based on the
kurtosis of the signal narrowband envelope spectrum,
which solves the problem of low parameter accuracy
obtained by fast kurtogram algorithm. *e general steps
are as follows:

(1) *e p and q parameter values of the generalized Lp/
Lq norm, the number of decomposition layers k, and
the filter length L are set; the coefficients of the stage
0 all-pass filter are initialized to [0, 1, 0, . . . , 0]
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(2) Taking three times of the fault characteristic fre-
quency of the rolling bearing as the fixed bandwidth
value of the protrugram method, the kurtosis value
corresponding to each center frequency is calculated
according to the protrugram algorithm

(3) *e bandwidth and center frequency with the largest
kurtosis are selected as filter parameters to design the
corresponding filter

(4) *e designed filter coefficient is used as the initial
value of MGD to complete the optimization work

2.3. 1.5-Dimension Teager Energy Spectrum

2.3.1. Review of the Teager Energy Operator. We use y(t) to
represent the signal and define the energy operator ψ by

Ψ[y(t)] �
dy(t)

dt
 

2

− y(t)
d
2
y(t)

dt
2 , (17)

where Ψ[y(t)] is the instantaneous energy signal, and
dy(t)/dt and d2y(t)/dt2 are the first derivative and second
derivative of signal y(t), respectively. Teager energy oper-
ator has good time resolution. Its output can quickly and
accurately track the change of total energy required by the
signal and enhance the transient features.

2.3.2. Definitions of 1.5-Dimension Spectrum. For the sta-
tionary random signal y(t), the third-order cumulant di-
agonal slice R3y(T, T)(T1 � T2 � T) is

R3y(T, T) � E[y(n)y(n + T)y(n + T)]. (18)

By performing one-dimension Fourier transform on
R3y(T, T), the 1.5-dimension spectrum B(ω) of signal y(t)

is obtained as

B(ω) � 
∞

−∞
R3y(T, T)e

−jωTdT. (19)

In addition, the 1.5-dimension spectrum has the prop-
erties of strengthening the fundamental frequency compo-
nent, suppressing Gaussian white noise, and detecting
harmonic components [30].

2.3.3. 1.5-Dimension Teager Energy Spectrum.
1.5-dimension energy spectrum combines Teager energy
operator and 1.5-dimension spectrum. Its principle is as
follows: Firstly, the energy operator is used to demodulate
the signal y(t) to obtain the instantaneous energy signal so
that the transient impact of the signal becomes obvious.
*en, a 1.5-dimensional spectrum of Ψ[y(t)] is made to
suppress the noise component.*erefore, the 1.5-dimension
Teager energy spectrum of y(t) is

E(ω) � 
∞

−∞
R3Ψ(τ, τ)e

−jωτdτ. (20)

Because the 1.5-dimension energy spectrum can not only
effectively highlight the transient impact features, but also

suppress the interference of noise, it is very appropriate for
extracting the impact features of bearing fault signal.

2.4. Proposed Method for Bearing Microfault Diagnosis under
StrongBackgroundNoise. In this paper, a bearing microfault
feature extraction method under strong background noise
has been proposed. *e flowchart of the proposed method is
shown in Figure 1. It consists of three main steps: First, the
original vibration signal polluted by interference and noise is
decomposed by FIFD method, and the useful components
are selected by the combination of correlation coefficient and
kurtosis criterion to complete the signal reconstruction. In
the second step, OMGD is performed on the reconstructed
signal to enhance the pulse characteristics. During this step,
we use the parameters obtained by the protrugram algorithm
to optimize the filter and then take the filter coefficient as the
initial value of MGD to optimize MGD. In the third step, the
1.5-dimension Teager energy spectrum is used for demod-
ulation analysis to extract the characteristics of bearing
microfaults under strong background noise.

3. Simulation Validation

3.1. Construction of Bearing Fault Simulation Signal. In this
part, we use the same method to diagnose the analog signal
to further verify its effectiveness. In this part, we construct
the simulation model of defective bearing as follows:

Y � y0e
−2πgfnt0 sin 2πfs

�����

1 − g
2



 t0 + n(t), (21)

where y0 is the displacement constant, the natural frequency
is shown by fn, g is the damping coefficient, fs is the
sampling frequency, and t0 is the single cycle sampling time.
Besides, n(t) is Gaussian white noise and its amplitude is 1.5
[31].

