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Economic load dispatch should be given special care even when the primary responsibility of any demand response model is to
provide a consistent supply to the load. Demand can be satisfied by the utility grid as well as self-sustaining user sources. If a user
generates excess power after meeting demand, the user can pool it and transfer it to the grid or neighboring consumers. (is is
referred to as the prosumer model, in which the user serves as both a producer and a consumer. Furthermore, some of the surplus
power may be stored in energy storage devices. A sophisticated mathematical model is required to estimate how much power
should be generated, pooled, pulled from the grid, gathered from close users, supplied to nearby customers, and so on. (is paper
tries to present a smart economic load dispatch model for a demand response system that combines a multithreaded swarmmodel
with a reward-based reinforcement system to assure optimal source selection and power flow management. To identify the
optimum cost-effective power sharing model among a user, the grid, and neighboring users, the system uses particle swarm
optimization (PSO) and artificial bee colony (ABC) optimization. Both models have benefits and drawbacks, and not all models
work well with all data input. Using twomodels at the same time consumes a significant amount of time and computational power.
As a consequence, for each data input, an upper bound confidante (UBC) model is used in parallel to select the best economical
swarm model based on a semisupervised reinforcement model. A weighted Boruvka’s algorithm based on transmission line cost
and transmission loss is being used to construct an optimum economic power sharing model, which is backed by swarm models.
(e efficiency of each model is evaluated using the same data for both models, and error analysis is performed. It was discovered
that each model performs differently for various data, and creating a reinforced multithreaded model helps to increase accuracy,
reduce computing time, and improve efficiency.

1. Introduction

1.1. Background. In addition to delivering a consistent and
high-quality supply, every power system model must be
prepared to satisfy demand while expending the least
amount of operational and capital resources. (e task de-
scribed above is termed as economical load dispatch [1].
Economic load dispatch is an inventory management
technology in which the system chooses discrete combi-
nation energy sources from all accessible sources to achieve

the lowest possible costs [2]. (ese challenges must be in-
vestigated in grid-connected microgrid models that com-
prise a diverse set of distributed energy sources (DESs) [3].
Depending on their socio-techno-economic restrictions, any
residential, industrial, or commercial operator could utilize
different energy sources [4]. Each source will have its own set
of operating costs, capital expenditures, start-up delay, in-
tegration complexity, power-generating capacity, efficiency,
pollution scale, operational lifetime, consumption time,
dependability, and stability, to name a few [5]. Some
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characteristics improve responsiveness, while others re-
duce system quality, performance, and economy. All these
factors should be addressed by an intelligent demand
response system without sacrificing steady supply to
demand [6, 7]. In traditional systems, electricity flows
unidirectional from a main source to the load. However, if
the system supports DES, even though the user is generally
a load point, it may occasionally function as a source
point. When a user’s power output exceeds demand, the
energy can be pooled and sold to the grid. As a result, a
diverse set of sources and loads will be dispersed over the
microgrid, with heterogeneous multidirectional power
flow between them [8, 9]. In order to make a combina-
torial optimal decision among all of these attributes, a
sophisticated mathematical model is necessary [10]. (e
DRS aims to identify the optimal solution by evaluating
the fitness of these attributes by emphasizing positive
features while minimizing negative traits within a rea-
sonable range of alternatives.

1.2. Literature Review. Wen et al. examined the state of DES
research in three areas: applications, assessments, and re-
gional support measures [11].(ey also analyzed the current
status of DES approaches focusing on a number of variables
such as energy, environment, society, and economy. (e
prior study offers information on the factors that impact
DES. Tolmasquim et al. investigated electrical distributor
techniques in the context of distributed energy resources,
including SWOT assessments for internal and external
electricity distributors in the DES distribution scenario [12].
(is research examines the advantages and disadvantages of
DES in detail. Wolsink focused on the sociopolitical layer for
societal acceptance of DES, which combines high DES
dispersion in intelligent microgrids to produce poly-
centricity rather than hierarchy [13]. (is research con-
tributes to the qualitative modeling of DRS based on the
influence of consumer interactions on power systems. After
determining the qualitative and quantitative properties of
distributed energy sources, demand response models based
on these inputs are established. McIlwaine et al. examined
global electrical market trends, which include a majority of
DES, as well as a global evaluation of energy storage, with a
focus on power quality services at the distribution level [14].
Ehsan and Yang discussed active distribution network
planning as well as distribution network planning in general
[15]. Iqbal et al. used a nonlinear programming technique to
model a DC microgrid system with peer-to-peer sharing,
which allows users to share surplus energy from distributed
energy resources with minimal system losses, including
distribution and conversion losses, in comparison to the
traditional factory-warehouse transportation method [16].
Zeng et al. presented a state-of-charge (SoC) dynamic
balancing control approach for DES in DC microgrids that
takes into account energy storage capacity disparity to
achieve SoC balancing [17]. (e aforementioned publica-
tions provide information on demand response strategies.
(e next step is to figure out how to put this concept into
action.

