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In this work, the fuzzy fractional two-point boundary value problems (FFTBVPs) are analyzed and solved using the fuzzy
fractional homotopy analysis method (FF-HAM). Fuzzy set theory mixed with Caputo fractional derivative properties is utilized
to produce a new formulation of the standard HAM in the fuzzy domain for the persistence of approximation series solutions for
fuzzy fractional di�erential equations with boundary conditions. �e FF-HAM provides a suitable way of controlling the
convergence of the series solution through the advantage of the convergence control parameter, which plays a pivotal role in
solving a wide range of mathematical problems. �e convergence analysis algorithm has been described, along with a graphical
representation of the FF-HAM of the proposed applications. �e method produces high accuracy solutions with simple
implementation for solving linear and nonlinear fuzzy fractional boundary value problems associated with physical application.
Also, the obtained results are analyzed and compared with those present in the literature to show the e�ciency of the FF-HAM.

1. Introduction

Fractional problems involving ordinary di�erential equa-
tions (FDEs) have received much interest recently as they are
adequate models for certain physical phenomena [1]. Many
important phenomena in electromagnetics, acoustics, vis-
coelasticity, electrochemistry, and material science are well
described under fractional derivatives in the sense of frac-
tional numbers [2–7]. It is well known that the fractional-
order di�erential operators are nonlocal operators. �is is
one reason why fractional di�erential operators provide an
excellent instrument for describing memory and hereditary
properties of various physical processes [8]. But it always
faces some obstacles besides complexity, namely,

uncertainty and imprecision [9]. One of several advantages
of employing the theory of fuzzy sets around fractional
calculus theory is to develop formulation methodology and
solve these complex problems that are accompanied by a
lack of data, measurement errors, or when supplementary
conditions are determined to be acceptable for analysis [10].
Such problems are too complicated or unde�ned for tra-
ditional methods. �erefore, fuzziness may also be a form of
inaccuracy arising from the grouping of objects into groups
that do not have clearly de�ned borders, so fuzzy set theory
helps to handle these problems [11] by making fuzzy frac-
tional ordinary di�erential equations (FFDEs) a reliable
alternative to FDEs. �erefore, a mathematical model for
many dynamical real-life problems can be represented by a
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system of ordinary differential equations. To model a dy-
namic system based on the long memory term that is in-
adequate of its behavior and has uncertain nature, FFDEs are
a useful tool to be considered.

A boundary value problem is a differential equation with
additional constraints called boundary conditions. A solu-
tion to a boundary value problem is a solution to the dif-
ferential equation that also satisfies the boundary conditions.
.e second order fuzzy fractional differential equations have
recently attracted the attention of many researchers to their
considerable importance in science, especially after defining
the fuzzy Caputo's Hukuhara derivative of order 1< ρ≤ 2
[12]. Even though these equations play a vital role in de-
scribing the most complex physical phenomena, they remain
unimportant until they are solved. On the other hand, most
lack accurate analytical solutions, so researchers have
resorted to developing new methods that help engineers and
physicists find suitable approximate solutions to these
equations, especially the nonlinear class.

.e traditional perturbation methods for solving FFDEs
[13–16] have a significant disadvantage in that they are
overly dependent on the presence of small parameters. .is
condition greatly affects perturbation methods’ applications
because most nonlinear equations do not even contain this
small parameter. Moreover, determining small parameters is
a complicated process and requires special techniques.
Solving problems with approximate methods often helps to
understand a physical problem better and may help to
improve future procedures and designs used to solve these
problems. .e essential gain of an approximate method is
the ability to solve difficult nonlinear problems without the
need to compare them with the exact solution to determine
the accuracy of the approximate solution. .e approximate
solution is acquired in the form of a series that converges
quickly to the exact solution. A few approximate methods
offer a simple way to ensure the solution.

Using similar methods to find solutions to these equa-
tions has its generous compensation, but not without ob-
stacles. .ere should be more investigation of approximate
methods for FFTBVPs that have yet to be applied.

.e main focus of this work is to present a new for-
mulation and analysis of the fuzzy fractional HAM (FF-
HAM) from the crisp domain to the fuzzy environment to
deal with linear and nonlinear FFTBVPs physical applica-
tions under the Caputo fractional sense. .e HAM, like the
previous methods that have been described, does not involve
discretization of the variables and linearization; hence, is free
from rounding off errors and does not require large com-
puter memory or time. .e method also provides the so-
lution in a rapidly convergent series with elegantly
computed components [17]. In his PhD thesis, Liao pro-
posed the HAM, which is a powerful method for solving
linear and nonlinear problems. Many researchers have re-
cently used HAM to solve various linear and nonlinear
problems in science and engineering. We refer the reader to
Refs. [18–21]. An approximate method (of which HAM is an
example) has an advantage over perturbation methods be-
cause it is not dependent on small or large parameters.
Perturbation methods are based on the existence of small or

large parameters, and they cannot be applied to all nonlinear
equations. Again, according to Ref. [17], both perturbation
and nonperturbative methods cannot provide a simple
procedure to adjust or control the convergence region and
rate of a given approximate series. One of the advantages of
the HAM is that this method allows for fine-tuning of the
convergence region and rate of convergence by enabling the
convergence control parameter to vary. It is to be noted that
proper choice of the initial guess, the auxiliary linear op-
erator, and convergence control with the parameter will
guarantee the convergence of the HAM solution series [20].
.e HAM series solution will be convergent by considering
two factors: the auxiliary linear operator and the initial
guess.