Set y0 � 2, g � 0.1, fn � 2kHz, andfs � 20kHz; the
repetition period is 0.1 s; the number of sampling points is
10000; and the fault feature frequency of the simulation
signal is 100Hz.

*e waveform diagram and envelope spectrum from the
above simulation model are shown in Figure 2. Due to the
interference of noise, we cannot identify the fault impact
component of the signal. Direct envelope analysis of sim-
ulation signals cannot directly find the correct fault
frequency.

3.2. Verification of the ProposedMethod. Now, the proposed
method is used to extract the fault characteristic frequency
from the severely damaged signal. Fast iterative filter de-
composition (FIFD) is implemented on the original simu-
lation signal to obtain 8 IMFs. Besides, the correlation degree
between each component and bearing signal is evaluated by
calculating the cross-correlation coefficient. *e effective
component with more information has more correlation
with the signal, and the calculated correlation value is large
[32]. Of course, kurtosis is often used to characterize bearing
faults. *e larger the kurtosis value is, the more obvious the
fault impact component is, and the easier it is to extract fault

Mathematical Problems in Engineering 5



information [33]. However, because kurtosis is particularly
susceptible to abnormal components, it is difficult to dis-
tinguish random pulses from cycle pulses [9, 34, 35].
*erefore, we use the screening method on cross-correlation
coefficient and kurtosis value to select the sensitive IMF and
then to complete the filtered signal reconstruction.

*e cross-correlation coefficients and kurtosis values are
shown in Tables 1 and 2. According to the screening criteria,
we select IMF1 and IMF2 components for signal recon-
struction after filtering. *e waveform of the reconstructed
signal is shown in Figure 3. We can find out that compared
with the original simulation model, the reconstructed signal
after preliminary filtering shows obvious impact, which
proves the effect of the fast iterative filtering decomposition
method in noise reduction filtering.

However, we can also see that after fast iterative filtering,
there are still some noise and interference in the recon-
structed signal. *erefore, its periodicity is not shown, and
the amplitude of the filtered signal is significantly reduced.
To solve these problems, we will use OMGD based on
protrugram algorithm to filter the reconstructed signal again

and enhance the fault pulse features, so as to reduce the
difficulty of extracting small faults in the filtering process.
Firstly, we set the parameters of the protrugram algorithm
responsible for MGD initialization. We set the iteration step
to 100; select the triple fault characteristic frequency as the
fixed bandwidth, that is, bw � 300Hz; and determine the
center frequency as CF � bw/2: step: Fs/2 − bw/2.
According to the protrugram algorithm, the center fre-
quency corresponding to the maximum kurtosis value is
1050Hz. According to the above values, the corresponding
band-pass filter is designed, and the coefficient of the band-
pass filter is taken as the initial value ofMGD iteration.*en,
we set the filter length to 100 in MGD, p� 1, q� 2. Analyzing
the reconstructed signal by using OMGD based on pro-
trugram algorithm, the processing result is shown in
Figure 4(a). We can see from the figure that after OMGD
processing the signal shows obvious periodicity and impact,
the filtering effect is very obvious and the signal amplitude
has been significantly improved. In addition, the signal
processed by OMGD is analyzed by 1.5-dimension Teager
energy spectrum. We can see that the fault feature frequency

Raw vibrational
signal

Three times of the fault
characteristic frequency

of rolling bearing

FIFD

Screening criteria for
the combination of
correlation number

and kurtosis

Reconstructed signal

OMGD

1.5-dimension Teager
energy spectrum

Feature extraction
of micro faults

Given the fixed
bandwidth

Determine center
frequency

Calculate the kurtosis value
corresponding to each center

frequency

Protrugram
algorithm

Select the center frequency and
bandwidth corresponding to

the maximum kurtosis

Design the
corresponding filter

Take the filter coefficient
as the initial value of MGD

Optimize
MGD

Figure 1: Flowchart of the proposed bearing microfault diagnosis.
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and frequency doubling feature of the simulation signal are
effectively extracted. From the final envelope spectrum, we
can know that using the FIFD-OMGD combinedmethod for
noise reduction filtering in addition to 1.5-dimension Teager
energy spectrum analysis has a better effect in extracting
small fault features of rolling bearing.

