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To realize the effective positioning in urban canyons, an enhanced map-aided Global Positioning System (GPS)/three-di-
mensional (3D) reduced inertial sensor system (RISS) tightly combined positioning strategy is proposed. First, the 3D RISS is only
based on the built-in controller area network (CAN). CAN bus sensor without additional sensors is first constructed to lower the
cost. +en, a simple but effective enhanced map is created to assist positioning. Based on the map, a Kalman filtering (KF) tightly
coupled method is proposed to fuse the 3D RISS with GPS information and to achieve the preliminary positioning. In KF-based
preliminary positioning method, a simply observation noise variance optimization algorithm based on 2D enhanced map is
proposed to improve KF method. In this algorithm, the value of the observation noise variance matrix is determined only
according to the building plane information which is contained in the enhanced map. Further, a multiweight map matching
algorithm is proposed for optimizing the initial positioning results. In this algorithm, factors such as distance, direction, road
network topology, and lane change are considered and applied to map matching to further increase the positioning performance
and form the final positioning results. Finally, the effectiveness of the strategy is proved by field test. +e results show that this
method has better accuracy and reliability than the conventional method.

1. Introduction

Accurate location information is the premise for ground
vehicles to complete guidance- and safety-related tasks such
as route planning, self-driving, and so on [1].+emost widely
used technology for vehicle positioning is the Global Navi-
gation Satellite System (GNSS) [2]. As a typical GNSS used in
vehicle, Global Positioning System (GPS) provides all-
weather and globally referenced positioning in open envi-
ronments [3]. However, in sheltered environments such as
urban canyons, the satellite signals are often blocked by tall
buildings or thick tree cover andmake GPS impractical [4]. In
contrast, an inertial navigation system (INS) [5] based on a
full inertial measurement unit (IMU) can realize high-fre-
quency active positioning and has little dependence on the
external environment. However, the positioning performance
of INS will decline over time due to error accumulation [6].

+erefore, combining the respective advantages of GPS and
INS and integrating them to form GPS/INS is an effective
vehicle positioning solution [7].

Although micro-electro-mechanical system (MEMS)-
based IMU greatly reduces the cost of INS, its price is still
expensive for ordinary vehicles. To further lower the cost, a
reduced inertial sensor system (RISS) [8] involving one single-
axis gyroscope, and the vehicle odometer was proposed.
However, RISS only provides a two-dimensional (2D) posi-
tioning solution. To obtain three-dimensional (3D) solution,
two additional accelerometers in the forward direction and
transverse direction of the vehicle are used to determine the
pitch angle and roll angle [9].+emain advantage of 3D RISS
[10] is that it can obtain a full navigation solution with fewer
sensors. In addition, the vehicle’s forward speed comes from
the speedometer or odometer in 3D RISS, which reduces the
accumulated error of the dual integration process.
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Asan inertial system,3DRISS stillhas the samedrawbacks
as INS especially the use of low-cost inertial sensors [11].
During GPS interruption, GPS/3D RISS integrated system
will still cause significant drift of positioning solution. Es-
pecially in urban canyons, due to the satellite occlusion or
reflection caused by tall building, the performance ofGPS/3D
RISS integrated positioning system decreases dramatically.
+erefore, other auxiliary sensors are used to suppress this
drift and improve positioning performance, such as motion
constraints [12], speed sensors [13], camera [14], LiDAR
sensors [15], and so on.However,most of thesemethods have
their limitations. For example, the camera is easily affected by
weather and light, and its real-time performance and reli-
ability are poor; LiDAR is expensive and cannot be widely
used in a short period of time.

Recently, several 3D maps have been constructed and
applied for map-matching or map-aiding in urban canyon
[16–18].+emap-aiding technologymainly uses the height of
buildings and other information to identify blocked satellites,
which require accurate and rich 3D building information.

+e combined localization technology based on 3D map
has effectively improved the localization performance with
low cost and has attracted a lot of attention from researchers.
However, the performance of these methods strongly de-
pends on the accuracy of the 3D map. +e current 3D-map
making methods are difficult to achieve a balance between
accuracy and storage efficiency. For example, in [19], the
polygonal line is used to represent the road, and the road is
simplified to the center line of the road. +is method is
simple and convenient, but the map accuracy is not high,
and the data are not sufficient. +e method proposed in [20]
can achieve lane level accuracy but take up too much data
storage space, which is difficult to meet the requirements of
digital map storage efficiency. In addition, somemethods use
more expensive sensors, but it is difficult to achieve on the
premise of low-cost [21].

Overall, the 3D maps with high accuracy and rich in-
formation are not easily accessible and very expensive. For
example, information such as the height of 3D buildings
must be obtained from the local Planning Bureau. At the
same time, 3D maps have large storage capacity due to
complex structure, which is difficult to be suitable for real
vehicle applications.

Meanwhile, although RISS greatly reduces the number of
sensors and thus reduces costs, automotive companies are
very sensitive to hardware cost, and they more prefer to
further reduce costs. On the other hand, as more vehicles are
equipped with safety control systems [22], it can provide
wheel speed, acceleration and other information via the
vehicle’s controller area network (CAN) bus without any
additional cost. In other words, all the sensors needed to
build 3D RISS can be obtained from CAN bus without any
additional cost, which gives us a possible solution.

To address above problems,we propose an enhancedmap-
aided GPS/3D RISS tightly combined positioning strategy to
improve positioning accuracy in urban canyons. In the pro-
posed strategy, the3DRISSonlybasedon thebuilt-inCANbus
sensor is firstly constructed. +en, a simple but effective en-
hanced map is created. Based on the map, an Kalman filtering

(KF) method with the adaptive adjustment of observation
noise variance is proposed to fuse the 3D RISS with GPS in-
formationandtoachieve thepreliminarypositioning.Finally, a
multiweight mapmatching method is proposed to correct the
initial positioning results and obtain the final positioning re-
sults. +e main contributions can be listed as follows:

(1) +e 3D RISS relies only on the on-board CAN bus
sensors for implementation without additional
sensors, which significantly reduces the cost of in-
vehicle applications.