.e main properties of fuzzy sets, such as the fuzzy
number and fuzzy extension principles, help us formulate
our proposed method from a crisp environment to a fuzzy
environment to find a reliable solution to FFDEs. Readers
can look at the membership function [10], the-cut [22], fuzzy
numbers [23], and the extension principle [24] to get dif-
ferent points of view on the fuzzy environment.

.is paper aims to construct a new algorithm based on
the HAM technique for solving fuzzy fractional boundary
value problems and apply the algorithm to two physical
models. Namely, the modeling of the motion of a rigid plate
immersed in a Newtonian fluid and the distribution of the
temperature in the lumped convection system in a layer
comprised of materials with varying thermal conductivity.
.e contra-part of the fuzzy model for those problems is
defined and solved via the new algorithm. .e obtained
solution is given in terms of a convergent series that contains
a convergent control parameter which can be optimally
chosen byminimizing the residual error , and this leads to an
accurate solution to the problems.

.e outline of this work is arranged as follows. In Section
2, we looked at several fundamental definitions and ad-
vanced ideas of the fractional calculus theory that will be
useful in understanding the following parts of this research
study. .e fuzzy analysis and new formulation of FF-HAM
for solving the purposed problem are discussed in Section 3,
while the convergence of FF-HAM is illustrated analytically
and summarized in the form of an algorithm in Section 4.
Section 5 demonstrated and discussed the capabilities of the
proposed FF-HAM in solving two application problems
involving linear and nonlinear FFTBVPs. Finally, Section 6
concludes this study work.

2. Basic Concepts of Fuzzy Fractional Calculus

.is section provides basic definitions of fractional calculus
under the effect of uncertainty, which will help us deal with
future procedures in this research paper.

Definition 1 (see [25]): For real number μ, and x> 0, the real
function y(x) is said to be in the space Cμ if ∃p ∈R satisfies
y(x) � xpy1(x), where y1(x) ∈ C(0,∞), whereas y(x) is
said to be in the space Cm

μ if yn ∈ Cμ, m ∈ N, where N

represents the set of natural numbers.
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Definition 2 (see [25]): For any continuous fuzzy valued
function g∈ CF[a, b]∩ LF[a, b]. .e fuzzy fractional Rie-
mann–Liouville integration of g(x) will be defined by

J
ρ
0g(x) �

1
Γ(ρ)


x

0
g(y)(x − y)

ρ− 1dy, ρ, x ∈ R, x> 0.

(1)

∀α ∈ [0, 1], α− cuts for fuzzy valued function, and g can
be represented by g(x; α) � [gl(x; α), gu(x; α)], such that
below are some of the fuzzy fractional Riemann–Liouville
integration features:

(1) J0
0g(x; α) � g(x; α) � [gl(x; α), gu(x; α)]

(2) Jρ
0x

s � Γ(s + 1)/Γ(s + 1 + ρ)xs+ρ

(3) ∀ constant r ∈ R, then J
ρ
0r � r/Γ(ρ + 1)xρ, β> 0

Definition 3 (see [12, 26]): Let ρ ∈ (1, 2] and g: [a, b]⟶ U

such that g and g’∈ CF[0, b]∩LF[0, b]. .en we can define
the fuzzy fractional derivative in the meaning of Caputo of
the fuzzy function g at x ∈ (a, b) as follows:

D
ρ
g( (x) �

1
Γ(2 − ρ)


x

0

g
’′(x)

(y − x)
ρ− 1 dx, x> 0. (2)

With the property [27], we get ∀ ρ> 0, then D
ρ
0r � 0 for

any constant r ∈ R.

Here, Γ(x) represents the Gamma function such that the
Riemann–Liouville integral represents the left inverse op-
erator of the Caputo fractional derivative [28].

3. Analysis of the FF-HAM for Second-
Order FFTBVPs

According to the main structure of the HAM [28], we in-
troduce a new approach based on HAM to solve second-
order FFTBVPs. Consider the following inhomogeneous
FFBVPs:

y
(ρ)

(x) � g(x, y(x), y′(x)), g(x) x ∈ x0, X ,

y x0(  � a0, y
’

x0(  � a1,

y(X) � b0, y
’
(X) � b1,

ρ ∈ (1, 2],

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

where y(ρ)(x) is the fuzzy fractional derivative of order ρ,
y(x) is the unknown fuzzy function, a0, a1,

b0,
b1 are the

fuzzy numbers defined in Ref. [23], and G(x) is the fuzzy
inhomogeneous term. According to Ref. [10], we can con-
struct the zeroth-order deformation equation of (3) as
follows:

