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Because of its wide range of applications, metric resolvability has been used in chemical structures, computer networks, and
electrical circuits. It has been applied as a node (sensor) in an electric circuit. )e electric circuit will not be able to flow current if
one node (sensor) in that chain becomes faulty. )e fault-tolerant selfstable circuit is a circuit that permits the current flow even if
one of the nodes (sensors) becomes faulty. If the removal of any node from a resolving set (RS) of the circuit is still a RS, then the
RS of the circuit is considered a fault-tolerant resolving set (FTRS) and the fault-tolerant metric dimension (FTMD) is its
minimum cardinality. Even though the problem of finding the exact values of MD in line graphs seems to be even harder, the
FTMD for the line graphs was first discussed by Guo et al. [13]. Ahmad et al. [5] determined the precise value of theMD for the line
graph of the kayak paddle graph.We calculate the precise value of the FTMD for the line graph in this family of graphs.)e FTMD
is a more generalized invariant than the MD. We also consider the problem of obtaining a precise value for this parameter in the
line graph of the dragon graph. It is concluded that these families have a constant FTMD.

1. Introduction and Preliminaries

Network topology is the graphical depiction of electric
circuits. Because convoluted electric circuits (networks) are
difficult to work on and study in their natural state, network
topology is developed to make them simple and intelligible.
Using this technique, any electric circuit (network) can be
changed (moulded) into its corresponding graph; open
circuits replace current sources, while short circuits replace
passive parts and voltage sources. Short circuits are termed
branches in network topology and edges in graph theory
conceptualization, while open circuits are called nodes in
network topology and vertices in pure mathematical graph
theory. )e following is the formal definition of a graphical
depiction of an electric circuit (network).

Definition 1. Let λ(V(λ), E(λ)) be an electric circuit, where
V(λ) and E(λ) are the sets of nodes (vertices) and branches
(edges), respectively. )e order of the electric circuit is
|V(λ)| and the size of the circuit is |E(λ))|.

Figure 1 demonstrates the example of the electric circuit
and its equivalent graph.

Slater and Harary described the concept of resolving sets
(RSs) independently in graphs [1–3], respectively. Metric
basis have been used in robot navigation [4], chemical
structures [5], and computed networks [6]. An electric
circuit will stop working if one node of the circuit becomes
faulty. Hernando et al. [7] established the new invariant
FTRS to resolve such complications. If the removal of one
node from the RS results in another RS, then the RS is called
the FTRS. In this situation, a FTRS solves the problem by
efficiently flowing the current in the circuit when one of the
nodes stops working. )e minimum cardinality of FTRS is
known as the FTMD. Due to the generalized invariant, the
FTMD produces more efficient results than MD. Due to this
fact, researchers started to give attention to computing the
exact values of the FTMD for different families of graphs.

Hernando et al. [7] discussed the invariant FTMD for the
tree graphs and computed the upper bound
β′(G)≤ β(G)(1 + 2.5β(G)− 1) for any graph G. Raza et al. [8],
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Zheng et al. [9], and Afzal et al. [10] applied the concept of the
FTMD in some families of convex polytopes and computed
their exact values. Basak et al. [11] calculated this parameter for
the graphCn(1, 2, 3), and Saha et al. [12] generalized the results
for the graph Cn(1, 2, 3, 4). Hayat et al. [13] and Prabhu et al.
[14] applied this invariant to different computer networks and
found their upper bounds. Somasundari et al. [15], Azeem et al.
[16], Ahmad et al. [17], and Nadeem et al. [18] used the FTMD
on different chemical structures and computed the exact values
of this parameter. Laxman in [19] computed the lower bound
of the FTMD for the cube of the path graph. Koam et al., in
[20], calculated the MD and FTMD of the hollow coronoid
chemical structure.Wang et al., in [21], considered the problem
of finding the FTMD of three types of ladder graphs. Sharma
and Bhat, in [22], calculated the FTMD of three families of the
double antiprism graphs, which equals to 4. For more appli-
cations of the FTMD, see [23–25].