(2) Based on the previous studies of our research group
[23–26], an enhanced map containing rich infor-
mation such as intersection details was designed and
applied to assist fusion positioning. It should be noted
that this map is a 2D map and only includes building
plan information, which can be easily obtained from
Open Street Map (OSM), so as to effectively reduce
data volume while ensuring precision.

(3) In KF-based preliminary positioning method, a
simply observation noise variance optimization al-
gorithm based on 2D enhanced map is proposed to
improve KF method. In this algorithm, the value of
the observation noise variance matrix is determined
only according to the building plane information
which contained in the enhanced map without 3D
building information. +e algorithm solves the
problem that the observation noise of each satellite
may not be the same due to building occlusion, thus
selecting available satellites, eliminating signals from
satellites with large errors, and reducing the amount
of computation. Compared with the map-aiding
technology based on 3D map, it greatly reduces the
difficulty of map accessible and the map-aiding
complexity of the algorithm.

(4) A multiweight map matching (MWMM) algorithm
is proposed for optimizing the initial positioning
results. In this algorithm, factors such as distance,
direction, road network topology, and lane change
are considered and applied to map matching to
further improve the positioning accuracy and form
the final positioning results.

+e remainder of the article proceeds as follows. +e
overview of proposed strategy is given in Section 2. Section 3
presents the CAN bus-based 3D RISS construction method
and the conventional KF–based GPS/3D RISS combined
positioning method. Section 4 is devoted to the enhanced
map building method and 2D map-based observation noise
variance adjustment algorithm of KF and multi-weight map
matching algorithm. Section 5 shows the experimental re-
sults and analysis. Section 6 gives the conclusion.

2. Overview of the Proposed
Positioning Strategy

+e proposed strategy is shown as Figure 1. +ere are three
main components, that is, the environment perception part,
the data processing part and information fusion part.
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+e environment perception part includes low-cost GPS
receiver, in-vehicle sensors, and high-precision integrated
navigation and positioning system. +e in-vehicle sensors
contain a wheel speed sensor for obtaining the vehicle’s
travel speed, two accelerometers for obtaining transverse
and forward acceleration, and a gyroscope for obtaining yaw
rate. All these on-board sensors are included in the CAN bus
without additional sensors. +e low-cost GPS is used to
obtain pseudorange with noise. It should be noted that the
high-precision integrated navigation and positioning system
is only used to obtain accurate vehicle trajectory information
to make enhanced digital map and is not used in the process
of fusion positioning.

In the data processing part, the information from CAN
bus information is processed to obtain the vehicle attitude
and speed, and then the vehicle position estimation is ob-
tained through the derivation of 3D RISS motion equations;
the pseudorange, satellite ephemeris, ionospheric error, and
other information output by the low-cost GPS receiver are
solved to obtain the corrected pseudorange information; the
accurate vehicle trajectory data obtained by the high-pre-
cision integrated navigation and positioning system is used
for road modeling, intersection modeling and data screening
to generate an enhanced map.

+e information fusion part is the key of the whole
positioning strategy, which is divided into two parts: pre-
liminary fusion positioning and final positioning. First, KF
method is designed to fuse GPS and 3D RISS.+en, a simply
observation noise variance optimization algorithm based on
2D enhanced map is proposed to improve KF method to
obtain preliminary location estimation. In this algorithm,
the value of the observation noise variance matrix can
adaptive adjustment according to the building plane in-
formation which contained in the enhanced map. Finally, a
multiweight map matching algorithm is proposed to further

optimize the preliminary positioning results and output the
final vehicle positioning results.

3. Conventional KF-BasedGPS/3DRISS Tightly
Combined Positioning Method

3.1. 3D Reduced Inertial Sensor System Based on CAN Bus
Sensors. Two accelerometers mounted on the forward and
transverse directions of the vehicle frame and a vertically
aligned gyroscope in addition to the wheel speed sensors [11]
are used in 3D RISS. In this article, all measurement data for
3D RISS are provided by CAN bus without additional
sensors, which significantly reduces the cost.

In this study, the state vector of RISS is
X � ϕ λ h vE vN vU p r A ′, where φ, λ, and h are
longitude, latitude, and altitude of vehicle; vE, vN, and vU
represent the velocity components along the east, north, and
up directions; indicate the pitch angle; r indicate the roll
angle; A indicate the azimuth angle.+e input vector of RISS
is U � vf af fx fy ωz ′, where vf is the speed obtained
from the wheel speed sensors; af is the acceleration derived
from the wheel speed sensors; fx is the transversal accel-
erometer measurement; fy is the forward accelerometer
reading; ωz is the angular rate obtained from the vertically
aligned gyroscope. +e nonlinear motion model for a 3D
RISS involving the position, velocity, and attitude states is
presented below.

3.1.1. Pitch and Roll Calculation. +e pitch angle is calcu-
lated as follows:

p � sin− 1 fy − af

g
 , (1)

where g is the acceleration of gravity.
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Figure 1: Proposed vehicle positioning strategy.
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Similarly, the roll angle is calculated as follows:

r � −sin− 1 fx + vfωz

gcosp
 . (2)

3.1.2. Azimuth Calculation. +e heading angle can be
expressed as follows:

Ak � Ak−1 − ωz
kΔt + ωe sin φk−1( Δt +

v
E
k−1 tan φk−1

RN + hk−1( 
Δt, (3)

where the subscript k indicates at time k, Δt is the sampling
time, ωe denotes the magnitude of the Earth’s rotation rate,
and RN is the normal radius.

