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(is study is concerned with introducing a class of parametric and symmetric divergence measures under hesitant fuzzy en-
vironment. (e proposed divergence measures have several interesting properties which make their use attractive. In order for
exploring the features of proposed divergence measures for hesitant fuzzy sets (HFSs), we compare them with other existing ones
in terms of divergence-initiated weighs and counter-intuitive cases. In the process of comparison, we first modify the conventional
framework of hesitant fuzzy additive ratio assessment (HFARAS) using the proposed divergence measures, and then, the su-
periority of proposed measures is further demonstrated in a COVID-19 case study. (ere, we notify that the other existing
divergence measures may not provide satisfactory results.

1. Introduction

(ese days, the COVID-19 pandemic is drastically
impacting healthcare systems [1–3] worldwide. To solve the
problems of this pandemic, many medical scientists are
focusing their research on that, and for recognizing and
diminishing the COVID-19 effects, a large number of re-
searchers have prepared a variant of workable models.
Fouladi et al. [4] considered ResNet, OxfordNet, convolu-
tional neural network, convolutional autoencoder neural
network, and machine learning methods in order to classify
chest CT images of COVID-19. Melin et al. [5] predicted
successfully the consequence of COVID-19 time series by
the help of a multiple collaborative convolutional neural
network tool which is described thoroughly by encountering
the concept of fuzzy set. Abdel-Basst et al. [6] merged two
techniques, namely, the Best-Worst Method (BWM) and
Technique for Order Preference by Similarity to Ideal So-
lution (TOPSIS) method to explore the association between
COVID-19 and different viral chest diseases in uncertainty
environment. By implementation of a model of Internet-
based reporting, Bonilla-Aldana et al. [7] gathered the data
on COVID-19 to increase its effectiveness during the pan-
demic. Ashraf and Abdullah [8] proposed a number of tools

for dealing with the emergency condition of COVID-19
using the concept of spherical fuzzy set. In the period of
COVID-19 pandemic in China, Wu et al. [9] introduced a
technique to plan several emergency production procedures
for producing a proper medical mask. Mishra et al. [10]
enhanced the additive ratio assessment model by encoun-
tering the divergence measure to evaluate the medicine
being used to treat those patients involving the mild
symptoms of COVID-19.

(e additive ratio assessment (ARAS) technique [11]
implements the concept of optimality degree for extracting a
ranking. In brief, this technique is described as a fraction of
two values: the sum of normalized weighted values for
criteria corresponding to each alternative and the sum of
normalized weighted values for the best alternative. Indeed,
the ARAS framework has intuitive procedures yielding
relatively exact outcomes in the process of choosing di-
versified alternatives.

Up to now, there exist a large number of fuzzy-based
contributions dedicated to the ARAS technique. Following,
Zavadskas and Turskis [11] who first argued that a com-
plicated phenomenon in the real world could be realized by
the help of simple comparisons, Turskis and Zavadskas [12]
tried to select the logistic center location based on the
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combination of AHP and ARAS for data in the form of fuzzy
sets. In the sequel, Stanujkic [13] generalized the ARAS
framework to that of interval-valued fuzzy sets. Büyüközkan
and Göçer [14] developed the ARAS framework to that of
interval-valued intuitionistic fuzzy sets for evaluating the
digital supply chains. Büyüközkan and Göçer [15] assessed
the digital maturity scores of the firms on the basis of
hesitant fuzzy ARAS framework. Iordache et al. [16] sug-
gested an interval type II hesitant fuzzy ARAS framework for
choosing the location of underground hydrogen storage.
Liao et al. [17] offered an ARAS framework encountering the
hesitant fuzzy linguistic term data to choose a digital finance
supplier selection.

(e technique of ASAS yields benefits which are asso-
ciation with criteria weights proportionally and straightly
[11], scalability and flexibility [13, 14], and adaptability to
various fuzzy environments [14]. It also yields weaknesses
which are behaviour dependency on the different levels of
knowledge elicited by decision makers [14] and behaviour
dependency on given data-type of participants [18].

Divergence measure is generally used to quantify the
distance between two distributions by evaluating the amount
of their discrimination. (ere exist a set of diverse contri-
butions which deal with the divergence applications in the
context of research framework, especially the field of mul-
tiple criteria decision making.

In order to show the applicability of divergence measure
under a hesitant fuzzy environment in which the criteria
weights are to be computed in terms of the Shapley function,
Mishra et al. [19] investigated the problem of service quality
decision making. (en, Mishra et al. [19] offered another
exponential HFS divergence measure to assess the green
supplier problem. Furthermore, Mishra et al. [10] developed
an ARAS technique by encountering a divergence-based
procedure for assessing rationally the relative importance of
criteria. In the sequel, Mishra et al. [20] defined a parametric
hesitant fuzzy-based divergence measure for evaluating the
criteria weights.

In any way, the weight determination process of criteria
has a remarkable impact on the decision outcomes, and the
divergence measure is a factor which plays an important role
in the determination of criteria weight. As shown in Section
5, the abovementioned HFS divergence measures are limited
in nature. (erefore, we have been in search of new di-
vergence measures with fewer drawbacks.

In summary, the major distinctive features of the study
are as follows:

(1) It introduces an innovative class of divergence
measures for HFSs which are parametric and
symmetric

(2) A number of interesting properties of proposed
divergence measure are proved and discussed

(3) (is contribution reviews and explores counter-in-
tuitive cases of existing divergence measures under
hesitant fuzzy environment

(4) (e experimental results demonstrate that the
parametric hesitant fuzzy divergence measure is

more effective than the existing ones in decision-
making situations

(is contribution is set up as follows. We first recall the
concept of HFS, and a brief review of some preliminaries is
given in Section 2. In Section 3, an innovative class of
hesitant fuzzy divergence measures is introduced para-
metrically and symmetrically. We modify the existing
framework of hesitant fuzzy ARAS (HFARAS) using the
proposed divergence measures in Section 4. Section 5 is
devoted to present the application of proposed divergence
measures in a case study of COVID-19 coronavirus. Finally,
several conclusions are drawn in Section 6.

2. Preliminaries to Hesitant Fuzzy Sets (HFSs)

In this section, we review some basic notions and well-
known results about HFSs that are used in the next
discussion.