3.3. >e Comparison of the Proposed Method with FIFD-
OMGD (Based on Fast Kurtogram Algorithm), CEEMDAN-
OMGD, and FIFD-MCKD. We compare the proposed
method with FIFD-OMGD (based on fast kurtogram al-
gorithm), CEEMDAN-OMGD, and FIFD-MCKD and an-
alyze the results to evaluate the effectiveness of the proposed
method.

Referring to the idea of control variable method, firstly,
we apply OMGD based on fast kurtogram algorithm to the
reconstructed signal after FIFD decomposition. *e pro-
cessing result is shown in Figure 5. In this method, we keep
the parameter settings in MGD consistent with the pa-
rameters of OMGD based on protrugram algorithm; that is,
the filter length in MGD is set to 100, p � 1, and q� 2. *e
only difference is that the two methods provide two different
initialization techniques for the initial value of MGD.
Among them, OMGD based on fast kurtogram algorithm
uses fast kurtogram to search the resonance band of the

bearing, designs the filter by laying the frequency plane in
the case of 1/3 binary tree, and finally completes the ini-
tialization operation via taking the filter coefficient as the
initial value.

By comparing Figures 4 and 5, we can see that the
OMGD method using the fast kurtogram algorithm has
exposed many problems in feature extraction of signals
seriously polluted by noise. For example, when the measured
signal is tampered with by some strong interference signals,
the fault impulse enhancement effect has been reduced
greatly. In contrast, it achieves more accuracy and robust-
ness in extracting microfault features under strong back-
ground interference.

*rough the comparison of the above contents, we can see
that OMGDmethod based on protrugram algorithm has more
advantages in enhancing the fault pulse impact of contami-
nated signal.*erefore, in the following comparison, we choose
OMGD method based on protrugram algorithm. In order to
highlight the advantages of FIFD algorithm in the proposed
method, this paper selects the method of combining CEEM-
DAN and OMGD to process the contaminated signal. *e
processing result is shown in Figure 6.

Before using the above decomposition tool, we need to
set some predefined parameters. *e key parameters are as
follows: for CEEMDAN, the noise standard deviation is set
to 0.2, the number of times noise is added is 100, and the
maximum number of iterations is 100. *e number of IMFs
is set to 8. For FIFD, the mask length is 2 in this paper and
the number of IMFs is 8. Unless otherwise specified, these
parameter values no longer change.

In order to reflect the decomposition accuracy of the two
decomposition methods better, we calculate the RMSE (root
mean square error) between the eight IMF components of
the two methods and the ground truth. It can be clearly seen
from Figure 7 that the RMSE of IMFs decomposed by FIFD
is significantly smaller than that of IMFs decomposed by
CEEMDAN algorithm. *erefore, FIFD is obviously better
than CEEMDAN algorithm in decomposition accuracy.
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Figure 2: Simulation signal: (a) its waveform and (b) its corresponding envelope spectrum.

Table 1: Kurtosis values of components obtained by decomposing
the simulation model.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8
2.8779 3.3622 3.0615 3.0491 3.3131 3.0418 4.6211 2.6637

Table 2: Correlation values of components obtained by decom-
posing the simulation model.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8
0.8329 0.5976 0.3352 0.2169 0.1481 0.0847 0.0732 0.0506
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In addition, by comparing Figures 4 and 6, we see that
the signal after being denoised and filtered using the
CEEMDAN-OMGD method presents obvious impact and
periodicity. Compared with the signal filtered by the other
method, the signal is sparser, which makes it sensible to
suspect that using this method may result in losing some
useful information in the process of denoising and filtering.
Finally, the filtered signal was analyzed using the 1.5-di-
mension Teager energy spectrum. It can be observed from
the energy spectrum that only the triple frequency was
extracted using the method. In addition, by comparison with
the effect shown from the quintuple fault feature frequency
extracted in Figure 4(b), we have more ground to suspect
that the above method has lost some useful information in
filtering.*is also reveals the robustness of the FIFD-OMGD
method.