3.1.3. 3D Position and Velocity Calculations. According to
the coordinate transformation relationship, the equation for
converting the vehicle speed obtained by the wheel speed
sensor from the body frame to the local-level frame is the
following:
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where Rl
b,k is direction cosine matrix which transforms a

vector from the body Frame to the Local-Level Frame.
According to the north speed vN

k , the latitude at time k

can be expressed as follows:
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where RM is the meridian radius of curvature of the Earth.
Similarly, according to the east speed vE

k , the longitude is
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where RN is the normal radius of curvature of the Earth.
According to the up speed vU

k , the altitude is

hk � hk−1 +
dh

dt
|kΔt � hk−1 + v

U
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f

k sin pkΔt. (7)

+e overall motion model is represented as follows:
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3.2. KF for Tightly Coupled 3D RISS/GPS Integration. To
effectively reduce the influence of satellite signal occlusion
on positioning results, the error of navigation parameters is
used as the state vector, and GPS and 3D RISS are fused at
the level of satellite pseudo range. It can be seen from the
above that the motion model of 3D RISS is nonlinear, so it is
linearized first to obtain the error model that can be used as
the KF system model.

It should be noted that this section only constructs the
conventional GPS and 3D RISS fusion based on conven-
tional KF, while the improvement of observation noise
variance of KF filter method is designed in Section 4.2. +e
preliminary positioning results of vehicles can be obtained
by combining the methods in this section and Section 4.2.

3.2.1. System State Model. +e error-state system model [9]
for KF tightly coupled positioning system can be written as
follows:

δXk � Φk−1δXk−1 + Gk−1ωk−1, (9)

where k is the discrete-time step; δXk indicates the state
vector, Φk−1 is the state transition matrix, Gk−1 is the noise
distribution matrix, and ωk−1 is the unit-variance white
Gaussian noise which has a zero-mean and covariance Q.

+e error-state vector is δXk � [δφk, δλk, δhk, δvE
k ,

δvN
k , δvU

k , δAk, δFw
k , δωz

k, δbGPS
k , δdGPS

k ]′, where δφk, δλk, and
δhk represent the position error in latitude, longitude, and
altitude, respectively; δvE

k , δvN
k , and δvU

k indicate the error in
the velocity component along east direction, north direction,
and up direction, respectively; δAk is the error in the azimuth
angle, δFw

k is the scale factor error of the wheel speed-derived
speed, δωz

k is the stochastic gyroscope drift, δbGPS
k and δdGPS

k

are the bias of the GPS receiver’s clock and its drift.
+ese equations are linearized by applying a Taylor series

expansion and ignoring the higher-order terms. +e cor-
responding linearized error-state system model is

δXk �

δrk

δvk

δek

δlk
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�

I3×3 F1 O3×3O3×2

O3×3 I3×3 F2 O3×2

O3×3O3×3 F3 O3×2

O2×3O2×3O2×3 F4
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δrk−1

δvk−1

δek−1

δlk−1
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+

O3×1

O3×1

σek
σlk
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, (10)

where δrk�

δφk

δλk

δhk

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦; δvk�

δvEk
δvNk
δvUk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; δek�

δAk

δFw
k

δωz
k

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦; δlk�

δbGPSk

δd
GPS
k

 ;

σek�

0��������
2gfσ

2
fΔt



�������

2bzσ
2
zΔt


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; σ lk�
σbΔt
σdΔt

 ;

F1 �

0
1

RM + hk−1
Δt 0

1
RN + hk−1( cos φk−1

Δt 0 0

0 0 Δt
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; F2 �

v
f

k−1 cos Ak−1 cos pk−1 v
f

k−1 sin Ak−1 cos pk−1 0

−v
f

k−1 sin Ak−1 cos pk−1 v
f

k−1 cos Ak−1 cos pk−1 0

0 v
f

k−1 sin pk−1 0
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;

F3 �

1 0 −Δt

0 1 − cfΔt 0

0 0 1 − βzΔt
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; F4 �

1 Δt

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(11)

+e stochastic errors associated with the gyroscope and
the wheel speed sensor are modeled by a Gauss–Markov
model where cf is the time-related error of wheel speed
sensor, σ2f is the variance of the noise associated with it; βz is
the reciprocal of the autocorrelation time for the gyroscope’s
stochastic drift, and σ2z is the variance of the noise associated
with it. σb and σd are the standard deviation of white noise
for the clock bias and clock drift.

3.2.2. Measurement Model. +e linearized measurement
model forKF[9] in tightly coupled integration is the following:

δZk � HkδXk + εk, (12)

where δZk is the measurement vector; Hk is the measure-
ment design matrix; εk is a vector of measurement random
noise which has a zero-mean and covariance R.

In this article, the difference between the pseudo range of
GPS and 3D RISS is used as the observation:

δZk �

δZρ,1
k

δZρ,2
k

⋮

δZρ,m−1
k

δZρ,m
k
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�

ρRISS,1
k − ρGPS,1

k

ρRISS,2
k − ρGPS,2

k

⋮

ρRISS,m−1
k − ρGPS,m−1

k

ρRISS,m
k − ρGPS,m

k
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, (13)

where m is the number of visible satellites to the receive at
time k; ρRISS,m

k is the RISS estimated pseudorange between
themth satellite and the receiver; ρGPS,m

k is the GPSmeasured
pseudorange between the mth satellite and the receiver.