Voronov [26] and Raza et al. [27] determined some im-
portant upper bounds for the king’s and extended Petersen
graphs, respectively. Guo et al. [28] computed the FTMD for
the line graphs of the families of necklace and prism graphs.
Faheem et al. [29] calculated this invariant for the subdivision
graphs of the same families of graphs. Simic et al. [30] and Saha
et al. [31] determined the precise value of the FTMD for the
grid and square of grid graphs, respectively. Ahmad et al. [32]
calculated this parameter for P(n, 2)⊙K1 graph, which equals
to 4. Hussain et al. [33] applied the idea of the FTMD to some
families of gear graphs. Formore applications and results about
the FTMD in engineering, we refer [34–36].

)e following are some essential terminologies and
definitions that assist in calculating our primary results.

Definition 2. )edegree ″dλ(ξ)″ of″ξ″ is the cardinality of
branches that is incident to a node in ξ ∈ V(λ).

Definition 3. )e minimum cardinality of the branches,
between ξ1 − ξ2 path, is known as the distance dλ(ξ1, ξ2)
between ξ1, ξ2 ∈ V(λ).

Definition 4. Let κ � ξ1, ξ2, . . . , ξt  ⊂ V(λ); then, the ab-
solute difference code have t -vector (|dλ(μ1, ξ1) −

dλ(μ2, ξ1)|, . . . , |dλ(μ1, ξt) − dλ(μ2, ξt)|) for any
μ1, μ2 ∈ V(λ) with respect to κ, denoted by A D((μ1, μ2)|κ).

Definition 5. Let κ � ξ1, ξ2, . . . , ξt  ⊂ V(λ); then, the t-order
distance code r(μ|κ) for a node μ ∈ V(λ) is (dλ(μ,

ξ1), dλ(μ, ξ2), . . . , dλ(μ, ξt)) with respect to κ. If the distance
codes for every nodes of the circuit are unique, then the set κ is
said to be a RS of the circuit λ. Moreover, if the absolute
difference codes for any two nodes of the circuit have at least
one nonzero with respect to κ, then κ is called the RS. )e
minimum cardinality of κ is called the MD, denoted by β(λ).

Definition 6. Any RS κ′ of the circuit λ is known as the FTRS
of the circuit if κ′∖ ξ{ } is again a RS of the circuit, where
ξ ∈ κ′. Moreover, if the absolute difference codes for any two
nodes of the circuit have at least two nonzeros with respect to
κ′, then κ′ is called the FTRS.)eminimum cardinality of κ′
is called the FTMD, denoted by β′(λ).

Definition 7. )e line graph of the circuit λ is a new circuit
L(λ), whose nodes are the branches of λ and two branches υ1
and υ2 have a common end node in λ if and only if they are
connected in L(λ).

Following are some important bounds for β′(λ) which
are presented.

Lemma 1 (see [37]). Let λ be any graph; then, β(λ)< β′(λ).

Lemma 2 (see [37]). Let λ≠Pn be any graph; then, β′(λ)≥ 3.

Lemma 3. If the FTMD of any graph λ is 3 and
ξ1, ξ2, ξ3  ⊂ V(λ) is a FTRS in λ, then the degrees of the
vertices ξ1, ξ2, ξ3 are no more than 3.

2. The Fault-Tolerant Resolvability of the Line
Graph of Dragon Graph

Let Cn be a cycle with edge set E(Cn) � e1, e2, . . . , en ; also,
let Pm+1 be a path with edge set E(Pm+1) � f1, f2, . . . , fm .
Dragon graph Tn,m is shown in Figure 2.

To compute our required results, we convert the graph
Tn,m into their line graph L(Tn,m). )e line graph L(Tn,m) of
the dragon graph consists of a cycle of nodes e1, e2, . . . , en 

and the path of nodes f1, f2, . . . , fm , as shown in Figure 3.
)e result of the MD of L(Tn,m) is presented below.

Theorem 1. For any integers m≥ 1 and n≥ 4, we have
β(L(Tn,m)) � 2.

Proof. For even integers n≥ 4, it can be easily verify that
κ � e1, en+4/2  ⊂ V(L(Tn,m)) is the metric generator of
L(Tn,m). For odd integers n≥ 5, it can also be verified that
κ � e1, en+1/2  ⊂ V(L(Tn,m)) is the metric generator of
L(Tn,m). So, β(L(Tn,m)) � 2.