Next, we choose to use FIFD algorithm to denoise the
simulation signal, and then compare the denoised signal
with MCKD method and OMGD method based on pro-
trugram algorithm to verify the performance of OMGD.

Similarly, we need to set the parameters before usingMCKD.
For MCKD, the number of iterations is set to 30, and the
filter length is set to 100.*en, we use MCKD to enhance the
fault pulse impact of the reconstructed signal processed by
FIFD algorithm. From Figure 8, we see that the signal impact
and periodicity after the signal was filtered by FIFD-MCKD
are not obvious, which indicates that filtering using FIFD-
OMGD combined with noise reduction is better than that
using FIFD-MCKD. To further expand on that, in
Figure 8(b), the feature frequency extraction effect of this
method and the performance of frequency doubling are not
ideal. In addition, the amplitudes of the first and second
frequency doubling of the extracted fault feature frequency
are extremely small compared with the frequency amplitude
extracted by the FIFD-OMGD method. *us, we conclude
that the performance of OMGD is better in fault pulse
features enhancement.

In order to illustrate the effectiveness of 1.5-dimension
Teager energy spectrum, we performed envelope demodu-
lation analysis on the signal after FIFD-OMGD noise
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Figure 3: Reconstructed signal after FIFD filtering.
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Figure 4:*e reconstructed signal based on protrugram algorithm processing after OMGD: (a) its waveform and (b) its 1.5D Teager energy
spectrum.

8 Mathematical Problems in Engineering



reduction directly. *e analysis result is shown in Figure 9.
According to the comparison between Figures 4(b) and 9, we
see that the effect of enveloping the joint filtered signal
directly is not very satisfactory. However, using the 1.5-
dimension Teager energy spectrum can well suppress the
interference of noise and highlight the transient impact
characteristics of the signal.*e superiority of demodulation
analysis using 1.5-dimension Teager energy spectrum is
confirmed. Due to spatial constraints, we use 1.5-dimension
Teager energy spectrum for demodulation analysis directly
in the next experimental data verification part.

3.4. Computational Complexity. *is section will compare
the three methods mentioned with the proposed method in
terms of calculation time. Figure 10 shows the relationship
between data length and execution time, where the sampling
data interval is 10000. It can be clearly seen from the figure
that the calculation efficiency of the proposed method is the
highest among the four methods. Moreover, when the data
length increases from 10000 to 50000, the calculation time
curve of the proposed method is always below the other
three curves, which also shows that the calculation efficiency
of the proposed method is still in the leading position among
the four methods no matter how long the data length is.

3.5. Conservativeness of the Proposed Method. Because the
proposedmethod in this paper is aimed at the signal polluted
by strong background noise, we add different degrees of
noise to the simulation signal in this section. *e conser-
vativeness of the proposed method is verified by comparing
the fault feature frequency extracted by different methods
with the ideal fault feature frequency under different SNR

and calculating the average relative error between them. *e
results are obtained as shown in Table 3. It can be seen from
Table 3 that with different SNR, the accuracy of fault feature
frequency extraction by the proposed method is higher than
that of other algorithms. In addition, as more and more
noise is added, the ability of the proposed method to extract
fault feature frequency is not affected, which also verifies that
the method has good conservativeness.

4. Experimental Data Validation

*e experimental data in this paper come from the
accelerated life test data set of XJTU-SY rolling bearing con-
ducted by Xi’an Jiao tong University. *e data set collects the
vibration signals of bearings switching from normal state to
failure state, which can be used to diagnose the microfaults of
rolling bearings [36].*e bearing tested is LDKUER204 rolling
bearing, and the geometric parameters are shown in Table 4.
During data acquisition, the sampling frequency was set to
25.6 kHz, the sampling interval was 1min, and the sampling
duration of each time was 1.28 s [36].

In this section, the fault vibration signal of the bearing
outer ring was selected under the working conditions of 2400
r/min of rotation speed and 10 kN radial force. *e fault
feature frequency of the used bearing outer ring was
123.32Hz, which is calculated by the calculation formula in
Table 5.