Let X be the reference set. A hesitant fuzzy set (HFS) on
X is defined by Torra [21] in terms of a function that when it
is applied to X, it returns a subset of [0, 1].

In fact, the notion of HFS is employed for handling a
class of decision-making problems where the belongingness
degree of an element to a set includes a variety of values.

Toward a better understanding, Xia and Xu [22]
reconsidered the concept of HFS in the form of

HA � 〈x, hA(x)〉: x ∈ X􏼈 􏼉, (1)

where hA(x) stands for all possible membership degrees of
x ∈ X belonging to the set HA, and it is afterwards named as
the hesitant fuzzy element (HFE) of HA.

Adding to the latter presented concept are the following
set and arithmetic operations. Let h1 � h

δ(i)
1 | i � 1, . . . , lh1

􏽮 􏽯

and h2 � h
δ(i)
2 | i � 1, . . . , lh2

􏽮 􏽯 be two HFEs. (en, it is de-
fined (i.e., [23]).

(i) Complement: hc
1 � ∪

h
δ(i)

1 ∈h1
1 − h

δ(i)
1􏽮 􏽯

(ii) Union: h1 ∪ h2 � ∪
h
δ(i)
1 ∈h1 ,h

δ(j)

2 ∈h2
max h

δ(i)
1 , h

δ(j)
2􏽮 􏽯􏽮 􏽯

(iii) Intersection:
h1 ∩ h2 � ∪

h
δ(i)

1 ∈h1 ,h
δ(j)

2 ∈h2
min h

δ(i)
1 , h

δ(j)
2􏽮 􏽯􏽮 􏽯

(iv) Addition:
h1 ⊕ h2 � ∪

h
δ(i)

1 ∈h1 ,h
δ(j)

2 ∈h2
h
δ(i)
1 + h

δ(j)
2 − h

δ(i)
1 h

δ(j)
2􏽮 􏽯

(v) Multiplication: h1 ⊗ h2 � ∪
h
δ(i)

1 ∈h1 ,h
δ(j)

2 ∈h2
h
δ(i)
1 h

δ(j)
2􏽮 􏽯

(vi) Multiplication by scalar: λh1 � ∪
h
δ(i)
1 ∈h11 − (1 − h

δ(i)
1 )λ􏽮 􏽯, λ> 0

(vii) Power: hλ
1 � ∪

h
δ(i)
1 ∈h1

(h
δ(i)
1 )λ􏽮 􏽯, λ> 0

We explain below how the total ordering on HFEs was
proposed and introduced. (is was achieved by keeping in
mind the score function of h � hδ(i) | i � 1, . . . , lh􏼈 􏼉 given by
[22]

s(h) �
1
lh

􏽘

lh

i�1
h
δ(i)

, (2)

and its variance function [24] is defined by the following
formulation:
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v(h) �
2. lh − 2( 􏼁

lh!

�������������������

􏽘

hδ(i) ,hδ(j)∈h

h
δ(i)

− h
δ(j)

􏼐 􏼑
2

􏽳

. (3)

Indeed, the total ordering of HFEs
h1 � h

δ(i)
1 | i � 1, ..., lh1

􏽮 􏽯 and h2 � h
δ(i)
2 | i � 1, ..., lh2

􏽮 􏽯 could
be defined by using the following comparison scheme:

(i) If we have s(h1)< s(h2), then it is concluded that
h1 ≺T h2

(ii) If we have s(h1)< s(h2), then

(i) For the relation v(h1)< v(h2), we get h1≺T h2
(ii) For v(h1) � v(h2), we conclude that h1 ≈ Th2

Now, we are in a position to explain the unified length
scale of HFSs as follows: in most situations, we observe that
lh1 ≠ lh2

. In order for comparing h1 and h2 correctly, we may
extend the shorter HFE until the length of both HFEs are the
same [25–28]. Suppose that l � max lh1

, lh2
􏽮 􏽯. (en, the

shorter HFE is extended by appending the same value re-
peatedly. (e repeated value depends on the risk preference
of the decision makers, that is, if we consider (i) the pes-
simistic case, then the repeated value is the shortest one; (ii)
if the optimistic case is considered, then the largest value will
be repeated, and (iii) in the general case, we consider the
convex combination of maximum and minimum values of a
HFE.

Suppose that h1 � h
δ(j)
1 | j � 1, ..., l􏽮 􏽯 and

h2 � h
δ(j)
2 | j � 1, ..., l􏽮 􏽯 are two length-unified HFEs on X.

(e elementwise ordering of HFEs is defined by (i.e., [29])

h1 ≤ Eh2 if and only if h
δ(j)
1 ≤ h

δ(j)
2 , (4)

for any j � 1, . . . , l.
Eventually, we represent the definition of two widely

used aggregation operators of HFEs [25, 29]. Let
h1 � h

δ(j)
1 | j � 1, ..., l􏽮 􏽯, h2 � h

δ(j)
2 | j � 1, ..., l􏽮 􏽯, and

hm � h
δ(j)
m | j � 1, ..., l􏽮 􏽯 be a set of m HFEs with the cor-

responding weights ϖi (i � 1, . . . , m). (en, it is defined.

(i) (e hesitant fuzzy weighted averaging (HFWA)
operator:

HFWA h1, h2, . . . , hm( 􏼁 � ⊕
i�1

m
ϖihi( 􏼁

� 1 − 􏽙

m

i�1
1 − h

σ(j)
i􏼐 􏼑
ϖi

| j � 1, ..., l
⎧⎨

⎩

⎫⎬

⎭.

(5)

(ii) (e hesitant fuzzy weighted geometric (HFWG)
operator:

HFWG h1, h2, . . . , hm( 􏼁 � ⊗
i�1

m
h
ϖi

i􏼐 􏼑

� 􏽙
m

i�1
h
σ(j)
i􏼐 􏼑
ϖi

| j � 1, . . . , l
⎧⎨

⎩

⎫⎬

⎭.

(6)

3. A New Class of HFS Divergence Measures

Axiomatically, a divergence measure of two HFSs satisfies
the following items similar to that of fuzzy sets [30] and
intuitionistic fuzzy sets [31]:

(i) It is nonnegative and symmetric
(ii) It returns the zero value whenever the two sets

coincide

In this contribution, we are going to develop a procedure
that estimates the objective weights of criteria by using the
concept of divergence measure, needless to say that the
criteria weights are computed subjectively or objectively.(e
former technique computes the criteria weights by taking the
thought of decision makers, while the latter technique
characterizes the criteria weights by considering the
mathematical assessments.