(1 − q)Lρ y(x; q) α − y0(x; α)  � q h(α)H(x)
z
ρ

y(x; q) α
zx

ρ − gl [y(x; q)]α(  − G(x; α)⎛⎝ ⎞⎠,

(1 − q)Lρ [y(x; q)]α − y0(x; α)  � qh(α)H(x)
z
ρ
y[(x; q)]α

zx
ρ − gu [y(x; q)]α(  − G(x; α) .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Here, 0≤ q≤ 1 represents the embedding parameter, h(α) �

[h(α), h(α)] is a nonzero convergence control parameter,
H(x) is the auxiliary function, while the operators Lρ �

zρ[y(x; q)]α/zxρ and Lρ � zρy[(x; q)]α/zxρ are the auxil-
iary linear operators, and gl, gu are the lower and upper
fuzzy functions, respectively. Now, for all α-level sets, we can
define the initial approximation of the lower and upper bound
[y0(x)]α � [y0(x; α), y0(x; α)] by the rule of solution ex-
pression [29] as follows, fromEquation (3), and the approximate
solution y(x; α) can be expressed for k � 0, 1, 2, . . . by a set of
base functions xk, and then the approximate solution y(x; α)

can be expressed as y(x; α) � 
k
j�0 [d

j
]αxj, where [d

j
]α are

fuzzy coefficients to be determined. According to the rule of
solution expression

k
j�0 [d

j
]αxj, we have the following form of

the fuzzy initial guess:

y0(x; α) � S1(α) + S2(α)x,

y0(x; α) � S1(α) + S2(α)x,
(5)

where for all α ∈ [0, 1],S1(α), and S2(α) are the constants
that can be determined easily from the two-point boundary

conditions in Equation (3). .e two-point fuzzy boundary
conditions of Equation (4) are

y x0; q(  α � a0,
z

zx
y x0; q(  α � a1,

[y(X; q)]α � b0,
z

zx
[y(X; q)]α � b1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

By setting q � 0 and q � 1, we have

y(x; 0) α � y x0; α( ,

[y(x; 0)]α � y x0; α( ,

⎧⎨

⎩

y(x; 1) α � Y(x; α),

[y(x; 1)]α � Y(x; α).

⎧⎨

⎩

(7)

At a time when the embedding parameter changes from
zero to one, the fuzzy solution[y(x; q)]α deforms from the
initial approximation [y(x; 0)]α to the exact solution
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Y(x; α). Now by expanding the approximate solution
[y(x; q)]α as a Taylor series with respect to q, ∀α ∈ [0, 1], we
have

y(x; q) α � y0(x; α) + 
∞

j�1
y

j
(x; α)q

j
, [y(x; q)]α � y0(x; α) + 

∞

j�1
yj(x; α)q

j
,

⎧⎪⎨

⎪⎩
(8)

where

y
j
(x; α) �

1
j!

zj y(x; q) α
zqj

|q�0,

yj(x; α) �
1
j!

zj[y(x; q)]α

zqj
|q�0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

If the auxiliary linear operator Lρ, the initial guess
y0(x; α) and the convergence control parameter h(α) are
properly chosen, and it fixed the auxiliary function
H(x) � 1, the FF-HAM series solution will converge to the
exact solution at q � 1 such that

Y(x; α) � y0(x; α) + 
∞

j�1
y

j
(x; α), Y(x; α) � y0(x; α) + 

∞

j�1
yj(x; α).

⎧⎪⎨

⎪⎩
(10)

In most cases, it is impossible to find the analytical
solution with the FF-HAM as an infinite series, especially for
nonlinear FFBVPs, and this brings us to defining the vectors

y
→

j
(x; α) � y0(x; α), y1(x; α), . . . , y

k
(x; α) , y

→
j(x; α) � y0(x; α), y1(x; α), . . . , yk(x; α) . (11)

Now by differentiating the zeroth-order deformation
equation k times with respect to the embedding parameter q

is followed by setting q � 0, after that dividing them by k! to
extract the kth order deformation equation is as follows:

z
ρ

zx
ρ y

k
(x; α) − ψky

k− 1(x; α)  � h(α)Rk y
→

k− 1(x; α) ,

z
ρ

zx
ρ yk(x; α) − ψkyk− 1(x; α)  � h(α)Rk y

→
k− 1(x; α) ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

where

Rk y
→

k− 1(x; α)  �
1

(k − 1)!

zk− 1 zρ y(x; q) α/zxρ  − gl [y(x; q)]α(  − y
→

k− 1(x; α) 

zqk− 1 |q�0,

Rk y
→

k− 1(x; α)  �
1

(k − 1)!

zk− 1 zρy[(x; q)]α/zxρ(  − gu [y(x; q)]α(  − y
→

k− 1(x; α) 

zqk− 1 |q�0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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.e solution of the kth order deformation for k≥ 1 is

y
k
(x; α) � y

k
x0; α(  + y

k
′ x0; α( x

+ψk y
k− 1(x; α) − y

k− 1 x0; α(  − y
k− 1
′ x0; α( x  + h(α) J

(ρ)

Rk y
→

k− 1(x; α) ,

yk(x; α) � yk x0; α(  + yk
′ x0; α( x

+ψk yk− 1(x; α) − yk− 1 x0; α(  − yk− 1′ x0; α( x(  + h(α)J
(ρ)
Rk y

→
k− 1(x; α) .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

ψk �
0, k≤ 1,

1, k> 1.
 and J

ρ
� [Jρ,J

ρ
] � L

− 1
ρ are the

fuzzy Riemann–Liouville integrals of order ρ ∈ (1, 2].