Now, we will compute the FTMD for L(Tn,m). □

Theorem 2. For any integers m≥ 1 and n≥ 4, we have
β′(L(Tn,m)) � 3.

Proof. To calculate our required results, the following are the
cases. □
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Figure 1: Electric circuit and its equivalent graph.
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Case 1. If n is odd. Take κ′ � e2, en+1/2, en+3/2  ⊂ V(L(Tn,m)) for odd in-
tegers n≥ 5. )e distance codes of the nodes ek, where
1≤ k≤ n, are

r ek|κ′  �

1,
−1 + n

2
,
−1 + n

2
 , if k � 1,

−2 + k,
n + 2k − 1

2




,
−2k + n + 3

2
 , if 2≤ k≤

3 + n

2
,

−k + n + 2,
−n + 2k − 1

2




,
−n + 2k − 3

2
 , if

5 + n

2
≤ k≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

)e distance codes for the nodes fk are r(fk|κ′)
� (k + 1, −1 + n + 2k/2, −3 + n + 2k/2), for 1≤ k≤m.

From the above codes, we can conclude that the absolute
difference codes for every pair of nodes have at least two
nonzero in their 3-vector. So, β′(L(Tn,m))≤ 3. From Lemma 1
and )eorem 1, we have β′(L(Tn,m))≥ 3. Hence,
β′(L(Tn,m)) � 3.

Case 2. If n is even.
Take κ′ � e1, en+4/2, f1  ⊂ V(L(Tn,m)) for every even

integers n≥ 4. )e distance codes of the nodes ek, where
1≤ k≤ n, are

r ek|κ′(  �

0,
−2 + n

2
, 1 , if k � 1,

−1 + k,


−n + 2k − 4

2

, k , if 2≤ k≤
n

2
,

−k + n + 1,


−n + 2k − 4

2


, −k + n + 1 , if

n + 2
2
≤ k≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

)e distance codes for the nodes fk with respect to
W′ are r(fk | κ′) � (k, −4 + n + 2k/2, −1 + k), for 1≤ k≤m.

From the above codes, we can conclude that the ab-
solute difference codes for every pair of nodes have at least
two nonzero in their 3-vector. )is shows that
β′(L(Tn,m))≤ 3, and from Lemma 2, β′(L(Tn,m))≥ 3.
Hence, β′(L(Tn,m)) � 3.

3. The Fault-Tolerant Resolvability of the Line
Graph of Kayak Paddles Graph

Kayak paddles graph KP(l, m, n) is a graph made up of two
cycles Cl and Cm having size l and m joined by a path of
length n. We label the branches of cycle Cl by e1, e2, . . . , el ,
the branches of cycle Cm by f1, f2, . . . , fm , and the
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Figure 2: Dragon graph T9,5.
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Figure 3: Line graph of dragon graph T9,5.
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branches of path joining these cycles by h1, h2, . . . , hn , as
shown in Figure 4.

To compute our required results, we need to convert the
graph KP(l, m, n) into the graph L(KP(l, m, n)). )e line
graph of kayak paddles graph L(KP(l, m, n)) consists of
cycle Cl with nodes e1, e2, . . . , el , the cycle Cm with nodes
f1, f2, . . . , fm , and the nodes of path joining these cycles
h1, h2, . . . , hn , as shown in Figure 5.

)e known result about β(L(KP(l, m, n))) is presented
below.

Theorem 3 (see [38]). For any integers n≥ 2 and l, m≥ 3, we
have β(L(KP(l, m, n))) � 2.

Now, we will compute β′(L(KP(l, m, n))).

Theorem 4. For any integers n≥ 2 and l, m≥ 3, we have
β′(L(KP(l, m, n))) � 4.

