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Received 14 September 2021; Revised 26 February 2022; Accepted 20 August 2022; Published 18 October 2022

Academic Editor: Dragan Pamučar
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�e energy concentration in the time-frequency analysis has been used as an important feature in many signal processing tasks
such as detection, reconstruction, feature extraction, and classi�cation, especially in applications with nonstationary signals.
Consequently, when considering the energy concentration as a feature, it is of great importance to provide the time-frequency
representation that provides the highest possible concentration for a certain signal type. Measuring time-frequency distribution
concentration allows an appropriate selection of distribution parameters that mostly correspond to the analyzed signal. Di�erent
types of concentration measures have been applied for automatic parameters set up in time-frequency based signal analysers.
Here, we propose to use the Gini coe�cient as an e�cient concentration measure for an appropriate choice of time-frequency
distribution and its parameters. It is proven that the Gini coe�cient can be more suitable than other commonly used measures.
�e advantage of using the Gini coe�cient is demonstrated in examples.

1. Introduction

Time-frequency representations have been widely used in
the analysis of nonstationary signals, particularly the signals
with time-varying spectra. �e time-frequency perspective
brings more information about the signal characteristics and
spectral components behaviour [1]. Particularly, the time-
frequency analysis reveals the energy concentration in a
certain frequency band at a certain time point. However,
there is no single time-frequency representation that can �t
to all kinds of signals, and therefore, many di�erent forms of
time-frequency distributions have been proposed over the
time [1–6]. �e choice of the time-frequency distribution
depends on the nature of the observed process, the number
of spectral components, the rate and law of the instanta-
neous frequency (IF) change, etc. An appropriate time-
frequency distribution will provide the highest possible
energy concentration in the time-frequency domain. For
signals in the real application, it is still a challenge to select an
appropriate distribution among the existing choices, unless

we are well aware of the signal characteristics, but even then
it is di�cult to set the parameters of the chosen distribution
to comply with the expected signal parameters. Conse-
quently, signi�cant research e�orts have been focused to-
ward the design of procedures for automated time-frequency
distribution selection that would facilitate the analysis of
signals in practice [3, 6]. Certainly, the most e�ective so-
lutions are based on the use of concentration measures, such
as the ℓ1-norm that has been currently widely explored in the
area of compressing sensing [7]. In time-frequency analysis,
a very popular measure has been introduced by Jones and
Parks [8]. Here, we propose to use the Gini coe�cient-based
measure of time-frequency concentration, showing that it is
a more reliable indicator than the commonly used measures
[7–10]. �e Gini coe�cient outperforms these common
measures concerning the time-frequency signal analysis in
important scenarios described in this work.

It is interesting to mention that the use of the Gini
coe�cient has been also successfully explored in other in-
teresting signal processing applications. For instance, in [11],
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the authors employed the Gini coefficient in compressive
sensing to provide an efficient measure of the signal’s
sparsity. Particularly, the Gini coefficient has been incor-
porated into a stochastic optimization algorithm to provide
more accurate reconstruction from compressive samples.
Another example is the use of the Gini index in compressive
sensing ISAR imaging [12] providing high-quality image
reconstruction under strong clutter and a very limited
number of measurements. *e improvements (over many
state-of-the-art methods) achieved by using the Gini coef-
ficient-based indexes in feature extraction methods have
been proven in the application of machinery fault feature
extraction [13]. *e use of the Gini coefficient was also
proposed in biomedical signal processing, for measuring the
inequality of the power spectral density of RR intervals in
ECG signals in order to use it as a psychophysiological
indicator of mental stress [14], as well as for measuring the
inequality in EEG waves for an efficient depth of con-
sciousness monitoring [15].

*e paper is organized as follows. In Section 2, an
overview of time-frequency analysis including the com-
monly used time-frequency distributions is provided. Sec-
tion 3 presents the most often used time-frequency
concentration measures and also introduces the Gini co-
efficient in the time-frequency analysis. *e experimental
evaluation of the proposed time-frequency concentration
metrics including the discussion of results is provided in
Section 4, while concluding remarks are given in Section 5.

2. Theoretical Background—Time-
Frequency Analysis

In this section, we provide an overview of different time-
frequency distributions.