Finally, the kth-order of the series solution becomes

Yk � Y(x; α) � y0(x; α) + 
k

j�1
y

j
(x; α), Y(x; α) � y0(x; α) + 

k

j�1
yj(x; α).

⎧⎪⎨

⎪⎩
(15)

4. Convergence Analysis Algorithm of the FF-
HAM

In this section, we will present the convergence dynamic of
FF-HAM based on the residual of Equation (3) to figure out
the best optimal convergence control parameter h to find a
reliable approximate solution via the FF-HAM.

.e perfect selection of the convergence control pa-
rameter h would ensure the convergence of the FF-HAM
series solution. Following the HAM that was introduced in
Ref. [28]and the series approximate solution of order k in
Equation (6), we can conclude that the main feature of HAM
lies in control, and modify the convergence of series solution
in view of existing the convergence control parameter h [30]
based on the minimum residual of Equation (3). Here, the
optimal convergence control parameter h can be determined
based on the residual formula of Equation (3) as follows:

ER x; α; h(  � y
(ρ)

x; α; h(  − gl(x, y(x; α; h)) − G(x; α),

ER(x; α; h) � y
(ρ)

(x; α; h) − gu(x, y(x; α; h)) − G(x; α).

⎧⎪⎨

⎪⎩

(16)

Now, ∀α ∈ [0, 1], then we will check the corresponding
squared residual error, followed by integrating the residual
over the given interval x ∈ [x0, X], then we obtain the form
as follows:

SER x; α; h(  � 
X

x0

ER x; α; h(  
2dx,

SER(x; α; h) � 
X

x0

[ER(x; α; h)]
2dx.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

By setting the values of fractional order 1< ρ≤ 2, then the
following partial derivatives with respect to h(α) can be
obtained for all α ∈ [0, 1] as

zSER(x; α; h(α))

zh(α)
� 0⟶

z SER x; α; h (α)( 

z h(α)
� 0,

zSER(x; α; h(α))

zh(α)
� 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

.e main feature of the FF-HAM approach lies in
identifying the valid region of h which makes SER(x; h; α)

trending towards zero in conjunction with the increasing
FF-HAM series order in a way identifying the optimum
value of h(α) which is linked with the minimum value of the
residual of Equation (3), where in our proposed FF-HAM,
we will obtain the optimum value of h(α) by setting
SER(x; α; h) � 0 via the NSolve Mathematica 12 package.
Finally, ∀α ∈ [0, 1], then we will estimate the best value of
h(α) for the convergence of the approximate FF-HAM series
solution y(x; α; h). We are seeking for region S of the op-
timum values of h(α) i.e., (h(α) ∈ S), where this region
almost matched the parallel line segment to the x-axis. In
our proposed approach for linear and nonlinear FFTBVP of
the second order, we have to plot h-curve ∀α ∈ [0, 1] stages
and select the α− level set that provides us the convergence
series solution for all level sets, say we fix α � α0. After that,
we can plot y(ρ)(x; α0; h) for different order ρ ∈ (1, 2] for the
lower and the upper bound of the approximate solution
y(x; α; h) of Equation (3) and apply this optimum value
h(α0) for each level set approximate solutions. Finally, the
steps in the FF-HAM algorithm for finding an approximate
solution to Equation (3) are described as follows:

Step 1: Set fractional order ρ ∈ (1, 2]

Step 2: Set the fuzzy initial approximation y0(x; α)

Step 3: Set the value of the fuzzy inhomogeneous term
G(x; α)

Step 4: Set the number of terms, such that
j � 1, 2, 3, . . . , k

Mathematical Problems in Engineering 5



Step 5: Set j � j + 1, and for j � 1 to j≤ k, evaluate

yj(x; α) � y
j

x0; α(  + y
j
′ x0; α( x + ψj yj− 1(x; α) − y

j− 1 x0; α(  − y
j− 1
′ x0; α( x  + h(α) yj− 1(x) − J

ρ
g(x, y(x), y′(x)) − J

ρ G(x) . (19)

Step 6: Compute the fuzzy series of order K:
y(x; α; h) � 

K
j�0 yj(x; α; h)

Step 7: Plot h(α0)− curve over the interval
h(α0) ∈ [− 2, 1]

Step 8: Set the residual of the given FFBVP (Equation
(3)) as shown in Equation (16) followed by using
Equations (17) and (18) in order to determine the valid
region of the optimal convergence control parameter in
the valid region showed in the previous step, followed
by detecting the best optimal convergence control
parameter hopt(α0)
Step 9: Utilize the best optimal value of the convergence
control parameter hopt(α0) in the approximate series in
Step 5 for lower and upper bound ∀α ∈ [0, 1]

5. Applications and Results

Using the method, we suggested in Sections 3 and 4, we look
at how well Equation (3) approximate solutions are
implemented and checked. We use the following linear and
nonlinear FFBVPs physical problems to do this.