Proof. To calculate our required results, the following are the
cases. □

Case 3. If l and m both are even.
Take κ′ � e1, e2, f1, f2  ⊂ V(L(KP(l, m, n))) for both

even integers l, m≥ 4. )e distance codes of the nodes ek,
where 1≤ k≤ l, are

r ek | κ′(  �

(−1 + k, |−k + 2|, k + n, 1 + n + k), if 1≤ k≤
l

2
,

l

2
,
−2 + l

2
,
l + 2n

2
,
2 + l + 2n

2
 , if k �

2 + l

2
,

(−k + l + 1, −k + l + 2, −k + l + n + 1, −k + 2 + l + n), if
4 + l

2
≤ k≤ l.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

)e distance codes for the nodes fk, where 1≤ k≤m,
are

f1

f2
f3

f4

f5
f6

f7

e3
e4

e5

e6
e7

e8

e9

e2

e1
h1 h2 h3 h4 h5 h6

Figure 4: Kayak paddle graph KP(9, 7, 6).
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Figure 5: Line graph L(KP(9, 7, 6)).
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r fk | κ′(  �

(k + n, 1 + n + k, −1 + k, |−2 + k|), if 1≤ k≤
m

2
,

m + 2n

2
,
2 + m + 2n

2
,
m

2
,
−2 + m

2
 , if k �

2 + m

2
,

(−k + 1 + m + n, −k + 2 + m + n, −k + m + 1, −k + 2 + m), if
m + 4
2
≤ k≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

)e distance codes for the nodes hk are
r(hk | κ′) � (k, 1 + k, −k + 1 + n, −k + 2 + n), for 1≤ k≤ n.

From the above codes, we can conclude that the ab-
solute difference codes for every pair of nodes have at least
two nonzeros in their 4-vector. )is shows that
β′(L(KP(l, m, n)))≤ 4, but, in Lemma 2,
β′(L(KP(l, m, n)))≥ 3.

Now, to prove that β′(L(KP(l, m, n)))≥ 4, suppose
contrary that β′(L(KP(l, m, n))) � 3, and according to
Lemma 3, we have the following conditions:

(i) Let κ′ � ei, ej, ek  ⊂ V(L(KP(l, m, n))), for
1≤ i< j< k≤ l; then, A D((f1, fm)|κ′) � (0, 0, 0).
So, κ′ is not FTRS.

(ii) Let κ′ � ei, fj, fk  ⊂ V(L(KP(l, m, n))), for
1≤ i≤ l and 1≤ j< k≤m; then,
A D((e1, el)|κ′) � (1, 0, 0). So, κ′ is not FTRS.

(iii) Let κ′ � ei, ej, hk  ⊂ V(L(KP(l, m, n))), for
1≤ i< j≤ l and 1≤ k≤ n; then,
A D((f1, fm)|κ′) � (0, 0, 0). So, κ′ is not FTRS.

(iv) Let κ′ � ei, hj, hk  ⊂ V(L(KP(l, m, n))), for
1≤ i≤ l and 1≤ j< k≤ n; then,
A D((f1, fm)|κ′) � (0, 0, 0). So, κ′ is not FTRS.

(v) Let κ′ hi, hj, hk  ⊂ V(L(KP(l, m, n))), for
1≤ i< j< k≤ n; then, A D((e1, el)|κ′) � (0, 0, 0). So,
κ′ is not FTRS.

From the above discussion, we conclude that there is
no FTRS with cardinality 3. )is shows that
β′(L(KP(l, m, n)))≥ 4. Hence, β′(L(KP(l, m, n))) � 4.

Case 4. If l and m both are odd.

(1) Let l � 3, and for any odd integers m≥ 3, take
κ′ � e1, e3, f1, fm+3/2  ⊂ V(L(KP(3, m, n))). )e
distance codes for the nodes ek, where 1≤ k≤ 3, are

r ek | κ′(  �

−1 + k, 1, k + n,
−3 + m + 2k + 2n

2
 , if 1≤ k≤ 2,

1, 0, 1 + n,
−1 + m + 2n

2
 , if k � 3.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

)e distance codes for the nodes fk, where 1≤ k≤m,
are

r fk | κ′(  �

1 + n, 1 + n, 0,
−1 + m

2
 , if k � 1,

k + n, n + k, −1 + k,
−2k + m + 3

2
 , if 2≤ k≤

1 + m

2
,

−k + 1 + m + n, −k + 1 + m + n, −k + m + 1,
−3 − m + 2k

2
 , if

3 + m

2
≤ k≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

)e distance codes for the nodes hk are
r(hk | κ′) � (k, k, −k + n + 1, −2k − 1m + 2n/2), for
1≤ k≤ n.