*e waveform and envelope of the outer ring vibration
signal are shown intuitively in Figure 11. It can be seen that
the original vibration signal contains a lot of random noise
and interference and that the signal features are weak. *e
bearing fault feature frequency extracted by envelope
analysis is not obvious.
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Figure 5: *e signal processed by OMGD using fast kurtogram algorithm: (a) its waveform and (b) envelope spectrum.
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As in the previous section, the proposed method was
used for fast iterative filter decomposition (FIFD) to obtain 8
IMFs on the original outer ring signal. *e cross-correlation
coefficients and kurtosis values of the IMFs from decom-
posing the outer ring signal are shown in Tables 6 and 7.
According to the screening criteria, we select IMF1 and
IMF3 components for signal reconstruction after filtering.
*e waveform of the reconstructed signal is shown in
Figure 12. It is obvious that most random interference in the
reconstructed signal after fast iterative filtering has been
removed. It also shows obvious periodicity and impact,
which also shows the effectiveness of fast iterative filtering
(FIF) in noise reduction filtering.

However, in Figure 12, we see that the amplitude of the
reconstructed signal after fast iterative filtering is small. To
solve this problem, we use OMGD based on protrugram
algorithm to increase the fault feature of reconstructed
signal. In Figure 13, the signal amplitude was significantly
improved, and the 1.5-dimension envelope of the signal
shows that the fault feature frequency and its doubled fre-
quency are effectively and obviously extracted.*e extracted
fault feature frequency is 124.1Hz.

Similarly, we apply the proposed method, FIFD-OMGD
(based on fast kurtogram algorithm), CEEMDAN-OMGD,
and FIFD-MCKD to the actual fault data of bearing outer
ring and compare their processing results (the parameter
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Figure 6: Filtered signal by CEEMDAN-OMGD: (a) its waveform and (b) its 1.5D Teager energy spectrum.
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settings of these algorithms have been described earlier and
will not be described here). *e effectiveness of the proposed
method is further verified by analyzing the results.

Firstly, we apply FIFD-OMGD (based on fast kurtogram
algorithm) to the bearing outer ring signal, and the pro-
cessing results are shown in Figure 14. By comparing Fig-
ures 13 and 14, we can find that FIFD-OMGD (based on fast
kurtogram algorithm) is not outstanding in feature ex-
traction of signals seriously polluted by noise. *is also
verifies the superiority of the proposed method indirectly.

Secondly, in order to highlight the advantages of FIFD
algorithm in the proposed method, this paper selects the
method of combining CEEMDAN with OMGD based on
protrugram algorithm to process the bearing outer ring
signal. *e processing results are shown in Figure 15. It can
be seen from Figure 15(b) that the fault feature frequency
extracted by CEEMDAN-OMGD method is not complete,
and the frequency doubling of the fault feature frequency is
submerged in the noise. Comparing this with Figure 13, we
can see that FIFD-OMGD method is significantly better
than CEEMDAN-OMGD method.

Finally, we choose to use the FIFD algorithm to denoise
the bearing outer ring signal, and then use the MCKD

method to process the denoised signal. *e processing re-
sults are shown in Figure 16. It can be seen from Figure 16
that the signal impact and periodicity after filtering with
FIFD-MCKD are not obvious, which shows that the effect of
FIFD-OMGD combined with noise reduction is better than
that of FIFD-MCKD. Moreover, in Figure 16(b), the ex-
traction effect of this method on the fault feature frequency
and its frequency doubling are not very ideal. Furthermore,
the fault feature frequency and its frequency doubling of the
outer ring signal are not clearly extracted. It can be seen that
OMGD based on protrugram algorithm is obviously better
in enhancing fault pulse feature.

In addition, we can clearly see from Table 8 that the
computational efficiency of FIFD-OMGD (based on pro-
trugram algorithm) is still better than that of the other three
methods. Although the relative error of FIFD-MCKD in
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Figure 8: Filtered signal by FIFD-MCKD: (a) its waveform and (b) its 1.5D Teager energy spectrum.
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extracting fault feature frequency is slightly less than that of
the proposed method, the extraction effect of the proposed
method is still the best in combination with the energy
spectrum of the above method. *erefore, taking everything

into consideration, the proposed method in this paper has
good accuracy, high efficiency, and good conservativeness in
extracting the microfault feature of seriously polluted
signals.