Ramadhani et al. reviewed the most up-to-date load flow
methodologies for DES in great detail, including recom-
mendations for the best modeling methodology for distri-
bution networks with PV generating and EV charging [18].
Ullah et al. investigated the advantages and disadvantages of
various integration approaches centered on interconnection
challenges and opportunities for DC microgrids [19]. Holari
et al. constructed a hybrid AC/DC microgrid system with
variable demand and unknown characteristics in order to
provide a coordinated performance strategy for power
electronic converters in grid-connected and islanding op-
erational scenarios for hybrid microgrid power management
[20]. Liaquat et al. examines into a multitude of dispatch
challenges as well as the nature of the objective functions in
consideration. (e study also includes recommendations on
demand management problems as well as the underlying
constraints associated with each optimization function [21].
Luna et al. showcased an energy management system for
coordinating distributed household prosumer activities [22].
Zia et al. proposed a case study for a standalone marine
microgrid system as well as a paradigm for smart demand
management [23]. Ali et al. offered “(e Day Ahead
Shifting” approach for cost and peak load optimization on
the demand side [24]. Iqbal et al. outlines an effective home
energy management system for residential clients in re-
search, which allows them to properly organize demand-
responsive appliances in the context of local solar and energy
storage systems [25]. Bhamidi and Sivasubramani presented
the framework for a two-stage optimization model for smart
home renewable energy resources and battery integration, as
well as the association of prosumer-based energy manage-
ment [26].

(e two preceding articles provide technical information
for developing a load flow analysis within a DC microgrid.
(e next phase is to provide a framework for power
management optimization. Mbuwir et al. optimized the
power exchange between a microgrid and utility grid using
the Jacobi-alternating direction multiplier approach, which
assists in congestion management by breaking down the
optimization problem into subproblems that are addressed
locally and in parallel using fitted Q iteration [27].
Gunantara conducted a thorough examination of multi-
objective optimization methods and applications [28].
Molzahn et al. focused research on distributed algorithms
and their applications in optimized power system control
[29]. Fan et al. provided a thorough and realistic assessment
of recent developments in bioinspired algorithms, bio-
inspired swarm intelligence algorithms, bioinspired eco-
logical algorithms, and multiobjective bioinspired
algorithms [30]. (e above three publications provide
guidance for the application of bioinspired swarm intelli-
gence in power system challenges. Chaudhari utilized ant
colony optimization (ACO), particle swarm optimization
(PSO), artificial bee colony (ABC), firefly algorithm (FA),
and genetic algorithm (GA) to solve the travelling salesman
problem, and provided an overview of the performance of
the various algorithms using some standard benchmarks
[31]. Shareef and Srinivasa Rao shown the combination of
two swarming algorithms, ABC and FA, to improve the
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performance, and this hybrid algorithm is to regulate var-
iables that are adjusted to get the best outcomes [32].

1.3. Motivation. (e responsibility of a demand manage-
ment system is to ensure uninterrupted power supply to the
load while also taking into account heterogeneous social-
techno-economic conditions. Distributed energy sources of
diverse capacity, its type, and manufacturer are used in
modern microgrid models. Furthermore, different sources
may experience a delay in integrating with the grid due to
technological hurdles, and they have a temporal limitation
on how long they may be used. Each source will produce
varying levels of pollution and have varying environmental
implications. Due to the operational characteristics of the
sources and coupling transience, the system will encounter
certain dynamic disturbances that will influence the power
quality. Every source needs a certain amount of upfront
investment as well as ongoing operational costs. (e op-
erational and capital investment in the electric grid has a
substantial influence as well. (e impact of these sources on
the overall quality of the power system is assessed using a
variety of socio-techno-economic factors. As a result, DRS
cannot expect the sources to behave in the homogeneous
way when modeling demand responses.

Because energy networks are typically designed to stave
off peak demand, the aggregate capacity of installed sources
is always substantially greater than the average demand. In
the significant majority of situations, only a modest portion
of the total installed capacity sources is required to fulfill
demand. As previously stated, the DRS need to use so-
phisticated mathematical techniques to select the best
sources from among all those accessible. Transmission line
characteristics, particularly transmission loss and trans-
mission cost, should be given further consideration when
constructing an optimal load flow analysis. In addition to the
fundamental qualities, a prosumer model may be layered on
top of the previously stated models. A prosumer is a person
who consumes as well as generates energy. Extra energy
generated by a user can be pooled and shared with other
users or the grid. When energy is pulled from the nearest
accessible source, transmission loss is reduced, resulting in a
more cost-effective and energy-efficient system. Hence, the
DRS should be built to handle all of these aspects and make
the best combinatorial decision possible between the socio-
techno-economic factors mentioned above.