Let h1 � h
δ(j)
1 | j � 1, ..., l􏽮 􏽯 and h2 � h

δ(j)
2 | j � 1, ..., l􏽮 􏽯

be two length-unified HFEs as described above.
(e following formula introduces a class of innovative

divergence measures for HFSs:

DivΓ h1, h2( 􏼁 �
1
l

􏽘

l

j�1

c1Γ h
δ(j)
1􏼐 􏼑 + c2Γ h

δ(j)
2􏼐 􏼑

c1 + c2

⎛⎝ ⎞⎠ − Γ
c1h

δ(j)
1 + c2h

δ(j)
2

c1 + c2

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (7)

where Γ is a real convex function, and ck (k � 1, 2) are the
positive and real numbers.

Among all the real convex functions, Γmay be chosen as
follows:

(i) Γ(h) � p1h + p2 for p1, p2 ∈ R (affine function)
(ii) Γ(h) � exp(ph) for p ∈ R (exponential function)
(iii) Γ(h) � hp for p≥ 1 (power function)

(iv) Γ(h) � |h|p for p≥ 1 (absolute-value function)
(v) Γ(h) � − log(h) (logarithmic function)
(vi) Γ(h) � h × log(h) (combinatorial function)

To simplify the next discussion, hereafter, we only re-
strict Γ by its power type Γ(h) � hp for p≥ 1 together with
c1 � c2 � 1. In view of this, we attain the following class of
divergence measures for HFSs:

Mathematical Problems in Engineering 3



DivΓ h1, h2( 􏼁 �
1
l

􏽘

l

j�1

h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
2􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
1 + h

δ(j)
2

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, p≥ 1. (8)

Remark 1. It is interesting to note that the measure DivΓ
given by (8) will be the divergence measure of Mishra et al.
[10] if we set p � 2.

Before presenting the main properties of divergence
measure DivΓ given by (8), we are going to state the fol-
lowing lemma.

Lemma 1. Assume that hj ≥ 0 for any 1≤ j≤ n. "en, it holds
that

􏽘

n

j�1
hj􏼐 􏼑

p
≤ 􏽘

n

j�1
hj

⎛⎝ ⎞⎠

p

≤ n
p− 1

􏽘

n

j�1
hj􏼐 􏼑

p
, p≥ 1. (9)

Proof. To prove the left-hand inequality, we set
H: � 􏽐

n
j�1 hj and Hj: � hj/H. (en, we easily find that

0≤Hj ≤ 1 together with 􏽐
n
j�1 Hj � 1. Now, from the fact

that (Hj)
p ≤Hj for any p≥ 1, we conclude that

􏽐
n
j�1 (Hj)

p ≤ 􏽐
n
j�1 Hj � 1. (is implies that 􏽐

n
j�1

(Hj)
p � 􏽐

n
j�1 (hj/H)p ≤ 1, and therefore, 􏽐

n
j�1 (hj)

p

≤Hp � (􏽐
n
j�1 hj)

p.
To prove the right-hand inequality, we apply Jensen’s

inequality

Γ
􏽐

n
j�1 cjhj

􏽐
n
j�1 cj

⎛⎝ ⎞⎠≤
􏽐

n
j�1 cjΓ hj􏼐 􏼑􏼐 􏼑

􏽐
n
j�1 cj

, (10)

to Γ(x) � xp with c1 � · · · � cn � 1/n. (us, we conclude
that (1/n 􏽐

n
j�1 hj)

p ≤ 􏽐
n
j�1 1/n(hj)

p, which implies that
(􏽐

n
j�1 hj)

p ≤ np− 1 􏽐
n
j�1 (hj)

p.
Now, we establish the fundamental aim of this study

which is given by the following theorem. □

Theorem 1. Suppose that h1 � h
δ(j)
1 | j � 1, ..., l􏽮 􏽯 and h2 �

h
δ(j)
2 | j � 1, ..., l􏽮 􏽯 are two length-unified HFEs. "en, the

formula DivΓ(h1, h2) given by (8) presents a divergence
measure for any p≥ 1.

Proof. It needs to show that the formula DivΓ(h1, h2)

satisfies the two items given in the beginning of this section,
that is, for any two HFEs h1 � h

δ(j)
1 | j � 1, ..., l􏽮 􏽯 and

h2 � h
δ(j)
2 | j � 1, ..., l􏽮 􏽯, it must be held that

DivΓ h1, h2( 􏼁≥ 0; (11)

DivΓ h1, h2( 􏼁 � 0 if and only if h1 ≈ Eh2. (12)

(e proof of relation (11): from Lemma 1, we find that
(􏽐

2
k�1 h

δ(j)

k )p ≤ 2p− 1 􏽐
2
k�1 (h

δ(j)

k )p is true for any j � 1, . . . , l.
Equivalently,

h
δ(j)
1 + h

δ(j)
2

2
⎛⎝ ⎞⎠

p

≤
h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
2􏼐 􏼑

p

2
, (13)

holds true for any j � 1, . . . , l, and hence,

DivΓ h1, h2( 􏼁 �
1
l

􏽘

l

j�1

h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
2􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
1 + h

δ(j)
2

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≥ 0, for any p≥ 1. (14)

(e proof of relation (12): assume that h: ≈ Eh1 ≈ Eh2
which means that hδ(j): � h

δ(j)
1 � h

δ(j)
2 for any j � 1, . . . , l.

(erefore,

DivΓ(h, h) �
1
l

􏽘

l

j�1

h
δ(j)

􏼐 􏼑
p

+ h
δ(j)

􏼐 􏼑
p

2
⎛⎝ ⎞⎠ −

hδ(j) + hδ(j)

2
􏼠 􏼡

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � 0.

(15)

Conversely, we suppose that DivΓ(h1, h2) � 0, that is,

1
l

􏽘

l

j�1

h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
2􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
1 + h

δ(j)
2

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � 0, (16)

for any p≥ 1. (is implies that

h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
2􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
1 + h

δ(j)
2

2
⎛⎝ ⎞⎠

p

� 0, (17)

for any j � 1, . . . , l.