Table 3: Fault feature frequency extracted by different methods and average relative error with different SNRs.

Fault feature Frequency (Hz) SNR
Algorithm −3 −5 −7 −9 −11 −13 −15 Average relative error
True 100 100 100 100 100 100 100
FIFD-OMGD (based on protrugram algorithm) 99.8 99.8 99.8 100.2 100.2 99.8 100.2 0.000200
FIFD-OMGD (based on fast kurtogram algorithm) 101 98.98 98.98 101 98.98 98.98 98.98 0.010143
CEEMDAN-OMGD 101 101 102.2 101 101.6 98.98 102 0.014029
FIFD-MCKD 100.1 100.1 101 98.6 107.3 111.8 89.4 0.046142

Table 4: Geometric parameters of LDK UER204 rolling bearing.

Number of balls m (piece) Ball diameter d (mm) Bearing pitch diameter D (mm) Contact angle α (°)
8 7.92 34.55 0

Table 5: Calculation formula of fault characteristic frequency of rolling bearing.

Fault type Calculation formula of fault characteristic frequency of rolling bearing
Outer ring fault f0 � n/60(1 − d/DCOSα)m/2
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Figure 11: Original signal: (a) its waveform and (b) its envelope spectrum.

Table 6: Kurtosis values of components obtained by decomposing the outer ring signal.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8
3.2036 3.0818 3.2593 2.3082 1.7219 7.7511 3.0594 1.8473

Table 7: Correlation values of the components obtained by decomposing the outer ring signal.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8
0.8116 0.3801 0.4740 0.3051 0.1194 0.0174 0.0072 0.0056
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Figure 13: Filtered signal after processing reconstructed signal by OMGD: (a) its waveform and (b) its 1.5D Teager energy spectrum.
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Figure 14: Filtered signal by FIFD-OMGD based on fast kurtogram algorithm: (a) its waveform and (b) its 1.5D Teager energy spectrum.
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5. Conclusion

In this paper, the combination of FIFD-OMGD and 1.5-
dimension energy spectrum was used to extract the features
of microfault pulse under massive noise. In order to solve the
problem of low precision and low efficiency of OMGD
method using the fast kurtogram algorithm to extract
bearing fault features under strong background noise, the
protrugram algorithm was proposed to determine the filter
parameters for the filter design, and the designed filter
coefficient was adopted as the initial value of MGD to
achieve more efficient pulse feature enhancement. After
using different methods to analyze and compare the signal of

the outer ring of the simulation bearing and the actual
bearing, the following conclusions are drawn:

(1) By comparing the FIFD-OMGD with the OMGD
method that uses fast kurtogram algorithm, we can
see that the proposed method has better accuracy,
noise robustness, and efficiency in fault feature
extraction.

(2) By comparing CEEMDAN-OMGD and FIFD-
OMGD, it can be seen that the decomposition speed
of FIFD is significantly faster than CEEMDAN. *is
efficiency is very important for processing large-scale
data. In addition, for strong background noise, FIFD
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Figure 16: Filtered signal by FIFD-MCKD: (a) its waveform and (b) its 1.5D Teager energy spectrum.

Table 8: Computational time and error analysis of fault feature frequency for different algorithms.

Algorithm Computational time (s) FCF (Hz) Relative error
True — 123.32
FIFD-OMGD (based on protrugram algorithm) 42.653022 124.1 0.006325
FIFD-OMGD (based on fast kurtogram algorithm) 133.733360 38.78 0.685534
CEEMDAN-OMGD 174.489326 121.5 0.014758
FIFD-MCKD 107.101329 122.9 0.003406
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Figure 15: Filtered signal by CEEMDAN-OMGD: (a) its waveform and (b) its 1.5D Teager energy spectrum.
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method has better noise reduction effect and
stronger robustness.

(3) By comparing FIFD-OMGD with FIFD-MCKD, we
can see that the effect of noise reduction of FIFD-
OMGD combined with noise reduction filter is
better. Moreover, FIFD-OMGD is obviously better
in enhancing fault pulse features.