+e pseudorange for the mth satellite can therefore be
modeled by
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ρGPS,m
k � rk − rm

k

����
���� + δbGPS

k + ερ,m

k , (14)

where rk is the receiver’s position in earth-centered earth-fix
(ECEF) rectangular coordinates; rm

k is position of the mth
satellite in ECEF rectangular coordinates; δbGPS

k is the re-
ceiver’s clock bias; ερ,m

k is the total effect of residual errors
due to atmospheric delays (after correcting for these errors
using models inside the receiver itself ), receiver noise, etc.

+e estimated pseudorange from the output of the RISS
navigation system is defined as follows:

ρRISS,m
k � r

RISS
k − r

m
k

����
����, (15)

where rRISS
k is the position of the vehicle calculated from the

position output of the RISS mechanization originally in
ECEF geodetic coordinates and transformed to ECEF
rectangular coordinates.

+e measurement design matrix Hk � GkLk, and the
calculation formula of Gk and Lk are [9, 13]:

Gk �

l
1
k

l
2
k

⋮

l
m−1
k

l
m
k
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1
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1
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l
2
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2
y,k l

2
z,k

⋮ ⋮ ⋮

l
m−1
x,k l

m−1
y,k l

m−1
z,k

l
m
x,k l

m
y,k l

m
z,k
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,

Lk �

− RN + hk−1( sin φk−1 cos λk−1 − RN + hk−1( cos φk−1 sin λk−1 cos φk−1 cos λk−1

− RN + hk−1( sin φk−1 sin λk−1 RN + hk−1( cos φk−1 cos λk−1 cos φk−1 sin λk−1

RN 1 − e
2

  + hk−1 cos λk−1 0 sin φk−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

(16)

where lmk is the line of sight unit vector from themth satellite
to the position of the receiver based on the output of RISS
mechanization.

3.2.3. Conventional KF for Fusion. Since the state equation
and measurement equation have been linearized, the con-
ventional KF can be used to fuse GPS and 3D RISS. +e KF
process consists of the following two phases:

Time update:

δXk,k−1 � Φk,k−1δXk−1,

Pk,k−1 � Φk,k−1Pk−1Φk,k−1′ + Qk−1.
(17)

Measurement update:

Kk � Pk,k−1Hk HkPk,k− 1Hk
′ + Rk 

− 1
,

δXk � δXk,k−1 + Kk δZk − HkδXk,k−1 ,

Pk � I − KkHk Pk,k−1,

(18)

where I is an identity matrix.
In general, the observation noise variance matrix R of

conventional KF usually set as a fixed value. However, the
observation noise of each satellite may not be the same under
actual conditions. To solve this problem, an observation
noise variance optimization algorithm based on 2D en-
hanced map will be designed in Section 4.2. By using the
proposed KF method with the adaptive adjustment of ob-
servation noise variance, GPS and 3D RISS are fused to
realize preliminary positioning.

4. Enhanced Map and Map-Aided
Positioning Algorithms

In this section, the construction of enhanced map is in-
troduced to assist in the implementation of two map-based
positioning algorithms, that is, the observation noise vari-
ance optimization algorithm for improving KF and the
MWMM algorithm.

4.1. @e Enhanced Map. To improve the positioning accu-
racy, the enhanced map in this article is constructed. In the
proposed enhanced map, not only the accuracy has been
improved to the sub meter level but also rich attribute in-
formation such as road geographic information, lane geo-
graphic information, and the topological relationship
between roads and lanes has been added. At the same time,
considering that satellite signals are easily blocked by dense
buildings in the urban environment, the building plane
information on both sides of the road is also added to the
enhanced map. To reduce the map capacity and acquisition
difficulty, the 3D information such as height of buildings is
not added to the map. Moreover, intersections and their
nearby areas are high incidence areas of satellite occlusion
due to their more complex traffic environment (turning,
merging, etc.) and the clustering of surrounding tall
buildings, so the detailed information about the intersec-
tions is also added to the enhanced map in this article.

For the related content of enhanced map construction
involved in this article, the research group has carried out a
lot of related studies. For example, [22] proposed a digital
map making method based on cardinal spline to realize an
optimal balance between the efficiency and reliability
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requirements of road models, [23] proposed a modeling
method for urban complex intersections, [20] proposed a
simple 3D map modeling method including the height of
roadside buildings, which can be directly applied to this
research.

Since the purpose of this article is to use enhanced maps
combined with low-cost sensors for high-precision posi-
tioning of vehicles, the accuracy of digital maps is required to
be able to reach sub-meter level, but it is not necessary to
include road attribute information such as traffic signs and
traffic lights. +erefore, only Novatel SPAN-CPT high-
precision combined navigation and positioning system is
used to obtain the precise latitude and longitude information
of the target road section. +e ArcGIS is used as an editing
tool to generate enhanced maps in this article.

+e overall scheme of map construction in this paper is
shown in Figure 2.

+e specific map production method can be found in
literature [22, 23]. +e key aspects are:

(1) In data preprocessing part, the raw data is segmented
according to the real-world road network topology,
and the possible outliers are eliminated.

(2) In the part of general road modeling and intersection
modeling, the Cardinal spline is chosen to establish
an initial road model, which is specified by a series of
control points and tension parameters. It overcomes
the shortcomings of B-spline, such as requiring more
nodes, complicated calculation, not suitable for
practical application, and local adjust-ability is not
enough to adapt to the large change of urban road
curvature.

(3) In general road modeling part, based on the initial
road model, a gradual optimization algorithm as [22]
is introduced to determine the final general road
model. According to the degree of the change of road
curvature, the reasonable control points and optimal
tension parameters can be determined.