(e most adaptable approach for dealing with such a
challenge is to combine bioinspired algorithms with a range
of mathematical techniques. As previously stated, this paper
supports the use of multiple optimization models in parallel
threads. (is research employs the artificial bee colony
(ABC) and particle swarm optimization (PSO) methods.
Every method will have its own set of benefits and draw-
backs. PSO is significantly more profitable when there are
multiple local optimum models to choose from, the global
best is less desirable, or convergence is delayed. PSO, on the
other hand, may fail if the preliminary parameters are
mistakenly inputted or if there is a high-dimensional search
space. (e ABC has several advantages, including fast

convergence, cognitive speed, and flexibility, but it can also
lead to premature convergence or erroneous global best
selection. As a result, deciding on the optimal strategy is a
complex process and a reward-penalty ranking system-
assisted reinforcement learning model that may be used to
distinguish between the techniques. Each optimization
strategy is assessed using reinforcement learning based on
the reward - penalty contributions of each source/compo-
nent. (e upper confidence bound method is used to rank
components with a balanced exploration-exploitation ratio.

1.4. Contributions. (e main objective of this paper is to
present a smart economic load dispatch model for a
demand response system that combines a multithreaded
swarm model with a reward-based reinforcement model
to assure optimal source selection and power flow man-
agement. (e swarm models employed in the study are
PSO and ABC, which run in parallel and independently.
(e swarm model is used in two phases in two applica-
tions: economic modeling and optimum source alloca-
tion.(e benefits and limitations of each model vary, as do
the computer processing power and time. Different op-
timization techniques may demonstrate varying efficiency
for different factors and operating ranges. Itis a waste of
time and computing resources to run all of the models.
Hence, only one model is chosen at a time using a
semisupervised reinforcement learning approach. An
upper confidence bound (UCB) is used to rate each ap-
proach in a reward-penalty scenario. Each method is
evaluated after each outcome computation, and the data
are submitted to UCB. Time and iterations are used as
performance criteria to evaluate the models. (e last
phase comprises a weighted Boruvka model for optimal
power flow analysis. (e boundaries, constraints, and
equalities will be built using the prosumer microgrid
model, which will include the following features:

(1) A consumer may only use the main utility grid to
meet their needs

(2) A user may be separated from the utility grid if they
are capable of satisfying their own demand using
their own resources. Swarm models will aid in the
choice of the appropriate providers from all available
sources in such scenarios.

(3) Users with the ability to generate more energy than
their demand can trade it to the utility grid or nearby
users. Adding more power to the grid through a
prosumer model has numerous benefits. (ere are
three options for prosumers.

(a) (e user can sell their excess power to the grid in
exchange for a monetary reward for each unit
they provide. Swarm models can be used to
create a monetization scheme as well as trade of
ratio.

(b) (ere is also a supplement option, in which the
user can pool additional energy into the grid or
other users and then take it back whenever they
need it for free or at a modest compensatory cost.
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Both a monetization and a trading strategy can
be created using swarm models.

(c) Many users may have batteries installed in order
to store energy for future usage. (e surplus
energy may be used to charge the battery or pool
to the grid. Even though the user has more
power, if it is more cost effective, the user can
utilize electricity from the grid while conserving
his own. Swarm models are used to assess how
much power is shared and to simulate the eco-
nomics of sharing.

(e swarm model will aid in source selection as well as
the trading ratio between consumers and producers,
depending on socio-techno-economic limitations.

2. Adaptive Multiswarm Economic Demand
Response Model

(is study aims to develop an intelligent demand response
model based on a multithreaded swarm model and an ex-
ploitation-exploration model. Figure 1 shows a block dia-
gram of the entire model. (e architecture of the system is
divided into two segments. (e first layer has two elements.
One is an edge computing hardware model that comprises
an energy monitoring circuit to track energy consumption
and generation. As an energy monitoring circuit, a potential
divider supported a ZMPT101B DC voltage sensor and a
MAX471 based current sensor that are combined with an
MKL25Z128VLK4 MCU. (e second element is a central-
ized data processing unit (CDPU) made up of a 1GHz
BCM2835 single-core CPU with 512MB RAM that serves as
the system’s central hub and is linked to the edge controller
through WPWAN. For ease of implementation, the data are
acquired from a real-time environment, but the load
scheduling is carried out by manual switching. (e system
will keep track of each user’s energy output and con-
sumption. (e data are transmitted to a central database for
further analysis.(e second layer is the software layer, which
contains all of the mathematical models as well as their code.
(e second layer is made possible by the CDPU itself.
Multiple swarmmodels, UBC, and Boruvka analysis are used
in the software layer at various phases. (e entire presen-
tation is divided into four blocks. UBC will be able to operate
only if there are enough readily available inputs for mod-
eling. As a consequence, the system will only use UBC after
the first six iterations as indicated in the previous paragraph.