(2) Take κ′ � e1, e2, f1, f2  ⊂ V(L(KP(l, m, n))), for
both odd integers l, m≥ 5. )e distance codes for the
nodes ek, where 1≤ k≤ l, are

Mathematical Problems in Engineering 5



r ek | κ′(  �

(−1 + k, |−2 + k|, n + k, 1 + n + k), if 1≤ k≤
l + 1
2

,

−1 + l

2
,
−1 + l

2
,
−1 + l + 2n

2
,
1 + l + 2n

2
 , if k �

3 + l

2
,

(−k + 1 + l, −k + l + 2, −k + l + n + 1, −k + 2 + l + n), if
5 + l

2
≤ k≤ l.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

)edistance codes for the nodesfk, where 1≤ k≤m, are

r fk | κ′(  �

(k + n, 1 + n + k, −1 + k, |−k + 2|), if 1≤ k≤
1 + m

2
,

−1 + m + 2n

2
,
1 + m + 2n

2
,
−1 + m

2
,
−1 + m

2
 , if k �

3 + m

2
,

(−k + 1 + m + n, −k + 2 + m + n, −k + 1 + m, −k + 2 + m), if
5 + m

2
≤ k≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

)e distance codes for the nodes hk are
r(hk|κ′) � (k, 1 + k, −k + 1 + n, −k + 2 + n), for 1≤ k≤ n.
From the above codes, we can conclude that the absolute

difference codes for every pair of nodes have at least two
nonzeros in their 4-vector. )is shows that β′(L(KP(l,

m, n)))≤ 4, but in Lemma 2, β′(L(KP(l, m, n)))≥ 3.
Now, to prove that β′(L(KP(l, m, n)))≥ 4, suppose

contrary that β′(L(KP(l, m, n))) � 3, and according to
Lemma 3, we have the following conditions:

(i) Let κ′ � ei, ej, ek  ⊂ V(L(KP(l, m, n))), for
1≤ i< j< k≤ l; then, A D((f1, fm)|κ′) � (0, 0, 0).
So, κ′ is not FTRS.

(ii) Let κ′ � ei, fj, fk  ⊂ V(L(KP(l, m, n))); for
1≤ i≤ l and 1≤ j< k≤m, then

A D e1, el( |κ′  �

(0, 0, 0), if i �
l + 1
2

,

(1, 0, 0), else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

So, κ′ is not FTRS.
(iii) Let κ′ � ei, ej, hk  ⊂ V(L(KP(l, m, n))); for

1≤ i< j≤ l and 1≤ k≤ n, then
A D((f1, fm)|κ′) � (0, 0, 0). So, κ′ is not FTRS.

(iv) Let κ′ � ei, hj, hk  ⊂ V(L(KP(l, m, n))); for
1≤ i≤ l and 1≤ j< k≤ n, then
A D((f1, fm)|κ′) � (0, 0, 0). So, κ′ is not FTRS.

(v) Let κ′ � hi, hj, hk  ⊂ V(L(KP(l, m, n))); for
1≤ i< j< k≤ n, then A D((e1, el)|κ′) � (0, 0, 0). So,
κ′ is not FTRS.

From the above discussion, we conclude that there is
no FTRS with cardinality 3. )is shows that
β′(L(KP(l, m, n)))≥ 4. Hence, β′(L(KP(l, m, n))) � 4.

Case 5. If m is even and l is odd.

(i) Let l � 3, and for any even integers m≥ 4, take
κ′ � e1, e3, f1, f2  ⊂ V(L(KP(3, m, n))). )e dis-
tance codes for the nodes ek, where 1≤ k≤ 3, are

r ek|κ′  �
(−1 + k, 1, k + n, 1 + n + k), if 1≤ k≤ 2,

(1, 0, 1 + n, 2 + n), if k � 3.