Problem 1. Bagley–Torvik equation
Consider the fuzzy fractional Bagley–Torvik equation

[9]:

D
(1.5)

y(x) + y(x) � F(x; α), x ∈ [0, 1]. (20)

Such that

F(x; α) � F(x; α), F(x; α)(  � α x
2

− x  + 4α
��
x

√

��
π

√ , (2 − α) x
2

− x  + 4(2 − α)

��
x

√

��
π

√ . (21)

.at is subject to the following fuzzy boundary
condition:

y(0; α) � y(1; α) � (α − 1),

y(0; α) � y(1; α) � (1 − α).
 (22)

.is equation arises in the modelling of the motion of a
rigid plate immersed in a Newtonian fluid. .e motion of a
rigid plate of mass m and area A connected by a mass less
spring of stiffness k is immersed in aNewtonian fluid, such that
Figure 1 illustrates the dynamics of Bagley–Torvik equation.

With the following fuzzy exact solution [9], we get

Y(x; α) � α x
2

− x ,

Y(x; α) � (2 − α) x
2

− x .

⎧⎪⎨

⎪⎩
(23)

According to the FF-HAM analysis section, we construct
the kth-order deformation equations for k≥ 1 of Equation
(20) as follows:

y
k
(x; α) � (1 − α)

+ψk y
k− 1(x; α) − (1 − α)  + h(α)J

(ρ)
Rk y

→
k− 1(x; α) ,

yk(x; α) � (α − 1)

+ψk yk− 1(x; α) − (α − 1)(  + h(α)J
(ρ)
Rk y

→
k− 1(x; α) .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)

.en y
k
(0; α) � 0, yk(0; α) � 0 and y

k
(1; α) � 0, yk

(1; α) � 0 such that

ψk �
0, k≤ 1,

1, k> 1,


·

Rk y
→

k− 1(x; α)  � y
(1.5)

k− 1 (x; α) + y
k− 1(x; α) − 1 − ψk(  F(x; α),

Rk y
→

k− 1(x; α)  � y
(1.5)
k− 1 (x; α) + yk− 1(x; α) − 1 − ψk( F(x; α),

⎧⎪⎪⎨

⎪⎪⎩

(25)

where D(1.5)y � y(1.5). .en we can choose the initial guess
as

y0(x; α) � [1 − α, α − 1]. (26)

Expanding Equation (25) we get those as follows:

6 Mathematical Problems in Engineering



For k � 1, we have

y1(x; α) � (1 − α) + h(α)J
(1.5)

y
(1.5)

0 (x; α) + y0(x; α) − F(x; α) ,

y1(x; α) � (α − 1) + h(α)J
(1.5)

y
(1.5)
0 (x; α) + y0(x; α) − F(x; α) .

⎧⎪⎨

⎪⎩
(27)

For k � 2, we have

y2(x; α) � (1 − α) + y1(x; α) − (1 − α)  + h(α)J
(1.5)

y
(1.5)

1 (x; α) + y1(x; α) ,

y2(x; α) � (α − 1) + y1(x; α) − (α − 1)(  + h(α)J
(1.5)

y
(1.5)
1 (x; α) + y1(x; α) .

⎧⎪⎨

⎪⎩
(28)

For k � 3, we have

y3(x; α) � (1 − α) + y2(x; α) − (1 − α)  + h(α)J
(1.5)

y
(1.5)

2 (x; α) + y2(x; α) ,

y3(x; α) � (α − 1) + y2(x; α) − (α − 1)(  + h(α)J
(1.5)

y
(1.5)
2 (x; α) + y2(x; α) .

⎧⎪⎨

⎪⎩
(29)

.en for general k, we have

y
k
(x; α) � (1 − α) + y

k− 1(x; α) − (1 − α)  + h(α)J
(1.5)

y
(1.5)

k− 1 (x; α) + y
k− 1(x; α) ,

yk(x; α) � (α − 1) + yk− 1(x; α) − (α − 1)(  + h(α)J
(1.5)

y
(1.5)
k− 1 (x; α) + yk− 1(x; α) .

⎧⎪⎨

⎪⎩
(30)

.e third-order FF-HAM approximate series solution
uses theMathematica 12 package to find the solutions for the

lower and for the upper bounds, and we obtain the following
form:

y x; α; h(  � y0(x; α) + 
3

j�1
y

j
x; α; h( , y(x; α; h) � y0(x; α) + 

3

j�1
yj(x; α; h).

⎧⎪⎨

⎪⎩
(31)

k

m

z

A

x

f

Figure 1: Rigid plate of mass m immersed into a Newtonian fluid.
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We can show the accuracy of FF-HAM for solving
Equation (20) by taking the residual error as mentioned in
Equation (16) such that

ER x; α; h(  � y
(1.5)

(x; α) + y(x; α) − F(x; α) ,

ER(x; α; h) � y
(1.5)

(x; α) + y(x; α) − F(x; α) .