(e latter equality is possible if and only if the equalities
h
δ(j)
1 � h

δ(j)
2 (j � 1, . . . , l) hold true. (is finding implies that

h1 ≈ Eh2. □

Theorem 2. Suppose that h1 � h
δ(j)
1 | j � 1, ..., l􏽮 􏽯, h2 �

h
δ(j)
2 | j � 1, ..., l􏽮 􏽯, and h3 � h

δ(j)
3 | j � 1, ..., l􏽮 􏽯 are three

length-unified HFEs, and the formula DivΓ(h1, h2) given by
(8) presents a divergence measure. "en, for any
h1≺ Eh2≺ Eh3, the following inequalities hold true:

DivΓ h1, h2( 􏼁≤DivΓ h1, h3( 􏼁; ,

DivΓ h1, h3( 􏼁≤DivΓ h2, h3( 􏼁.
(18)

Proof. Referring to the definition of elementwise ordering
of HFEs given by (4), we observe that h1 ≤ Eh2 ≤ Eh3 is valid if
and only if h

δ(j)
1 ≤ h

δ(j)
2 ≤ h

δ(j)
3 for any j � 1, . . . , l. (erefore,

for any p≥ 1, we have
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DivΓ h1, h2( 􏼁 �
1
l

􏽘

l

j�1

h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
2􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
1 + h

δ(j)
2

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≤
1
l

􏽘

l

j�1

h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
3􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
1 + h

δ(j)
3

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � Di vΓ h1, h3( 􏼁,

(19)

and

DivΓ h1, h3( 􏼁 �
1
l

􏽘

l

j�1

h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
3􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
1 + h

δ(j)
3

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

≤
1
l

􏽘

l

j�1

h
δ(j)
2􏼐 􏼑

p
+ h

δ(j)
3􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
2 + h

δ(j)
3

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� Di vΓ h1, h3( 􏼁.

(20)

□

Theorem 3. Suppose that h1 � h
δ(j)
1 | j � 1, ..., l􏽮 􏽯,

h2 � h
δ(j)
2 | j � 1, ..., l􏽮 􏽯, and h3 � h

δ(j)
3 | j � 1, ..., l􏽮 􏽯 are three

length-unified HFEs, and the formula DivΓ(h1, h2) given by

(8) presents a divergence measure. "en, the following
equalities hold true:

DivΓ h1 ∪ h2, h1 ∩ h2( 􏼁 � DivΓ h1, h2( 􏼁, (21)

DivΓ h1 ∪ h2, h3( 􏼁 �
1
2

DivΓ h1, h3( 􏼁(

+DivΓ h2, h3( 􏼁􏼁,

(22)

DivΓ h1 ∩ h2, h3( 􏼁 �
1
2

DivΓ h1, h3( 􏼁(

+DivΓ h2, h3( 􏼁􏼁.

(23)

Proof. For any j � 1, . . . , l and p≥ 1, we propose the fol-
lowing proofs.

(e proof of relation (21):

DivΓ h1 ∪ h2, h1 ∪ h2( 􏼁 �
1
l

􏽘

l

j�1

h1 ∪ h2( 􏼁
δ(j)

􏼐 􏼑
p

+ h1 ∪ h2( 􏼁
δ(j)

􏼐 􏼑
p

2
⎛⎝ ⎞⎠ −

h1 ∪ h2( 􏼁
δ(j)

+ h1 ∩ h2( 􏼁
δ(j)

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
1
l

􏽘

l

j�1

max h
δ(j)
1 , h

δ(j)
2􏽮 􏽯􏼐 􏼑

p
+ min h

δ(j)
1 , h

δ(j)
2􏽮 􏽯􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

max h
δ(j)
1 , h

δ(j)
2􏽮 􏽯 + min h

δ(j)
1 , h

δ(j)
2􏽮 􏽯

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(24)

In the case where h
δ(j)
1 ≤ h

δ(j)
2 , we easily conclude that

max h
δ(j)
1 , h

δ(j)
2􏽮 􏽯 � h

δ(j)
2 ,

min h
δ(j)
1 , h

δ(j)
2􏽮 􏽯 � h

δ(j)
1 ,

(25)

and hence,

DivΓ h1 ∪ h2, h1 ∩ h2( 􏼁 �
1
l

􏽘

l

j�1

h
δ(j)
2􏼐 􏼑

p
+ h

δ(j)
1􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
2 + h

δ(j)
1

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � DivΓ h1, h2( 􏼁. (26)

For the other case, that is, hδ(j)
1 ≥ h

δ(j)
2 , we conclude again

the latter result. (erefore, we have

DivΓ h1 ∪ h2, h1 ∩ h2( 􏼁 � DivΓ h1, h2( 􏼁. (27)

(e proof of relation (22):
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DivΓ h1 ∪ h2, h3( 􏼁 �
1
l

􏽘

l

j�1

h1 ∪ h2( 􏼁
δ(j)

􏼐 􏼑
p

+ h
δ(j)
3􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h1 ∪ h2( 􏼁
δ(j)

+ h
δ(j)
3

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
1
l

􏽘

l

j�1

max h
δ(j)
1 , h

δ(j)
2􏽮 􏽯􏼐 􏼑

p
+ h

δ(j)
3􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

max h
δ(j)
1 , h

δ(j)
2􏽮 􏽯 + h

δ(j)
3

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(28)

In the case where h
δ(j)
1 ≤ h

δ(j)
2 , the following result is

obtained:

max h
δ(j)
1 , h

δ(j)
2􏽮 􏽯 � h

δ(j)
2 , (29)

which gives rise to

DivΓ h1 ∪ h2, h3( 􏼁 �
1
l

􏽘

l

j�1

h
δ(j)
2􏼐 􏼑

p
+ h

δ(j)
3􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
2 + h

δ(j)
3

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � DivΓ h2, h3( 􏼁. (30)

For the other case, that is, h
δ(j)
1 ≥ h

δ(j)
2 , we achieve that

DivΓ h1 ∪ h2, h3( 􏼁 �
1
l

􏽘

l

j�1

h
δ(j)
1􏼐 􏼑

p
+ h

δ(j)
3􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

h
δ(j)
1 + h

δ(j)
3

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � DivΓ h1, h3( 􏼁. (31)

Now, it follows from (30) and (31) that

DivΓ h1 ∪ h2, h3( 􏼁 �
1
2

DivΓ h1, h3( 􏼁 + DivΓ h2, h3( 􏼁( 􏼁. (32)