(10)

)e distance codes for the nodes fk, where 1≤ k≤m,
are

r fk|κ′  �

(n + k, k + n, −1 + k, |−k + 2|), if 1≤ k≤
m

2
,

m + 2n

2
,
m + 2n

2
,
m

2
,
−2 + m

2
 , if k �

2 + m

2
,

(−k + 1 + m + n, −k + 1 + m + n, −k + m + 1, −k + m + 2), if
4 + m

2
≤ k≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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)e distance codes for the nodes hk are
r(hk|κ′) � (k, k, −k + n + 1, −k + n + 2), for 1≤ k≤ n.

(2) Take κ′ � e1, e2, f1, f2  ⊂ V(L(KP(l, m, n))) for
any odd l≥ 5 and even m≥ 4 integers. )e distance
codes for the nodes ek, where 1≤ k≤ l, are

r ek|κ′  �

(−1 + k, |−k + 2|, k + n, 1 + n + k), if 1≤ k≤
1 + l

2
,

−1 + l

2
,
−1 + l

2
,
−1 + l + 2n

2
,
1 + l + 2n

2
 , if k �

l + 3
2

,

(−k + l + 1, −k + l + 2, −k + 1 + l + n, −k + 2 + l + n), if
l + 5
2
≤ k≤ l.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

)e distance codes for the nodes fk, where 1≤ k≤m,
are

r fk|κ′(  �

(k + n, 1 + n + k, −1 + k, |−k + 2|), if 1≤ k≤
m

2
,

m + 2n

2
,
2 + m + 2n

2
,
m

2
,
−2 + m

2
 , if k �

2 + m

2
,

(−k + 1 + m + n, −k + 2 + m + n, −k + 1 + m, −k + 2 + m), if
4 + m

2
≤ k≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

)e distance codes for the nodes hW are
r(hk|W′) � (k, 1 + k, −k + 1 + n, −k + 2 + n), for

1≤ k≤ n.
From the above codes, we can conclude that the absolute

difference codes for every pair of nodes have at least two
nonzeros in their 4-vector. )is shows that β′(L(KP

(l, m, n)))≤ 4, but, in Lemma 2, β′(L(KP(l, m, n)))≥ 3.
Now, to prove β′(L(KP(l, m, n)))≥ 4, suppose con-

trary that β′(L(KP(l, m, n))) � 3, and according to Lemma
3, we have the following conditions:

(i) Let κ′ � ei, ej, ek  ⊂ V(L(KP(l, m, n))), for
1≤ i< j< k≤ l; then, A D((f1, fm)|κ′) � (0, 0, 0).
So, κ′ is not FTRS.

(ii) Let κ′ � ei, fj, fk  ⊂ V(L(KP(l, m, n))), for
1≤ i≤ l and 1≤ j< k≤m; then,

A D e1, el( |κ′  �

(0, 0, 0), if i �
l + 1
2

,

(1, 0, 0), else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

So, κ′ is not FTRS.
(iii) Let κ′ � ei, ej, hk  ⊂ V(L(KP(l, m, n))), for 1≤

i< j≤ l and 1≤ k≤ n; then, A D((f1, fm)|κ′) �

(0, 0, 0). So, κ′ is not FTRS.

(iv) Let κ′ � ei, hj, hk  ⊂ V(L(KP(l, m, n))), for
1≤ i≤ l and 1≤ j< k≤ n; then,
A D((f1, fm)|κ′) � (0, 0, 0). So, κ′ is not FTRS.

(v) Let κ′ � hi, hj, hk  ⊂ V(L(KP(l, m, n))), for
1≤ i< j< k≤ n; then, A D((e1, el)|κ′) � (0, 0, 0). So,
κ′ is not FTRS.

From the above discussion, we conclude that there is
no FTRS with cardinality 3. )is shows that
β′(L(KP(l, m, n)))≥ 4. Hence, β′(L(KP(l, m, n))) � 4.

4. Conclusion

We conclude that, in the case of the line graph for the dragon
graph, the FTMD is exactly one more than its MD, and it
exactly doubles the MD in the case of the line graph of kayak
paddles graph [39–44].
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