⎧⎪⎨

⎪⎩
(32)

As we mentioned in Section 3, this series depends upon
x, α and the convergent control parameter h. According to
Section 2, the convergent control parameter h can be
employed to adjust the convergence region of the FF-HAM,
then we use the properties of FF-HAM convergence to find
the best value of h. Toward this end, for fixed value of
0≤ α≤ 1, say α � 0.5, we plotted the h -curve of the lower
bound and upper bound via the third-order FF-HAM for
Equation (20), as summarized in Figure 2.

According to the above curves in Figure 2, it is easy to
discover the valid region of h(0.5) which corresponds to the
line segment nearly parallel to the horizontal axis such that
the FF-HAM series solution is convergent when
− 1.5≤ h≤ − 0.8, and the best value of h can be obtained by
minimizing the square residual error SER(x; 0.5; h) �

[SER (x; 0.5; h), SER(x; 0.5; h)] (we solve zSER(x; 0.5; h

(0.5))/zh(0.5) � 0), which yields h �− 1.0488155053478476.
.erefore, we have tabulated the residual errors [ER ]α and
[ER]α of the approximate solutions y(0.5; h; 0.5) and
y(0.5; h; 0.5) obtained by using the third-order FF-HAM in
Table 1.

Table 1 illustrates the lower and upper solutions of
Equation (20) using the third-order FF-HAM based on the
best optimal convergence control parameter
h � − 1.0488155053478476. We can also summarize the
solutions as overall x ∈ [0, 0.5] and α ∈ [0, 1] corresponding
with the best optimal convergence control value of h for
Equation (20), as shown in Figure 2.

For studying the behavior of FF-HAM for solving
second-order FFTBVPs, we shall proceed to solve
Equation (20) via the FF-HAM at the same given
x ∈ [0, 0.5] and ρ � 1.5 of order five instead of order three
to analyze the convergency dynamic of FF-HAM for
different terms of the series approximate solution. Be-
ginning with identifying the valid region of the

convergence control parameters of the fifth-order FF-
HAM is summarized in Figure 3.

From Figure 3, it is easy to conclude that the valid region
of the convergence control parameters that corresponds to
the line segment nearly parallel to the horizontal axis has
changed to − 1.5≤ h≤ − 0.5 after changing the order of the
FF-HAM, and then the best value of the convergent control
parameter is h � − 1.0549896423027272. In the next table,
we have tabulated the residual errors [ER ]α and [ER]α of the
approximate solutions y(0.5; h; α) and y(0.5; h; α) obtained
by using the fifth-order FF-HAM.

We can also summarize the solutions via the fifth-order
FF-HAM overall x ∈ [0, 0.5] and α ∈ [0, 1] corresponding
with the best optimal convergence control values h of
Equation (20) in the following three-dimensional Figure 4.

In Tables 1 and 2, Figures 4 and 5 illustrate that the third
and fifth-order FF-HAM satisfies the triangular solution of
the fuzzy differential equations [23] for Equation (20). On
the other hand, we can conclude that the solution accuracy
of Equation (20) via the FF-HAM will approach the exact
solutions whenever the order of FF-HAM series increases.
One can explore Figures 6 and Figure 7 that illustrate the
accuracy of fifth-order FF-HAM compared with the fifth-
order Matern method (M6) [9] for solving Equation (20),
where ∀x ∈ [0, 1] for α � 0.5 which is based on the absolute
error of Equation (20) as follows:

ERR x; α; h(  � y x; α; h(  − Y(x)


,

ERR(x; α; h) � |y(x; α; h) − Y(x)|.

⎧⎪⎨

⎪⎩
(33)

h–curve

0.8

0.6

0.4

0.2

–1.5 –1.0 –0.5
h – values

y(0.5;0.5;h)
h–curve

2.5

2.0

1.0

1.5

0.5

–1.5 –1.0 –0.5
h – values

y(0.5;0.5;h)

Figure 2: .e h-curve of Equation (20) for the third-order FF-HAM approximate solution when H(x) � 1.

Table 1: .e accuracy of lower and upper solutions of Equation
(20) via the third-order FF-HAM when ρ � 1.5 at x � 0.5 for
α ∈ [0, 1].

α [ER ]α, h [ER]α, h [y]α, h [y]α, h

0 2.02950 × 10− 4 0 − 0.50005 0
0.2 1.82655 × 10− 4 2.02950 × 10− 5 − 0.45004 − 0.05000
0.4 1.62360 × 10− 4 4.05901 × 10− 5 − 0.40004 − 0.10001
0.6 1.42065 × 10− 4 6.08852 × 10− 5 − 0.35003 − 0.15001
0.8 1.21770 × 10− 4 8.11802 × 10− 5 − 0.30003 − 0.20002
1 1.01475 × 10− 4 1.01475 × 10− 4 − 0.25002 − 0.25002
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We can conclude from Figures 6 and 7 that the accuracy
of the approximate solution solved by the fifth-order FF-
HAM series gives a better approximate compared with the
Matern method (M6) [9] for all x ∈ [0, 1].

Problem 2. Nonlinear Fractional Temperature Distribution
Equation [31].