(4) In intersection modeling part, based on the initial
road model, an intersection model optimization
algorithm as [23] is introduced to determine the final
intersection model. According to different traffic
conditions (right turn, left turn and straight travel),
the optimal control points and optimal tension
parameters of special intersections can be
determined.

(5) In the part of general road modeling and intersection
modeling, the building plane information on both
sides of the road is added to the road network model.
Only the 2D geographic information system (GIS)
data which can be extracted from Open Street Map
(OSM) including the layouts and positions of every
building on both sides of the roads, is required and
imported to ArcGIS. In addition, in the actual urban
traffic environment, many buildings on both sides of
the target road section have a long “span” in the
direction of the road section. +erefore, the coor-
dinates of the two endpoints of the building plane

geometry in the direction of the target road section
are used as an effective evaluation of the building
span and introduced into the additional layers.

(6) Because the enhanced map contains specific lane
information, it has a richer road network structure
than the ordinary digital map. At the same time, it
also greatly increases the amount of map data, which
affect the efficiency of map access and query. In data
point screening part, the data points of general roads
and intersections are screened respectively according
to the direction information of the center line of
roads or virtual lanes. Compared with the data points
evenly distributed by traditional methods, the data
volume of the map is effectively reduced while en-
suring the accuracy of the enhanced map.

4.2. @e Observation Noise Variance Optimization Algorithm
Based on Enhanced Map. In general, the observation noise
variance matrix R of KF observation model is usually set as a
fixed value. However, the observation noise of each satellite
may not be the same under actual conditions. In this article,
the difference between GPS and 3D RISS satellite pseu-
dorange is used as the observation measurement. Since the
ionospheric error, tropospheric error, and clock error have
been corrected by satellite navigation messages, the nonline
of sight (NLOS) interference and multipath effect caused by
the roadside tall buildings in the urban environment have
become the main factors affecting the pseudorange accuracy.

To minimize the influence of roadside buildings on the
satellite signal accuracy, many researchers use 3D maps to
identify blocked satellites. However, 3D maps are difficult to
obtain and have large capacity, which limits the application
of real vehicles. Some researchers have proposed to evaluate
the pseudorange accuracy and then fuzzy determine the
observation noise variance by comprehensively considering
the factors such as satellite altitude angle, the angle between
satellite azimuth angle and road direction based on 2D map.
However, it still exits some problems:

(1) Due to the presence of different building heights and
the effect of reflections from taller buildings, it is
difficult to evaluate the pseudorange accuracy based
on the unified altitude angle threshold.

(2) +e accuracy of the satellite that deviates from the
road direction is not necessarily poor (e.g., the
scenario that tall buildings only on one side of the
road, and low on the other side), and the satellite
along the road direction may also be blocked (e.g.,
the scenario that the curved road in the urban
canyon).

To solve the above problems, a simply adaptive ad-
justment method for the observation noise variance R based
on 2D map is proposed, as shown in Figure 3. In this
method, the value of the observation noise variance matrix R
is determined only according to the building plane infor-
mation which contained in the 2D enhanced map building
geographic information layer.
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Step 1: +e pointer i of the building sequence is ini-
tialized, i� 1.
Step 2: +e shortest distance Disi from the i-th building
to the vehicle is calculated, and Disi is compared with
the distance threshold Disth to determine whether Disi

is less than Disth. If Disi < Disth, it is considered that
the i-th building will affect the positioning accuracy of
the vehicle, and then Step 3 is executed. Otherwise, skip
to Step 7. (+e value of Disth is related to the height of
the building, in this paper, Disth is taken as 5m).
Step 3: +e azimuth interval (AMin, AMax) of the i-th
building relative to the vehicle is calculated. +at is to
say, the satellite from direction AMin to direction AMax
of the vehicle will be affected by the i-th building.
Step 4: +e pointer j of the satellite sequence is ini-
tialized, j� 1.
Step 5: If AMin <Aj <AMax, R � RMax; else if
AR − 15∘ <Aj <AR + 15∘, R � RMin; else R � RMid

(where Aj is the azimuth angle of the j-th satellite; AR is
the direction angle of road).
Step 6: If j< SA (where SA is the total number of visible
satellites at current time), perform Step 7; else let
j� j+ 1, and skip to Step 5.
Step 7: If i<BU (where BU is the total number of
buildings that may block the satellite at the current
time), the process is terminated and R is determined;
else let j� j+1, and skip to Step 2.

+e proposed algorithm in this section is applied to the
KF algorithm in Section 3.2 to adaptively adjust the ob-
servation noise variance matrix, and the fusion of GPS and
SD RISS is realized to output the preliminary positioning
results.

4.3. @e MWMM Algorithm Based on Enhanced Map.
+e preliminary combined positioning method based on
GPS and 3D RISS can solve the vehicle positioning problem

Yes

No

Yes No

Yes

No

No

No YesYes

Start

i=1

j=1

Calculate Disi 

Disi < Disth
Calculate the azimuth
interval (AMin, AMax)

AR-15° < Aj <
AR + 15°

i=i + 1 

j = j+1 

i < BU

End

j < SA
AMin < Aj

< AMax

R = RMin R = RMaxR = Rmid

Figure 3: +e observation noise variance optimization algorithm.
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Figure 2: Overall scheme of map construction.
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in most situations, but the positioning accuracy is limited
in the complex urban traffic environment. In order to
further improve the positioning accuracy, the enhanced
map is used to optimize the preliminary positioning
results.

In this article, a MWMM algorithm is proposed. +e
basic premise of MWMM is that the vehicle must drive on
the road. Assuming that vehicle is driving near the centerline
of a lane at the current time, the lane where the vehicle is
located at the current time can be estimated by compre-
hensively considering the factors such as distance, direction,
road network topology, lane change, and so on. +en, the
preliminary estimation of the vehicle position obtained by
GPS/3D RISS fusion is projected onto the corresponding
lane centerline, and the final precise positioning of the
vehicle can be realized.