*e simplest time-frequency representation is obtained
using a windowed short-time Fourier transform (with s
being a signal, w being a window, n and k are discrete time
and frequency variables, respectively).

STFT(n, k) � 􏽘
N/2−1

m�−N/2
s(n + m)w(m)e

−j2πmk/N
, (1)

whose squared absolute value is known as the spectrogram.
*e spectrogram is characterized by a generally low time-
frequency resolution and concentration. *e improved
concentration is achieved using the Wigner distribution.

WD(n, k) � 2 􏽘
N−1

m�−N

s(n + m)s
∗
(n −m)e

−j4πmk/N
, (2)

which again has its own drawback coming from the qua-
dratic nature and the presence of cross-term. In practical
applications, the modified Wigner distribution, i.e., the
S-method has been commonly used since it eliminates the
cross-terms from the time-frequency domain and allows
much simpler implementation. It is defined as [16]

SM(n, k) � 􏽘
L

i�−L

P(i)STFT(n, k + i)STFT
∗
(n, k −i)

� |STFT(n, k)|
2

+ 2Re 􏽘
L

i�1
P(i)STFT(n, k + i)STFT

∗
(n, k −i)⎡⎣ ⎤⎦,

(3)

where P(i) is the frequency window of length 2L+ 1. It is
interesting to observe that the concentration in the time-
frequency domain is enhanced by increasing the value of
parameter L, but the calculation complexity increases as well.

In the case when the signal’s phase function varies fast, the
higher-order distributions need to be considered. An ap-
propriate choice can be the complex-lag time-frequency
distribution defined as [17, 18]

CTD4(n, k) � 􏽘
N/2

m�−N/2
s(n + m)s

∗
(n −m)s

j
(n −jm)s

−j
(n + jm)

e−j2π/N4mk
. (4)

By analogy with the implementation of the S-method
given by (3), the L-form of distributions can further improve
the concentration when necessary. For instance, the L-form
of the CTD4(n, k) is given by [17]

CTD
L
4(n, k) � 􏽘

N

i�−N

P(i)CTD
L/2
4 (n, k + i)CTD

L/2
4 (n, k −i).

(5)

3. Measuring Concentration in the Time-
Frequency Domain

One of the commonly used measures of sparsity is known as
the ℓ0-norm defined as a number of nonzero elements (K) in
a certain vector:

‖s‖0 � lim
p⟶0

‖s‖
p
p � lim

p⟶0
􏽘
N

n�1
|s(n)|

p
� 􏽘

N

n�1;s(n)≠ 0
1 � K. (6)

2 Mathematical Problems in Engineering



In practical applications especially when the noise is
present, the ℓ0-norm is commonly replaced by the ℓ1-norm:

ℓ1 � 􏽘
N

n�1
|s(n)|. (7)

*emost commonly used time-frequency concentration
measure was introduced in the following equation:

MJP �
L4

L2
􏼠 􏼡

4

�
􏽐n􏽐kTFD

4
(n, k)

􏽐n􏽐kTFD
2
(n, k)􏼐 􏼑

2. (8)

It represents the fourth power of the ratio of L4 and L2
norms of TFD(n,k), where TFD represents the considered
time-frequency distribution. High values of MJP indicate
that the distribution TFD(n, k) is highly concentrated, and
vice versa [6]. In the case of signals with multiple compo-
nents, this measure will favour distribution that provides a
high concentration of certain components although the
other components may be low concentrated. An alternative
measure definition in such cases can be given as follows [6]:

M
p
p � 􏽘

n

􏽘
k

|TF D(n, k)|
1/p⎛⎝ ⎞⎠

p

. (9)

3.1. Using Gini Coefficient in the Time-Frequency Analysis.
In the sequel, we propose using the Gini coefficient to in-
dicate the appropriateness of time-frequency representation
for a certain signal type. For a given set of representation
elements R and its sorted version Rs: | Rs(1)|≤ . . .≤ | Rs(N)|,
the Gini coefficient can be defined as

G(R) � 1 −
2

‖R‖1
􏽘

N

i�1
Rs(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

N −i + 1/2
N

􏼒 􏼓. (10)

Note that the vector of representation elements R is
obtained as a vector of values in the time-frequency plane
captured at the specific time instant (windowed signal
spectrum for an arbitrary time instant).