(e proof of relation (23): the justification of relation
(23) is similar to that of relation (22). □

Theorem 4. Suppose that h1 � h
δ(j)
1 | j � 1, ..., l􏽮 􏽯,

h2 � h
δ(j)
2 | j � 1, ..., l􏽮 􏽯, and h3 � h

δ(j)
3 | j � 1, ..., l􏽮 􏽯 are three

length-unified HFEs, and the formula DivΓ(h1, h2) given by

(8) presents a divergence measure. "en, the following in-
equalities hold true:

DivΓ h1 ∪ h3, h2 ∪ h3( 􏼁≤DivΓ h1, h2( 􏼁, (33)

DivΓ h1 ∩ h3, h2 ∩ h3( 􏼁≤DivΓ h1, h2( 􏼁. (34)

Proof. For any j � 1, . . . , l and p≥ 1, we offer the following
proofs.

(e proof of relation (33):

Di vΓ h1 ∪ h3, h2 ∪ h3( 􏼁 �
1
l

􏽘

l

j�1

h1 ∪ h3( 􏼁
δ(j)

􏼐 􏼑
p

+ h2 ∪ h3( 􏼁
δ(j)

􏼐 􏼑
p

2
⎛⎝ ⎞⎠ −

h1 ∪ h3( 􏼁
δ(j)

+ h2 ∪ h3( 􏼁
δ(j)

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
1
l

􏽘

l

j�1

max h
δ(j)
1 , h

δ(j)
3􏽮 􏽯􏼐 􏼑

p
+ max h

δ(j)
2 , h

δ(j)
3􏽮 􏽯􏼐 􏼑

p

2
⎛⎝ ⎞⎠ −

max h
δ(j)
1 , h

δ(j)
3􏽮 􏽯 + max h

δ(j)
2 , h

δ(j)
3􏽮 􏽯

2
⎛⎝ ⎞⎠

p

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(35)

Accordingly, all the possible cases are as follows:

h
δ(j)
1 ≤ h

δ(j)
2 ≤ h

δ(j)
3 , (36)

h
δ(j)
2 ≤ h

δ(j)
1 ≤ h

δ(j)
3 , (37)

h
δ(j)
1 ≤ h

δ(j)
3 ≤ h

δ(j)
2 , (38)

h
δ(j)
2 ≤ h

δ(j)
3 ≤ h

δ(j)
1 , (39)

h
δ(j)
3 ≤ h

δ(j)
1 ≤ h

δ(j)
2 , (40)

h
δ(j)
3 ≤ h

δ(j)
2 ≤ h

δ(j)
1 . (41)

From the first case to the last case which are labelled by
(36)–(41), we conclude, respectively, that
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DivΓ h1 ∪ h3, h2 ∪ h3( 􏼁 � DivΓ h3, h3( 􏼁,

DivΓ h2 ∪ h3, h2 ∪ h3( 􏼁 � DivΓ h3, h3( 􏼁,

DivΓ h1 ∪ h3, h2 ∪ h3( 􏼁 � DivΓ h2, h3( 􏼁,

DivΓ h2 ∪ h3, h1 ∪ h3( 􏼁 � DivΓ h1, h3( 􏼁,

DivΓ h1 ∪ h3, h2 ∪ h3( 􏼁 � DivΓ h1, h2( 􏼁,

DivΓ h2 ∪ h3, h1 ∪ h3( 􏼁 � DivΓ h2, h1( 􏼁.

(42)

Clearly, the first case and the second case (i.e, equations
(36) and (37)) give rise to DivΓ(h3, h3)≤DivΓ(h1, h2), and
moreover, the third case and the fourth case (i.e, equations
(38) and (39)) result in DivΓ(h2, h3),DivΓ
(h1, h3)≤DivΓ(h1, h2). (erefore, by taking all the above
results into consideration, we find that

DivΓ h1 ∪ h3, h2 ∪ h3( 􏼁 � DivΓ h3, h3( 􏼁 + DivΓ h3, h3( 􏼁 + DivΓ h2, h3( 􏼁

+ DivΓ h1, h3( 􏼁 + DivΓ h1, h2( 􏼁 + DivΓ h2, h1( 􏼁

≤
1
6

DivΓ h1, h2( 􏼁 + · · · + DivΓ h1, h2( 􏼁
􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽

6

⎛⎝ ⎞⎠ � DivΓ h1, h2( 􏼁.

(43)

(e proof of relation (34): it is proved in a similar way as
the proof of inequality (33). □

4. Hesitant Fuzzy Additive Ratio
Assessment (HFARAS)

In this part of contribution, we modify the framework of
hesitant fuzzy additive ratio assessment (HFARAS) which
was initiated by Mishra et al. [10]. (ey used mainly the
concept of divergence measure for developing the complex
multiple criteria decision-making methodology. (is work
concentrates more on the methodology of Mishra et al. [10],
in which a class of fruitful divergence measures for HFSs is
employed instead. (e resulted methodology is constituted
by the following steps:

Step 1. We initially form each individual decision matrix
corresponding to the evaluation of experts ϵk (k � 1, . . . , r)

as follows:

ϵk D �

C1 C2 · · · Cn

A1
ϵk h11

ϵk h12
ϵk h1n

A2
ϵk h21

ϵk h22
ϵk h2n

⋮ ⋮ ⋮ ⋮

Am
ϵk hm1

ϵk hm2
ϵk hmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

in which the HFS array ϵk hij (i � 1, . . . , m, j � 1, . . . , n)
indicates the rating of alternative Ai corresponding to the
criterion Cj with the weight of ωj.

By the way, the degree of significant for each expert ϵk
(k � 1, . . . , r) is computed by the use of

ϖϵk �
􏽐

l
t�1
ϵk h

δ(t)
ij

􏽐
r
k�1 􏽐

l
t�1
ϵk h

δ(t)
ij􏼐 􏼑

, (i � 1, . . . , m, j � 1, . . . , n),

(45)

where εk hij � εk h
δ(t)
ij | t � 1, . . . , l􏽮 􏽯. Furthermore, it is easily

seen that ϖϵk ≥ 0 and 􏽐
r
k�1 ϖϵk � 1.