+e MWMM algorithm proposed in this study includes
the following aspects.

4.3.1. @e Matching Weight Based on Distance. +e roads in
vector maps are formed by orderly connection of a series of
points. +e simplest matching method is to calculate the
distance between the current position of the vehicle and each
point, and then match the vehicle to the point with the
minimum distance from it. However, there are two problems
with this method: (1) as shown in Figure 4(a), point Pa is
closest to lane L1. However, due to the closest Euclidean
distance between Pa and point Sa, Pa is wrongly matched to
Lane L2; (2) as shown in Figure 4(b), Pt is the actual position
of the vehicle. Although point Pb is matched to the correct
lane L2, it causes a large longitudinal matching error due to
point-to-point matching.

To solve the above problems, map matching can be
performed by calculating the distance between the vehicle
position and the centerline of each lane. However, the
matching only according to the distance relation between
point Pb and each lane will be greatly affected by outliers.
Compared with the point-to-point and point-to-line map
matching method, the line-to-line map matching method
based on the current vehicle position and the previous
driving track can effectively reduce the influence of ab-
normal points on the matching result and reduce the
mismatching. However, the track points in the past can only
be used for reference. +e earlier the track points are, the
lower the reference value of the current matching. If the
distance of track points in the past period is calculated with
the same weight, it will cause the matching delay problem as
shown in Figure 4(c). In Figure 4(c), the vehicle changes
lanes from point P4, but the matching result obtained by the
conventional least square method takes several seconds to
get the correct matching result. +erefore, the weighted
least square method is used for lane estimation in this
article.

In this article, the current position of the vehicle and
the track point of the previous 4 s (a point in each second)
are used for weighted least squares estimation. For any
lane, the matching weight based on distance is calculated as
follows:

Wdis �

W
Max
dis di � 0,

W
Min
dis + 

5

i�1

ai dL − di( 

3dL

0< di <dL, W
Min
di s di ≥ dL,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where Wdis is the matching weight based on distance;
WMax

dis � 110 represents the maximum value of Wdis;
WMin

dis � 10 represents the minimum value of Wdis; dL is the
lane width of the road; di indicates the distance between
data point i and the lane; ai is the matching coefficient,
which is respectively taken as follows: a1 �100, a2 � 80,
a3 � 60, a4 � 40, a5 � 20 in this article.

4.3.2. @e Matching Weight Based on Road Direction.
Generally speaking, different lanes on the same road have
the same direction, but intersections are more complex. +e
possible driving path of vehicles within the intersection
range is generally represented by the virtual lane center line
in the enhanced map in this article. +e exit lane and the
entry lane of the virtual lane center line are not the same, the
direction of the lane is also very different, and many virtual
lane center lines are very close or even cross, so the direction
of the lane will play a great role in judging the location of the
vehicle. +e enhanced map in this study has direction in-
formation whether it is the virtual lane of intersection or the
actual lane line of ordinary road, which can be used in map
matching algorithm.

In this study, the angle α between the vehicle driving
direction and the alternative matching road direction is
calculated to determine the matching weight of each lane.
Under the premise of observing traffic rules, when the ve-
hicle is driving on the road, the driving direction of the
vehicle shall be consistent with the road direction or the
angle α is very small. As shown in Figure 5, when the vehicle
is driving on road 1, the angle between the vehicle driving
direction and the directions of roads 1 and 3 should be 0° or
very small, and the angle with roads 2 and 4 will be very
large. If the vehicle travels to road 2 at the next time, the
angle between the vehicle driving direction and road 2 will
become 0° or very small, and the angle with roads 1, 3, and 4
will become larger. +erefore, the matching weight based on
road direction is calculated as follows:

Wdir �
WMax

dir α≤ 15o,

WMin
dir α> 15

o
,

⎧⎨

⎩ (20)

where Wdir denotes the direction weight of lane; WMax
dir is

constant 50; WMin
dir is constant 0.

4.3.3. @e Matching Weight Based on Road Network
Topology. If a lane cannot be reached from the lane in which
the vehicle is located at the previous time through lane
changing and other normal driving behaviors, that is, the
two lanes are not topological connection relationship, then
for the lane, the matching weight based on road network
topology structure Wtop is 0; otherwise, Wtop is 25; in
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particular, for the lane where the vehicle is at the previous
moment, Wtop is 50.

As shown in Figure 6, the topological relationship di-
agram describes the connectivity between roads. Assuming
that the vehicle is driving on Road 1 at one time, limited by
the actual driving speed, the vehicle may drive on roads 1, 2,
3, and 4 at the next time, and will not drive on roads 5, 6, and
7. +erefore, roads 1, 2, 3, and 4 are selected as alternative
matching roads. Among them, it is more likely to drive on
Road 1 at the next moment than on roads 2, 3 and 4. Based
on the above analysis, we set the weight of road 1 as 50, the
weight of roads 2, 3, and 4 as 25, and the weight of other
roads as 0.

4.3.4. @e Matching Weight Based on Lane Change. +e
enhanced map used in this study contains the direction
information of the road. In the process of vehicle lane
changing as shown in Figure 7, the vehicle heading will shift
and then return to normal, but the direction of the road does
not change. +erefore, the difference between the road di-
rection and the vehicle heading angle will show a crest or
trough due to vehicle lane change, as shown in Figure 8. In
Figure 8, the x-axis represents the vehicle running time and
the y-axis represents the direction angle. In this article, the
matching weight Wcl based on lane change is calculated by
using the above characteristics of the difference between the
road direction and heading angle during the vehicle change.