It is observed as a statistical measure of distribution
inequality, which is scale-invariant and independent on the
size of R. Gini coefficient ranges from 0 to 1 : 0 means total
equality, while 1 indicates total inequality. As such, it can be
more suitable for concentration measurement than the
common measures. For example, the two vectors a� [1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1] and b� [0, 0, 0, 1, 1, 8, 1, 1, 0, 0, 0] have
equal ℓ1 and ℓ2 norms: ‖a‖ℓ1 � ‖b‖ℓ1 � 12, ‖a‖ℓ2 � ‖b‖ℓ2
� 3.46, although a is spread and b is highly concentrated
around the central value 8. On the other hand, G(a)� 0
indicates the equal distribution of elements in a, while
G(b)� 0.86 (close to 1) indicates a high concentration at a
certain element in b. In that sense, the Gini coefficient can be
used to choose the most concentrated time-frequency
representation especially for signals exhibiting complex and
nonlinear behaviour in the time-frequency domain. More-
over, as it will be proved by the examples, it can be used as an
efficient metrics to set the parameters values of the time-
frequency distribution that best fit to the observed signal.

4. Measuring Time-Frequency
Distribution Concentration

4.1. Measuring Concentration for Different Values of Distri-
bution Parameters. Let us observe the signal in the form:

s(n) � e
j(sin(2πn)+cos(2πn)+sin(3πn))

. (11)

*e S-method is considered as the time-frequency
representation. *e parameters of the signal are given as
follows. *e observed time interval of the signal is given by
n� -1+T/N: T/N: 1, where T� 2, while the number of
samples is N� 128. *e Hanning window is assumed with
M� 128 points which is also the size of STFT, i.e., DFTof the
windowed signal part (with M− 1 overlapping between the
consecutive windows).

In order to demonstrate the efficiency of the Gini co-
efficient in depicting the concentration in the time-fre-
quency domain, we have analyzed different values of
parameter L in the calculation of the S-method given by (3).
In Figure 1, the S-method is shown for L � 4, L � 8, L� 16,
and L � 24 (left column). In order to show clearly how the
concentration increases with L, the plot over a single time
instant (all frequencies are included) is shown in
Figure 1—right column for different values of L. By in-
creasing the parameter L, the concentration increases, and
the value of Gini coefficient increases as well. At the same
time, we intend to demonstrate that the values of com-
monly used measures such as the measure MJP defined by
(8) or the ℓ1-norm do not follow properly this improve-
ment in concentration.*erefore, in Table 1, we present the
values of MJP and ℓ1-norm and Gini coefficient. Note that
Gini coefficient is calculated over the entire time-frequency
plane (TFP) as an average value of Gini coefficients cal-
culated for vectors at different time instants, or even using a
single arbitrary chosen time instant (TFL). *e measure of
concentration should increase by increasing L, which is not
the case when observing MJP. On the other side, we may
observe that the ℓ1-norm constantly increases with L, while
in fact it should decrease. Finally, applying the Gini co-
efficients over the TFP and TFL can depict properly the
change in concentration, since both Gini coefficient-based
measures increase with L. Note that the upwards arrow
indicates concentration increasing, while the downwards
arrow indicates the concentration decreasing. Also, the
green colour of arrow indicates the expected behaviour or
the correct indication, while the red colour indicates the
wrong behaviour of the considered measure. *is partic-
ularly means that only the Gini coefficient-based measure
shows the expected behaviour with the increase of pa-
rameter L.

From Table 1, we can also observe that the concentration
measured by Gini coefficient (particularly when observing
the values of Gini cf.—TFP) does not change significantly for
L> 16, and thus, the value L� 16 can be selected as an
optimal choice of parameter for the calculation of the
S-method. Note that higher L requires higher calculation
complexity, so we need to select the lowest possible L
providing high concentration in the time-frequency domain.
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Figure 1: S-method for different values of parameter (L): (a) SM for L� 4 (left), SM at single time instant for L� 4 (right), (b) SM for L� 8
(left), SM at single time instant for L� 8 (right); (c) SM for L� 16 (left); SM at single time instant for L� 16 (right), (d) SM for L� 24 (left),
SM at single time instant for L� 24 (right).*e selected time instant depicted in the right part is marked using the white line in the left part of
the figure.