Step 2. We aggregate all the individual decision matrices
into the aggregated matrix:

D �

C1 C2 · · · Cn

A1 h11 h12 h1n

A2 h21 h22 h2n

⋮ ⋮ ⋮ ⋮

Am hm1 hm2 hmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (46)

in which

hij � ∪ ϵ1h
δ(t)

ij
∈ϵ1hij,...,ϵr h

δ(t)

ij
∈ϵr hij

1 − 􏽙
r

k�1
1−
ϵk h

δ(t)
ij􏼐 􏼑
ϖϵk

⎫⎬

⎭ | t � 1, . . . , l
⎧⎨

⎩

⎫⎬

⎭,
⎧⎨

⎩ (47)
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for any i � 1, . . . , m and j � 1, . . . , n.

4.1."e Intermediate Steps. Now, if we use the intermediate
steps, then the weight of criteria is to be computed based on
the two parameters: rationality degree and importance
degree.

4.2. "e Rationality Degree

(1) If we employ a divergence measure Div, we then find
the support degree between the criteria Cj and Cl as

S hij, hil􏼐 􏼑 � 1 − Di v hij, hil􏼐 􏼑,

(i � 1, . . . , m, j, l � 1, . . . , n, j≠ l).
(48)

(2) Using the support degree S, we are able to calculate
the total support degree,

TS hij􏼐 􏼑 � 􏽘
n

l�1,l�j

S hij, hil􏼐 􏼑,

(i � 1, . . . , m, j, l � 1, . . . , n),

(49)

for any hij over the criteria Cj.
(3) (e utilization of total support degree TS leads to the

rationality degree

Rj �
1
m

􏽘

m

i�1
TS hij􏼐 􏼑,

(j � 1, . . . , n),

(50)

in which 0≤Rj ≤ 1.
(4) By using the rationality degree Rj, we attain the

overall rationality degree

ORj �
Rj

􏽐
n
j�1 Rj

, (j � 1, . . . , n), (51)

where 0≤ORj ≤ 1.

4.3. "e Importance Degree

(1) We calculate the individual importance degree
matrix ϵk I as follows:

ϵk I �

C1 C2 · · · Cn

ϵ1 ϵ1I1
ϵ1I2
ϵ1In

ϵ2 ϵ2I1
ϵ2I2
ϵ2In

⋮ ⋮ ⋮ ⋮
ϵr ϵr I1

ϵr I2
ϵr hn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (52)

where ϵk Ij denotes the importance degree of crite-
rion Cj given by the kth expert.
Now, all the individual importance degree matrices
can be aggregated into the matrix:

I � 􏽘
εk

C1 C2 · · · Cn

I1 I2 In

⎡⎢⎢⎣ ⎤⎥⎥⎦, (53)

in which

Ij � ∪ ϵ1 I
δ(t)

j
∈ϵ1 Ij,...,ϵr I

δ(t)

j
∈ϵr Ij

1 − 􏽙
r

k�1
1−
ϵk I

δ(t)
j􏼐 􏼑
ϖϵk

⎫⎬

⎭ | t � 1, . . . , l
⎧⎨

⎩

⎫⎬

⎭,
⎧⎨

⎩ (54)

for any j � 1, . . . , n.
(2) (e utilization of aggregated degree Ij leads to the

overall importance degree:

OIj �
s Ij􏼐 􏼑

􏽐
n
j�1 s Ij􏼐 􏼑

, (j � 1, . . . , n), (55)

where s denotes the score function given by (2), and
moreover, 0≤OIj ≤ 1.

Now, with the parameters of overall rationality degree
ORj and overall importance degreeOIj given, respectively, by
(51) and (55), it derives the subjective weights of criteria as

ωj � θORj +(1 − θ)OIj, (j � 1, . . . , n), (56)

where 0≤ θ≤ 1 indicates the adjustment coefficient.
It is worthwhile to mention that the coefficient θ is

chosen in accordance with the actual demand of decision

maker, that is, the maximum value of θ stands for the su-
perior influence of rationality degree of criteria in the as-
sessment, and the minimum value of θ indicates the lesser
influence of importance degree of criteria.

Step 3. We evaluate the jth element of optimal significance
rating by the help of

h
j

O �

max
1≤i≤m

hij􏽮 􏽯, j ∈ Cbenefit,

min
1≤i≤m

hij􏽮 􏽯, j ∈ Ccost,

⎧⎪⎪⎨

⎪⎪⎩
(57)

for j � 1, . . . , n, which results in the optimal significance
rating hO � 􏽐

n
j�1 h

j

O.

Step 4. We are able to normalize each array of aggregated
hesitant fuzzy decision matrix by using the transformation
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ℵ
hij �

hij

max1≤i≤m s hij􏼐 􏼑􏽮 􏽯
, j ∈ Cbenefit,

1 −
hij

max1≤i≤m s hij􏼐 􏼑􏽮 􏽯
, j ∈ Ccost,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(58)

where s denotes the score function given by (2).

Step 5. We calculate the weighted normalized form of de-
cision matrix as

ωℵ
hi � ⊕

j�1

n
ωℵj hij􏼐 􏼑 � ∪ ℵh

δ(t)

i1 ∈ℵhi1 ,...,ℵh
δ(t)

in
∈ℵhin

1 − 􏽙
n

j�1
1−
ℵ

h
δ(t)
ij􏼐 􏼑

ωj

⎫⎪⎬

⎪⎭
| t � 1, . . . , l

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

⎧⎪⎨

⎪⎩
(59)

for any i � 1, . . . , m.

Step 6. We obtain the overall performance rating in terms of

OPi � s
ωℵ

hi􏼐 􏼑, (i � 1, . . . , m), (60)

in which s stands for the score function given by (2).
With the help of parameter OPi, we can estimate the

preference of options. (at means that the greatest value of
OPi specifies the best option, and its lowest value charac-
terizes the worst one.

However, besides the above selection option, we may
assess the optimal option in accordance with the relative
impact of that option being called the utility degree and
evaluated by

Ui �
OPi

hO

. (i � 1, . . . , m). (61)

(e largest value of Ui determines the desirable one.