Consider the following mathematical model of order
ρ ∈ (1, 2] [31], which explains the distribution of the tem-
perature in the lumped convection system in a layer com-
prised of materials with varying thermal conductivity as

D
(ρ)

y(x) − η(y(x))
4

� 0,

x ∈ [0, 1].
(34)

Subject to the following boundary conditions as

y′(0) � 0,

y(1) � 1,
(35)

where x is the time-independent variable, and y(x) is the
dimensionless temperature.

.e fuzzy version of Equation (34) will be

D
(ρ)

y(x; α) − η(y(x; α))
4

� 0,

x ∈ [0, 1],

y′(0; α) � (0.1α − 0.1),

yy (1; α) � (0.1α + 0.9),

y′(0; α) � (0.1 − 0.1α),

y(1; α) � (1.1 − 0.1α).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

According to Section 3, we construct the zeroth order
and kth-order deformation equations for k≥ 1 of Equation
(36) as follows:

h–curve

0.8

0.7

0.6

0.5

0.4

–1.5 –1.0 –0.5
h – values

y(0.5;0.5;h)

h–curve

2.4

2.0

2.2

1.8

1.6

1.4

1.2

–1.5 –1.0 –0.5
h – values

y(0.5;0.5;h)

Figure 3: .e h-curve of Equation (20) for the fifth-order FF-HAM approximate solution when H(t) � 1.

0.0

–0.2

–0.4

0.0

0.0
0.5
α

x

y(x;α)

1.0

0.2
0.4

lower

upper

Figure 4: .ree-dimensional fifth-order FF-HAM corresponding
to the best optimal convergence control parameter h(0.5) for all
x ∈ [0, 0.5] at ρ � 1.5 and for all α ∈ [0, 1].

Table 2: .e accuracy of the lower and upper solution of Equation
(20) via the fifth-order FF-HAM when ρ � 1.5 at x � 0.5 for
α ∈ [0, 1].

α [ER ]α, h [ER]α, h [y]α, h [y]α, h

0 4.20230 × 10− 7 0 − 0.49999 0
0.2 3.78206 × 10− 7 4.20229 × 10− 8 − 0.44999 − 0.04999
0.4 3.36183 × 10− 7 8.40458 × 10− 8 − 0.39999 − 0.09999
0.6 2.94160 × 10− 7 1.26069 × 10− 7 − 0.34999 − 0.14999
0.8 2.52138 × 10− 7 1.68092 × 10− 7 − 0.29999 − 0.19999
1 2.10115 × 10− 7 2.10115 × 10− 7 − 0.24999 − 0.24999

0.0

–0.2

–0.4

0.0

0.0
0.5
α

x

y(x;α)

1.0

0.2
0.4

lower

upper

Figure 5: .ree-dimensional third-order FF-HAM corresponding
to the best optimal convergence control parameter h(0.5) for all
x ∈ [0, 0.5] at ρ � 1.5 and for all α ∈ [0, 1].
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yk(x; α) � [1 − (0.1 − 0.1α)x, 1 +(0.1 − 0.1α)x]

+ψk yk− 1(x; α) − [1 − (0.1 − 0.1α)x, 1 +(0.1 − 0.1α)x]( 

+ h(α) J
β1( )

Rk yk− 1
���→

(x; α) ,

y′(0; α) � (0.1α − 0.1), y(1; α) � (0.1α + 0.9),

y′(0; α) � (0.1 − 0.1α), y(1; α) � (1.1 − 0.1α).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

Such that

ψk �
0, k≤ 1,

1, k> 1.

⎧⎨

⎩ (38)

We noted that the nonlinear term of the form y4(x; α)

can be expanded by the Taylor series about the embedding
parameter q as

Error of lower solution

8. x 10–8

6. x 10–8

4. x 10–8

2. x 10–8

0.2 0.4 0.6 0.8 1.0
x – values

ERR
Error of lower solutionx 10–5

–1.3456

–1.3457

u e
xa

–u
ap

x

–1.3457

–1.3458

–1.3458
0 0.2

t

0.4 0.6 0.8 1

Figure 6: Lower bound accuracy of Equation (20) via the fifth-order FF-HAM and fifth-order M6 for α � 0.5 and x ∈ [0, 1].

Error of upper solution

2.5. x 10–8

2. x 10–8

1.5. x 10–8

1. x 10–8

5. x 10–9

0.2 0.4 0.6 0.8 1.0
x – values

ERR

Error of upper solutionx 10–5

2.4002

2.4001
u e

xa
–u

ap
x

2.4

2.3999

2.3998
0 0.2

t

0.4 0.6 0.8 1

Figure 7: Upper bound accuracy of Equation (20) via the fifth-order FF-HAM and fifth-order M6 for α � 0.5 and x ∈ [0, 1].

h–curve

0.8650

0.8645

0.8640

0.8635

–1.4 –1.0–1.2 –0.8 –0.6 –0.4
h – values

y(0.1;0.1;h) y(0.1;0.1;h)
h–curve

–0.5

–1.0

–1.5

–2.0

–1.0 –0.6–0.8 –0.4 –0.2
h – values

Figure 8: .e h-curve of Equation (36) for the tenth-order FF-HAM approximate solution when H(x) � 1.
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y
4
(x; α; q) � 

∞

k�0
ykq

k⎛⎝ ⎞⎠

4

� 
∞

k�0


k

i�0
yk− i 

i

j�0
yi− j 

j

s�0
ysyj− s

⎛⎝ ⎞⎠q
k
.