Table 1: Different concentration measures calculated for the S-method with different values of parameter L.

Case 1:

L

Case 2:

Case 3:

Case 4:

L=4

L=8

L=16

L=24

Concentration Measures
MJP

5.21

5.17

4.95

5.02

0.72

0.75

0.83

0.85

0.781.71·103

1.74·103

1.88·103

1.90·103

0.80

0.82

0.828

ℓ1-norm Ginicf. – TFP Ginicf. – TFL
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*e computation complexity of the Gini coefficient
calculation is of the same order as the calculation of the
ℓ1-norm which is O(N) (N is the number of elements).
Namely, according to (10), the vector norm ‖R‖1 is outside
the summation with complexity O(N), and the computation
of the sum is also of order O(N). In the case ofMJP given by
(8), the calculation complexity is O(N2) for a square matrix
of time-frequency representation as it is the case in the
considered example.

4.1.1. Influence of Noise on the Gini Coefficient. Let us
further analyse the influence of noise on the values of Gini
coefficient as a measure of time-frequency concentration.
Different values of SNR are observed (the noise is added to
the signal in (11)), and the Gini coefficient is calculated for
the S-method and L� 16.*e results are depicted in Figure 2.
Note that the Gini coefficient for the nonnoisy signal case
and L� 16 is 0.82 (as reported in Table 1). It can be observed
from Figure 2 that the value of Gini coefficient does not
change significantly in the presence of noise and increases
quite slowly with the increase of the noise amount, still being
close to the nonnoisy case.

4.2. Gini Coefficient as a Measure of Concentration for Mul-
ticomponent Signals (Real-World Signals). Next, we observe
the application of Gini coefficient as a concentration
measure in optimal parameter selection for time-frequency
representation of multicomponent signals. In that sense, an
example with real-world signal is considered, namely real
radar data containing captured multiple simultaneous
human physical movements. Note that various body parts
have different shifts, since they are moving with various
velocities. *e strongest component corresponds to the
main body movements, while the other components cor-
respond to swinging arms and other body parts. For in-
stance, the swinging arms induce frequency modulation of
the returned signal and generate side-bands about the body
doppler.

*e time-frequency representation is obtained by using
the S-method due to the multicomponent nature of the
analyzed signal. The length of the signal is 2048 samples,
while the length of the applied window is 256 samples
(Gaussian window is used).

Due to the complexity of the considered multicom-
ponent signal, the selection of the convolution parameter L
defining the size of the convolution window is important in
the calculation of an appropriate time-frequency repre-
sentation. In Figure 3, we present the S-method calculated
for different values of parameter L, namely L� {0, 1, 2, 3, 4,
5}. Next, we measure the concentration measure using the
Gini coefficient for each considered case. *e obtained
results are reported in Table 2. It can be observed that the
concentration of components increases with L, achieving
the maximum for L� 3. For higher L, the cross-terms
appear between the auto-components of multicomponent
signal, which is an undesirable effect that degrades the
time-frequency representation.

4.3. Algorithm: Optimal Parameter Selection for TF
Representation. According to the previous analyses, we can
employ Gini coefficient for optimal parameter selection,
but it is necessary to distinguish the case of mono-
component and multicomponent signals. In the case of
monocomponent signals, the concentration will constantly
increase with the increase of parameter L in the case of the
S-method. After a certain value of L, the concentration
improvement will not be significant anymore, and the
algorithm can stop the procedure of increasing L. On the
other hand, in the case of multicomponent signals, al-
though the concentration of auto-components will increase
with L as in the case of monocomponent signals, the cross-
terms appear for a certain value of L as a consequence of
convolving different auto-components. *e Gini coefficient
as a concentration measure will achieve a maximum for the
largest value of L that does not produce cross-terms.
*erefore, a simple algorithm for optimal parameter se-
lection in the case of the S-method is provided in the sequel.
(Algorithm 1)

Having in mind that the Gini coefficient takes values
between 0 and 1, the value of tolerance parameter δ for
monocomponent can be set to 0.01 for the type of signals
consider in the examples. However, for other types of signals
and applications, it can be determined empirically.