5. Case Study of the COVID-19 Coronavirus

COVID-19 is the most recognized and thoroughly known
virus by humans in the recent times. According to theWorld
Health Organization report on November 29, 2020, more
than 62,570,316 cases of COVID-19 across the world have
been estimated which cause more than 1,466,426 deaths and
44,671,725 recovered persons [32]. Using data from the
aforementioned report, most people with COVID-19 are
associated with the symptoms and signs including fever
(83%–99%), cough (59%–82%), fatigue (44%–70%), an-
orexia (40%–84%), shortness of breath (31%–40%), sputum
production (28%–33%), and myalgias (11%–35%) [33, 34].

In this contribution, we have selected five medicines to
manage the critical care of COVID-19 patients [35] in-
cluding LPV/RTV-IFNb (A1), favipiravir (A2), LPV/RTV
(A3), remdesivir (A4), and hydroxychloroquine (A5).

However, what is to be noted here is that the antiviral
drugs should be considered not only for their impact on

signs but also for their probable side effects and perfor-
mance. To do this task, we have chosen the following pa-
rameters: anorexia (C1), cough (C2), fatigue (C3), fever (C4),
myalgia (C5), shortness of breath (C6), and sputum pro-
duction (C7) [15, 17, 33]. In order to select an ideal drug,
Mishra et al. [10] presented the assessment values in the
form of linguistic variables together with hesitant fuzzy
preference degrees as those given in Table 1.

Now, if we employ the algorithm of hesitant fuzzy ad-
ditive ratio assessment (HFARAS) presented thoroughly in
Section 4 to the abovementioned problem, then each step of
algorithm can be carried out as follows.

Step 7. On the basis of data given in Table 1 and relation
(45), we get the degree of significant ϖϵk for each expert ϵk
(k � 1, 2, 3) as

ϖϵ1 � 0.3372,ϖϵ2 � 0.2674,ϖϵ3 � 0.3953. (62)

Moreover, Table 2 provides the evaluation of five drugs
performance in accordance with the seven criteria for each of
three experts.

Step 8. (e opinions of three experts are aggregated using
formula (47), and this leads to results expressible in the form
given in Table 3.

5.1. Comparison of Divergence-InitiatedWeights. In this part
of Section 5, we are interested to perform a comparison
between the weight values concluded from the proposed and
the exiting divergence measures [19, 36] to demonstrate
more capabilities of the proposed ones.

Let h1 � h
δ(j)
1 | j � 1, ..., l􏽮 􏽯 and h2 � h

δ(j)
2 | j � 1, ..., l􏽮 􏽯

be two length-unified HFEs. Mishra et al. [19] and Mishra
et al. [36] introduced, respectively, the exponential form of
HFE divergence measures:
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Table 1: (e assessment ratings of criteria.

Linguistic variable Hesitant preference degree
Extremely preferred (EP) (0.90, 1.00)
Strongly preferred (SP) (0.80, 0.90)
Preferred (P) (0.65, 0.80)
Medium (M) (0.50, 0.65)
Undesirable (U) (0.35, 0.50)
Strongly undesirable (SU) (0.20, 0.35)
Extremely undesirable (EU) (0.00, 0.20)

Table 2: (e linguistic variable-based data of the evaluation matrix.

Criteria Experts
Alternatives

A1 A2 A3 A4 A5

C1
ϵ1 P M M SP M
ϵ2 M P SP SM P
ϵ3 M P M SP M

C2
ϵ1 M P P P P
ϵ2 M M M P P
ϵ3 P U P M M

C3
ϵ1 U M M M U
ϵ2 M U M P P
ϵ3 M P M M P

C4
ϵ1 P M M M M
ϵ2 M M P M M
ϵ3 P P P P P

C5
ϵ1 M M U M SU
ϵ2 U SU U P M
ϵ3 U M M P P

C6
ϵ1 U U SU P U
ϵ2 M U P M P
ϵ3 SU M U U SU

C7
ϵ1 U M SU P M
ϵ2 U U M U SU
ϵ3 SU SU U M U

Table 3: (e aggregated form of experts’ opinions.

Criteria
Alternatives

A1 A2 A3 A4 A5
C1 0.684 0.666 0.696 0.804 0.604
C2 0.608 0.554 0.633 0.649 0.690
C3 0.512 0.572 0.549 0.680 0.615
C4 0.633 0.608 0.633 0.624 0.644
C5 0.450 0.476 0.454 0.729 0.548
C6 0.423 0.454 0.469 0.600 0.547
C7 0.370 0.373 0.401 0.604 0.381

Table 4: (e values of ωj corresponding to the divergence measures DivM3 and DivM4.

Criteria ωM3
j

ωM4
j

P � 1.0 P � 1.2 P � 1.4 P � 1.6 P � 1.8 P � 2.0

C1 0.150 0.1502 0.1503 0.1503 0.1503 0.1503 NaN
C2 0.163 0.1629 0.1629 0.1628 0.1628 0.1628 NaN
C3 0.85 0.1449 0.1449 0.1449 0.1449 0.1449 NaN
C4 0.176 0.1758 0.1758 0.1758 0.1758 0.1758 NaN
C5 0.117 0.1177 0.1177 0.1178 0.1178 0.1178 NaN
C6 0.127 0.1271 0.1271 0.1272 0.1272 0.1272 NaN
C7 0.123 0.1214 0.1213 0.1212 0.1212 0.1212 NaN
NaN, “Not-A-Number.”
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Before going more deeply into the definition of next
existing divergence measures, we here point out that the
latter measures cannot discriminate different HFEs correctly
in some situations. (is happens especially when a HFE
contains elements with the condition

h
δ(j)

k + h
l− δ(j)+1
k � 1, (65)

for any j � 1, . . . , l and k � 1, 2. In this situation,

DivM3 h1, h2( 􏼁 � 0,

DivM4 h1, h2( 􏼁 � 0,
(66)

which are not logical and give rise to inconsistent and in-
accurate outcomes.

Bearing the abovementioned shortcoming of DivM1 and
DivM2 in mind, we only examine in detail the next exiting
divergence measures together with the proposed ones in the
current contribution.

Now, we are going to review the following HFE diver-
gence measures, which were, respectively, introduced by
Mishra et al. [10] and Mishra et al. [20]:
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Let us return back again to the algorithm of HFARAS
presented in Section 4, and we execute the steps from Step 8
to Step 12 of that framework.