(4) By comparing the analysis results of direct envelope
demodulation and 1.5-dimension Teager energy
spectrum demodulation, we can see that the per-
formance of the latter method is better in that it
highlights the transient impact features of signal and
restrains the interference of noise, which further
affirms the superiority of 1.5-dimension Teager en-
ergy spectrum in demodulation analysis.

To sum up, to combine FIFD-OMGD with noise re-
duction filter and 1.5-dimension Teager energy spectrum is
more effective as a practical tool in the microfault feature
detection of rolling bearings. In addition, because it is
outstanding in microfault feature extraction with strong
background interference, this method can be applied to a
more general range of targets, such as planetary gear vi-
bration signal seriously polluted by noise. Moreover, signal
processing is combined with optimized deconvolution to
enhance the performance of the latter, which provides a new
idea for optimizing the deconvolution during the processing
of strong interference signals in the future.
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[25] P. Henŕıquez Rodŕıguez, J. B. Alonso, M. A. Ferrer, and
C. M. Travieso, “Application of the Teager-Kaiser energy
operator in bearing fault diagnosis,” ISA Transactions, vol. 52,
no. 2, pp. 278–284, 2013.

[26] M. T. Ge, X. Wang, and A. R. Liu, “Rolling bearing fault
diagnosis based on 1.5-dimensional Teager energy spectrum,”
Machine Design and Research, vol. 31, no. 5, pp. 62–66, 2015.

[27] X. T. Zhang, L.W. Tang, P.Wang, and S. J. Deng, “Multi-band
resonance demodulation method for bearing fault acoustic
emission signal,” Journal of Vibration, Measurement & Di-
agnosis, vol. 35, no. 2, 2015.

[28] J. Du, L. Cui, J. Zhang, J. Li, and J. Huang, “*e method of
quantitative trend diagnosis of rolling bearing fault based on
protrugram and lempel-ziv,” Shock and Vibration, vol. 2018,
pp. 1–8, 2018.

[29] X. D. Jia, M. Zhao, Y. Di, C. Jin, and J. Lee, “Investigation on
the kurtosis filter and the derivation of convolutional sparse
filter for impulsive signature enhancement,” Journal of Sound
and Vibration, 2017.

[30] X. P. Ren, H. J. Huang, and P. Li, “Early fault diagnosis of
rolling bearing based on ELMD and 1.5 dimension spectrum,”
Machinery Design & Manufacture, vol. 11, 2019.

[31] Y. A. Zhang, Z. G. Lu, C. Tao, and X. C. Wang, “Rolling
bearing fault diagnosis method based on improved adaptive
filtering and 1.5-d spectrum,” Machine Design and Research,
vol. 36, no. 6, 2020.

[32] Z. C. Xu, J. Wang, and J. W. Liu, “Bearing fault feature ex-
traction method based on multi－layer noise re-duction,”
Machine Tool＆Hydraulics, vol. 49, no. 16, pp. 174–179, 2021.

[33] A. J. H, L. Ma, and G. J. Tang, “Rolling bearing fault feature
extraction method based on ensemble empirical mode de-
composition and kurtosis criterion,” Proceeding of the CSEE,
vol. 32, no. 11, pp. 106–111, 2012.

[34] Y. Cheng, Z.Wang,W. Zhang, and G. Huang, “Particle swarm
optimization algorithm to solve the deconvolution problem
for rolling element bearing fault diagnosis,” ISA Transactions,
vol. 90, 2019.

[35] G. L. Mcdonald, Q. Zhao, and M. J. Zuo, “Maximum cor-
related Kurtosis deconvolution and application on gear tooth
chip fault detection,” Mechanical Systems and Signal Pro-
cessing, vol. 33, pp. 237–255, 2012.

[36] B. Wang, Y. G. Lei, N. P. Li, and N. B. Li, “A Hybrid
prognostics approach for estimating remaining useful life of
rolling element bearings,” IEEE Transactions on Reliability,
vol. 9, pp. 1–12, 2018.

16 Mathematical Problems in Engineering