4.4. Comparing the Concentration between Different Types of
Distributions. *e signal considered in this example is
characterized by faster instantaneous frequency variations
compared to the previous example. Such time-varying
components usually appear in radar applications and cor-
respond to the microdoppler components bringing useful
information about the fast-moving target parts. Note that
these signals are commonly modeled by using sine (cosine)-
modulated phase terms: s(n) � e(j(Ak sin(akπn)+Bl cos(blπn))),
k� 1, . . ., K, and l� 1, . . ., L.

For instance, let us observe an example of the signal in
the form:

s(n) � e
j(2 sin(2πn)+sin(3πn)+cos(3πn))

, (12)

where the signal parameters and window length are assumed
as in the case of signal given by (11).
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Figure 2: Gini coefficient calculated for S-method and L� 16 for
different values of SNR.
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Due to the fast-varying spectral behaviour, it is nec-
essary to use higher-order time-frequency distribution in
order to provide highly concentrated representation.
*erefore, we observe three different time-frequency dis-
tributions: (a) the S-method, (b) the complex-lag distri-
bution (CTD), and (c) L-form of the CTD. *e aim is to
show that the Gini coefficient can provide more accurate
estimate of the distribution concentration compared to the
measure MJP. *e considered time-frequency distributions
are shown in the left column of Figure 4, while the right
column shows the frequency contents along one arbitrary
time instant (vertical slice of TFD).*e Gini coefficient and
the measureMJP are reported in Table 2 for each considered
case. *e S-method (Figure 4(a)) is calculated for larger L

(L � 16 is used to provide better concentration). *e CTD is
affected by the innerinterference terms that ruin the
concentration (Figure 4(b)). Namely, the spectral com-
ponents are spread along all frequencies, which is reflected
in the lower value of the Gini coefficient (Table 3) compared
to the SM. However, the value of measure MJP for CTD
increases unduly.

Finally, the concentrationmeasures are the highest in the
case of LCTD, where again the Gini coefficient brings more
meaningful information: the value 0.9 is close to the max-
imal value 1 representing an ideally concentrated peak and
consequently the preferred distribution choice. On the other
hand, the values MJP in its absolute amounts do not provide
clear information about the concentration itself [16–18].
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Figure 3: S-method calculated for real radar data, considering different values of parameter L, i.e., L� {0, 1, 2, 3, 4, 5}.

Table 2: Gini coefficient calculated for the S-method of real radar data for different values of parameter L.

L Concentration measure Gini cf.
Case 1: L� 0 40.02
Case 2: L� 1 61.15
Case 3: L� 2 67.36
Case 4: L� 3 68.18
Case 5: L� 4 64.79
Case 6: L� 5 62.09
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Figure 4: (a) SM (left) and plot of its single time instant (right), (b) CTD (left) and plot of its single time instant (right), (c) LCTD (left) and
plot of its single time instant (right).

Input: signal
Set : L� 1
Case 1: multicomponent signal
if TFP(SM (L))>TFP (SM (L− 1)) %TFP(SM (L)) is average Gini coefficient for S-method and chosen L
L� L+ 1;
else
break;
end

Case 2: monocomponent signal
if TFP (SM(L)−TFP (SM(L/2))> δ
L� 2 ∗ L;
else
break;
end

Output: L, SM(L)

ALGORITHM 1: Optimal parameter selection in the S-method calculation.
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5. Conclusions

Improving the energy concentration in the time-frequency
domain and reducing the spectral leakage have been the
focus of research interests for signal processing and feature
selection applications. In order to ease and unify the process
of selecting an appropriate form of time-frequency distri-
bution that can provide a satisfactory level of energy con-
centration, this work proposes the application of Gini
coefficient-based metric for quantifying the concentration in
the time-frequency domain. *e efficient performance of
this measure is demonstrated in two important scenarios,
namely, the selection of time-frequency distribution pa-
rameters as shown in the case of the S-method, as well as in
the comparison of different time-frequency distributions.
*e results have shown that the Gini coefficient provides
more meaningful results comparing to the commonly used
time-frequency measures. *e proposed approach provides
an efficient engineering tool in designing the procedures for
automated time-frequency distribution selection that can
facilitate the analysis of nonstationary signals in practice.
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