In order to perform the intermediate steps and obtaining
the rationality degree and the importance degree, we in-
corporate the divergence measures DivM3, DivM4, and DivΓ
given, respectively, by (67), (68), and (8) into (48). (en, to
save more space for convenient storage, we present only the
combined criteria weights ωj (j � 1, . . . , n) which are given
by (56). All the results are, respectively, given in Table 4 and
Table 5, and they are correspondingly shown in Figures 1–3.

Step 9. It is needless to say that for the three different di-
vergence-based processes, the relation (57) returns the
optimal performance rating vector of drug options in the
form of

h
j

O |
7
j�1 � 0.804, 0.690, 0.680, 0.644, 0.729, 0.600, 0.604{ }, (69)

which is extracted from Table 3.

Step 10. Since all the criteria are cost-based criteria,
therefore, we do not need to normalize them.

Table 5: (e values of ωj corresponding to the proposed divergence measure DivΓ.

Criteria
ωΓj

P � 1.0 P � 1.2 P � 1.4 P � 1.6 P � 1.8 P � 2.0

C1 0.1499 0.1499 0.1499 0.1500 0.1500 0.1500
C2 0.1630 0.1630 0.1630 0.1630 0.1630 0.1629
C3 0.1445 0.1446 0.1446 0.1446 0.1446 0.1447
C4 0.1756 0.1756 0.1756 0.1756 0.1756 0.1757
C5 0.1173 0.1174 0.1174 0.1174 0.1175 0.1175
C6 0.1267 0.1268 0.1268 0.1268 0.1269 0.1269
C7 0.1229 0.1228 0.1227 0.1225 0.1224 0.1223
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Figure 1: (e combined criteria weights ωj corresponding to the divergence measure DivM3.
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Figure 2:(e combined criteria weights ωj corresponding to the divergence measure DivM4.(e sixth column is not preserved due to “Not-
A-Number” value.
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Figure 3: (e combined criteria weights ωj corresponding to the divergence measure DivΓ.
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Step 11. (eweighted normalized form of decision matrices
corresponding to the divergence measures DivM3, DivM4,
and DivΓ are, respectively, given in Tables 6, 7, and 8.

Step 12. (e preference orders for the drug options in ac-
cordance with the considered divergence measures DivM3,
DivM4, and DivΓ are determined as those shown in Figures 4–6.

As can be observed, the preference order for the drug
options corresponding to all three cases remains the same as
follows:

Remdesivir A4( 􏼁≻ hydroxychloroquine A5( 􏼁

≻
LPV
RTV

A3( 􏼁≻
LPV
RTV

− IFNb A1( 􏼁≻ favipiravir A2( 􏼁,

(70)

and the desirable drug option is remdesivir (A4).
Although the final outcome of two existing divergence

measures DivM3 and DivM4 is coincided with that of the
proposed divergence measure DivΓ, twomajor issues need to
be addressed here:

(i) (e parametric divergence measure DivΓ provides us
with a class of divergence values (based on the pa-
rameter p≥ 1) wider than that of the nonparametric
divergence measure DivM3, which is contained in the
former as a special case;

(ii) Both divergence measures DivΓ and DivM4 are
parametric, but the latter one is meaningless when
p � 2, and this shortcoming is not going to be visible
in the former one.

Table 6: (e weighted normalized form of decision matrix corresponding to the divergence measure DivM3.

Criteria
Alternatives

A1 A2 A3 A4 A5
C1 0.1028 0.1001 0.1046 0.1208 0.0907
C2 0.0990 0.0902 0.1031 0.1057 0.1124
C3 0.0742 0.0829 0.0795 0.0985 0.0891
C4 0.1113 0.1069 0.1113 0.1097 0.1132
C5 0.0530 0.0560 0.0534 0.0858 0.0645
C6 0.0538 0.0577 0.0596 0.0763 0.0695
C7 0.0449 0.0453 0.0487 0.0733 0.0463

Table 7: (e weighted normalized form of decision matrix corresponding to the divergence measure DivM4 (for p � 1.0).

Criteria
Alternatives

A1 A2 A3 A4 A5
C1 0.1028 0.1001 0.1046 0.1208 0.0907
C2 0.0990 0.0902 0.1031 0.1057 0.1124
C3 0.0742 0.0829 0.0795 0.0985 0.0891
C4 0.1113 0.1069 0.1113 0.1097 0.1132
C5 0.0530 0.0560 0.0534 0.0858 0.0645
C6 0.0538 0.0577 0.0596 0.0763 0.0695
C7 0.0449 0.0453 0.0487 0.0733 0.0463

Table 8: (e weighted normalized form of decision matrix corresponding to the divergence measure DivΓ (for p � 1.0).

Criteria
Alternatives

A1 A2 A3 A4 A5
C1 0.1025 0.0998 0.1043 0.1205 0.0905
C2 0.0991 0.0903 0.1032 0.1058 0.1125
C3 0.0740 0.0827 0.0793 0.0983 0.0889
C4 0.1111 0.1068 0.1111 0.1096 0.1131
C5 0.0528 0.0558 0.0533 0.0855 0.0643
C6 0.0536 0.0575 0.0594 0.0760 0.0693
C7 0.0455 0.0459 0.0493 0.0742 0.0468
(e other data of divergence measures DivM4 and DivΓ for p � 1.2, 1.4, 1.6, 1.8, 2.0 are saved and not expressed in Table 7 and Table 8 due to space limitations.
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Figure 4: (e value of alternatives corresponding to the divergence measure DivM3.
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Figure 5: (e value of alternatives corresponding to the divergence measure DivM4. (e sixth column is not preserved due to “Not-A-
Number” value.

Mathematical Problems in Engineering 15



6. Conclusions

(is contribution offers an ARAS framework being based on
the HFS divergence measure for evaluating mainly the
criteria weights. (e prominent role of HFS divergence
measures are apparent in their parametrically and sym-
metrically properties.

Other main contributions of the present work are
summarized as follows:

(1) Investigating of several properties for the proposed
divergence measures

(2) Pointing out the counter-intuitive cases corre-
sponding to the existing divergence measures versus
the proposed ones

(3) Illustrating the validity and more applicability of the
proposed divergence-based decision-making
methodology

(e direction of future work of this research may be
focused on the other applications such as renewable energy
technology selection, optimal selection of antiviral therapy
for the mild symptoms of COVID-19, and other applications
in the process of bid evaluation [37] and reverse logistics
[38], [39].
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