(39)

Now, with the help of Equation (14) and the above
formula, we have

Rk yk− 1
���→

(x; α)  � y
(ρ)

k− 1(x; α) − η,



k− 1

i�0
yk− 1− i(x; α) 

i

j�0
yi− j(x; α) 

j

s�0
ys(x; α)yj− s(x; α)⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

For the initial guess, we can choose

y0(x; α) � [1 +(− 0.1 + 0.1α)x, 1 +(0.1 − 0.1α)x]. (41)

For k � 1, we have

y1(x; α) � [1 − (0.1 − 0.1α)x, 1 +(0.1 − 0.1α)x] + h(α)y0(x; α) − ηh(α) J
(ρ)

y0(x; α) 
4

 . (42)

For k> 1, we have

yk(x; α) � [1 − (0.1 − 0.1α)x, 1 +(0.1 − 0.1α)x]

+ yk− 1(x; α) − [1 − (0.1 − 0.1α)x, 1 +(0.1 − 0.1α)x]( 

+h(α)yk− 1(x; α) − ηh(α) J
(ρ)



k− 1

i�0
yk− 1− i(x; α) 

i

j�0
yi− j(x; α) 

j

s�0
ys(x; α)yj− s(x; α)⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(43)

With the tenth-order FF-HAM approximate series so-
lution y(x; h; α) � 

10
j�0yj(x, h; α). Since this equation is

without an exact analytical solution, we can show the accuracy
of the FF-HAM for Equation (36) by taking the residual error,
as mentioned in Section 4, such that for η � 0.6, we have

ER(x; α; h) � y
(ρ)

(x; α; h) − 0.6[y(x; α; h)]
4
. (44)

It is to be noted that series (44) depends upon x, α and
the convergent control-parameter h. Toward this end, we
have plotted the h-curve for y(0.1; 0.1; h) via the tenth-order
approximation of the FF-HAM. As in previous examples, we
plotted the h-curve when α � 0.1 to obtain the optimal value
of h, as summarized in Figure 8.

According to Figure 8, from these curves, it is easy to
discover the valid region of h when the series solution of FF-
HAM corresponds to the line segment that is nearly parallel

to the horizontal axis such that the valid region of h is
bounded by − 0.7≤ h≤ − 0.1. According to Section 4, the
best values of h can be obtained in that interval is
h � [− 0.45259559205862615 − 0.42754247593277295]. In
the next table, we have tabulated the residual errors [ER ]α
and [ER]α of Equation (36) of the approximate solutions
y(0.1; 0.1; h) and y(0.1; 0.1; h) obtained by using the tenth-
order FF-HAM.

We can also summarize the solutions via the tenth-order
FF-HAM for all x ∈ [0, 0.1] and α ∈ [0, 1] corresponding
with the best optimal convergence control values h of
Equation (36) in the following three-dimensional Figure 9.

Table 3 and Figure 9 illustrate the fuzzy solution of the
temperature distribution equation. On the other hand, the
proposed method solves the triangular solution of the fuzzy
differential equation (28) with good accuracy for physical
problems with strong nonlinearity.

Upper

Lower

Figure 9: .ree-dimensional third-order FF-HAM corresponding
to the optimal convergence control parameter h for all x ∈ [0, 0.1]

at ρ � 1.9, for η � 0.6, and for all α ∈ [0, 1].

Table 3: .e accuracy of the lower and upper solution of Equation
(36) via the tenth-order FF-HAM when ρ � 1.9 at x � 0.1 for
α ∈ [0, 1].

α [ER ]α, h [ER]α, h [y]α, h [y]α, h

0 − 9.04873 × 10− 5 − 4.87830 × 10− 5 0.81737 0.83220
0.5 − 6.94694 × 10− 5 − 4.97735 × 10− 5 0.82173 0.82913
1 − 6.81546 × 10− 5 − 6.35808 × 10− 5 0.82565 0.82564
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6. Conclusion and Future Work

In this manuscript, the authors present a new convenient
approximate analytical approach called the FF-HAM to
solve linear and nonlinear FFBVP applications as physical
problems. .e concept of fuzzy set theory is discussed in
conjunction with Caputo’s fractional derivative character-
istics for a novel FF-HAM form as well as a convergence
algorithm. .e numerical outputs proved that the proposed
method is easy to implement and achieves the properties of
the fuzzy set theory for FFBVPs in the form of triangular
fuzzy numbers. Our approach has the advantage of giving
more accurate outputs than other methods, such as the M6
method, and detecting the accuracy without requiring an
exact solution, as with the temperature distribution equa-
tion. If you want to get closer to solving physical problems, it
is proven that you should increase the number of FF-HAM
series you make. .e method can expand to solve fuzzy
fractional chaotic systems and nonlinear partial differential
equations which will be studied in future research work.
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