Wcl �

WMax
cl Gdif > 12,

WMax
cl
2

8<Gdif < 12,

WMin
cl Gdif < 8,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where Gdif is the absolute value of the difference between the
road direction and heading angle; WMax

cl is the constant 50;
WMin

cl is the constant 0.

4.3.5. @e Overall Matching Weight. Combined with the
above factors, for vehicles running on the road, the overall
matching weight of each lane is
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Figure 4: Distance-based map matching.
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Figure 7: Vehicle lane change.
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Wtotal � Wdis + Wdir + Wtop + Wcl. (22)

+e lane with the largest weightWtotal is considered to be
the lane where the vehicle is traveling. +en the preliminary
estimation of the vehicle position is projected vertically to
the center line of the corresponding lane, and the final
vehicle positioning result is obtained.

5. Experiments and Results

To evaluate the proposed strategy, several experiments were
conducted by using a Chery TIGGO5 sport utility vehicle on
real road. +e positioning sensors used in the vehicle only
include low-cost GPS and Controller Area Network (CAN)
bus data acquisition card. +e low-cost GPS adopted the
C230-AT provided by Beijing BDStar Navigation Company
Ltd. +e CAN bus data acquisition card adopted the PCIe-
9221 provided by of Zhiyuan Electronics Co., Ltd., which is
used to collect the on-board sensor information from the
CAN bus. In addition, the high-precision integrated navi-
gation system Novatel SPAN-CPT was used to make the
enhanced digital map and also used as a reference to verify
the accuracy of the proposed strategy.

+e area near Nanjing Olympic Sports Center was se-
lected as the experimental site in this study, and its satellite
aerial photos are shown in Figure 9. In the test, the vehicle
starts from the yellow sign and drives clockwise. +e blue
closed line segment represents the test route, with a total
length of about 4.1 km and a time of 459 s. +e test route
includes a variety of typical sections such as straight lines,
curves, and intersections. +ere are several tall buildings on
the east route and dense trees on the west route.

5.1.@e EnhancedMap. +e enhanced digital map generated
in this study is only used to optimize the vehicle positioning
results on the test road and does not involve the surrounding
geographical environment.+erefore, this article only focuses

on the production of enhanced digital map of the test road
and its related sections.

5.1.1. Road Modeling. In this article, the original trajectory
data points collected by the experimental vehicle are used for
roadmodeling based on Cardinal spline. First, an initial road
model is established by using Cardinal spline, and then the
model is optimized to determine its reasonable control
points and optimal tension parameters. Finally, the effi-
ciency and reliability of this method and B-spline road
modeling method are compared and analyzed. Figure 10
shows road modeling process based on Cardinal spline.

+e 378 raw trajectory data points from the detection
vehicles were used as input to the curvature analysis-based
road model optimization algorithm. After determining
reasonable control points and optimal tension parameters,
an optimized road model was obtained, which contains 193
control points and 192 Cardinal spline curve segments. To
evaluate the performance of the proposed road modeling
method, we compared the method with the B-spline-based
road modeling method proposed in the literature [20]. +e
B-spline based road model has been shown to outperform
various previous roadmodeling methods such as those using
polygons, gyratory curves, and partial spline curves. +e
detailed comparison results are shown in Tables 1 and 2.

From the above comparison results, it can be seen that
the road modeling method based on B-spline uses 1142
floating-point numbers to achieve the global positioning
accuracy of 1.25m and 578 floating-point numbers to
achieve the global positioning accuracy of 2.83m. At the
same time, the proposed road modeling method based on
Cardinal spline uses 578 floating-point numbers to achieve a
global accuracy of 1.15m. Figure 11(a) shows the efficiency
comparison of the two road modeling methods. +e results
show that compared with the road modeling method based
on B-spline, the road modeling method based on Cardinal
spline uses fewer data points and can meet the desired global
accuracy. Figure 11(b) shows the reliability comparison of
the two road modeling methods. +e results show that when
the same number of data points is used, the road modeling
method based on Cardinal spline has higher global accuracy
than the road modeling method based on B-spline. To sum
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Figure 8: Difference between road direction and heading angle
when vehicles change lanes.

Figure 9: Experimental site.
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up, the road modeling method based on Cardinal spline is
better than the road modeling method based on B-spline,
that is, this method can better achieve the balance between
efficiency and reliability.

5.1.2. Map Visualization. According to the overall pro-
duction scheme of enhanced map proposed in Section 4.1 of

this article, the two-dimensional enhanced digital map of the
experimental site is produced. Figure 12 shows the overall
effect diagram of the enhanced map of the test site. (a) is the
vector map, the red line segment represents the lane, the
yellow area represents the intersection, and the light cyan
block represents the plane structure of the building. (b) is the
effect of the lane and intersection in the vector digital map in
Google Earth.

Figure 13 shows the enhanced map near the intersection.
(a) is the vector map effect diagram, (b) is the vector map
effect in Google Earth. In Figure 13, the red line is the lane
center line of the conventional road, and the yellow line is
the virtual lane center line of the intersection.

5.2. Performance of Fusion Positioning. According to the
proposed enhanced map-based vehicle fusion positioning
scheme, first, low-cost GPS and RISS are fused through KF
with adaptive adjustment of observation noise variance to
obtain the preliminary positioning results, and then the
preliminary positioning results are further optimized and
improved by using the produced enhanced map to obtain
the final positioning results.

In order to more intuitively show the experimental effect
of the combined positioning scheme, the vehicle position is
uniformly transformed from the geocentric geostationary
coordinate system to the local tangent plane coordinate
system. +e positioning results of the two stages are shown
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Figure 10: +e road modeling process. (a) Original track data points; (b) results of the selection of control points; (c) results of tension
parameter adjustment; (d) the road model based on Cardinal spline.

Table 1: Comparison of the efficiency of two road modeling
methods.

B-spline Cardinal spline
Reliability High High
Global position error RMS (m) 1.25 1.15
Efficiency Middle High
Data storage 1142 578
Flexibility Middle High

Table 2: Comparison of the reliability of two road modeling
methods.

B-spline Cardinal spline
Reliability Low High
Global position error RMS (m) 2.83 1.15
Efficiency High High
Data storage 578 578
Flexibility Middle High
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in Figure 14. +e experiment takes 436 s (excluding the
seconds when the vehicle is stationary at the beginning and
end of the experiment). +e red curve in the figure repre-
sents the reference value of the vehicle’s horizontal position
(output by the high-precision integrated navigation and
positioning system), and the blue curve represents the
preliminary positioning results of adaptive setting of ob-
servation noise, the cyan curve represents the final posi-
tioning result obtained by the multi-weight map matching
algorithm. In Figure 14, three local areas are enlarged, in-
cluding two straight roads and an intersection.

To separately analyze the effect of observation noise
variance optimization algorithm and multiweight matching
algorithm based on enhanced map. Figure 15 shows the
comparison between KF positioning results with fixed

observation noise variance (KF1) and KF positioning results
with adaptive observation noise variance setting (KF2),
Figure 16 shows the comparison between KF positioning
results with adaptive observation noise variance setting
(KF2, i.e., the preliminary positioning) and multiweight map
matching positioning results (MMWM, i.e., the final posi-
tioning), and Table 3 gives the gives the statistics of Eu-
clidean distance errors (i.e., horizontal position errors)
contain the maximum value and the root mean square
(RMS) value of the three positioning methods.

From Figures 15 and 16 and Table 3, it can be seen that
the KF1 has the worst accuracy, that is, both the RMS and the
maximum values of its Euclidean distance error are the
largest. It can be attributed to the blockage of satellites by
roadside buildings or trees. +e preliminary positioning
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Figure 11: Comparison diagram of two road modeling methods. (a) Sematic diagram of efficiency comparison; (b) sematic diagram of
reliability comparison.
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(a) (b)

Figure 12: Overall effect diagram of the enhanced map of the test site.
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Figure 13: +e enhanced map near the intersection.
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(KF2) can achieve higher accuracy than KF1. +is is because
the adaptive adjustment of observation noise variance can
alleviate the pollution of invalid satellite observation to
positioning results. However, the max value of its Euclidean
distance error is large. +e main reason is that in the area
with serious satellite occlusion, the number of visible sat-
ellites after removing invalid satellites is insufficient,
resulting in serious positioning solution error.

From Table 3, it is obviously that the positioning accuracy
of final fusion positioning (MWMM) is improved obviously
when compared with KF1 and KF2. For instance, the RMS
value ofMWMMerror is decreased to 2.499m from the value
3.114m of preliminary positioning and the value 3.664m of
KF1. +e improvement of maximum error is more obvious,
that is, achieve 65% accuracy improvement compared to KF1
and 50% improvement compared to conventional KF2. It can
be attributed that the accurate maps andMWMMalgorithms
can effectively correct outliers.

To further verify the effect of the proposed algorithm,
the results of another experiment are shown in Table 4 and
Figure 17. +e experiment took 400 seconds. +e satellite
occlusion on the experimental route was less than that in the
previous experiment, and it was mainly covered by trees or
buildingsononeside.FromFigure17andTable4, it canbeseen
that the RMS of KF2 is lower than that of KF1, but it cannot
alleviate the maximum error. +e RMS of MWMM is only
2.236m,which ismuch smaller than thefirst twocases, andhas
a significant inhibitory effect on the maximum deviation.

Many groups of experiments have been carried out, and
the results show that the localization result of KF2 is better
than that of KF1. +e final positioning result obtained by
MWMM is greatly improved compared with both KF1 and
KF2, especially for the points with large error.

6. Conclusion

To achieve accurate and reliable positioning in urban can-
yons, an enhanced map-aided GPS/3D RISS tightly com-
bined positioning strategy is proposed. In the proposed
strategy, the 3D RISS only based on the built-in CAN bus
sensor without additional sensors is first constructed. +en,
a simple but effective enhanced map is created. Based on the
map, a KF method with the adaptive adjustment of obser-
vation noise variance is proposed to fuse the 3D RISS with
GPS information and to achieve the preliminary positioning.
In KF-based preliminary positioning method, the value of
the observation noise variance matrix is determined only
according to the building plane information which is con-
tained in the enhanced map. Finally, a multiweight map
matching method is proposed to correct the initial posi-
tioning results and obtain the final positioning results. +e
experimental results show that there are more obvious
advantages of the proposed strategy than other methods in
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Figure 16: Comparison between KF2 and MWMM.

Table 3: Comparison of three positioning methods.

Method
Statistics of Euclidean distance

errors (unit: m)
Max RMS

KF1 17.91 3.664
KF2 12.56 3.114
MWMM 6.240 2.499

Table 4: Comparison of three positioning methods in another
experiment.

Method
Statistics of Euclidean distance

errors (unit: m)
Max RMS

KF1 7.945 2.932
KF2 7.545 2.696
MWMM 5.659 2.236
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Figure 17: Comparison of the three methods in another
experiment.
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urban canyon, that is, the RMS achieve 32.8% accuracy
improvement compared to conventional KF.

Further research includes using sensors such as fisheye
camera and machine learning methods to further effectively
identify failed satellites, replacing KF algorithm with more
effective algorithm, and carrying out more comprehensive
experiments, especially in deep urban canyon environment.
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