Computational Block I - Power system models: the
power system constraints, limits, and objective function
are all set up in this block. (ere are four subblocks in
this block. For an ith user, Pi

L is the load demand, Pi
SG is

the solar generation, Pi
B is the battery supply, Pi

DG is the
generation from diesel generator, Pi

W is the generation
from wind, Pi

MS is the generation from miscellaneous
units, Pi

UG is the ith user consumption from utility grid,
and P

j

X is the generation from jth user so that j can be
varied for each user except j� i, and x is the type of
source. To begin, the systemmakes certain that the total

supply constantly exceeds the load. To do this, four
options are available.
Sub-block I Case I: as seen in equation (1), all power is
drawn from the user’s own sources if they are sufficient.
If the user’s demand is not met by their own sources,
the main grid delivers all of the power, as shown in
equation (2).

P
i
L ≤ P

i
SG + P

i
B + P

i
DG + P

i
W + P

i
MG , (1)

P
i
L ≤ P

i
UG . (2)

Sub-block I Case II: as previously stated, under some
circumstances, some energy is pulled from the utility
grid and some from local sources linked to the utility
grid. (e percentage share of each source is calculated
using a swarm optimization approach based on eco-
nomic and transmission network factors. (e swarm
approach attempts to reduce total power sharing while
lowering overall costs. Equations (3)–(5) provide the
boundaries and constraints for power sharing where W
represents the weight of each source, while C represents
the cost of each share.

P
i
L ≤ WSG ∗P

i
SG + WB ∗P

i
B + WDG ∗P

i
DG + WW ∗P

i
W

+ WMG ∗P
i
MG + WUG ∗P

i
UG + WX ∗P

J+N
X ,

(3)

CSG + CB + CDG + CW + CMG + CUG + C
J..N
X ⇒Min,

(4)

P
i
L − WSG ∗P

i
SG + WB ∗P

i
B + WDG ∗P

i
DG + WW ∗P

i
W

+ WMG ∗P
i
MG + WUG ∗P

i
UG + WX ∗P

J+N
X ⇒Min.

(5)

Sub-block III Case III: even though a user is self-suf-
ficient, if electricity is available at a reduced cost from
the utility grid or nearby sources, the user may utilize it.
(is may also be used to store lower-cost grid energy or
current power production from the user to the battery
for later use when prices rise. (e boundaries and
constraints for power sharing are defined by equations
(6)–(8) where WExt and WUser represent the grid and
user power contributions, respectively, whereas CExt
and CUser reflect the cost constraints of both the grid
and the user.

P
i
L < WExt ∗P

i
Ext + WUser ∗P

i
User , (6)

CExt + CUser⇒Min, (7)

P
i
L − WExt ∗P

i
Ext + WUser ∗P

i
User ⇒Min. (8)

Sub-Block IV Case IV: the user can offer their excess
power to the grid/nearby users in return for a monetary
benefit for each unit provided. Equations (9)–(12)
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illustrate trading strategies and proportions based on
technological and economic aspects. (e system will
seek to maintain user contribution weights Xi as low as
possible, while keeping the user revenue ZOUTas high as
possible and the cost of power acquired from the grid,
ZIN as low as possible.

P
i
L < XUser ∗P

i
User , (9)

ZOut⇒Max, ZIntake,

⇒Min, ZOut + ZIntake( ⇒Min,
(10)

P
i
L − XUser ∗P

i
User ⇒Min, (11)

XOut ∗P
i
out ⇒Max, (12)

whereas Pout determines the power pooled and Puser is
local power drawn. Even though the system maximizes
the cost of income to users, it will always try to reduce
overall cost.
Computational Block II - Optimization: mathematical
models of optimization systems are included in this
section. Even when the identical data are fed into both
swarm models, PSO and ABC, outcomes will differ. As
a result, each block is considered as a separate sub-
chapter, with only one chosen for implementation
based on its performance.
Sub-block I PSO: the first input vector is set to the
overall population. Optimization issues are now
defined by suitable equality constraints, inequality
constraints, and boundary problems. (e cost
function, loss factor, and objective function for each
of the earlier cases have now been established. Using
the aforementioned criteria, the fitness of each
particle in terms of velocity and position is now
evaluated. New values of the global best (GBest) and
local best (LBest) are tested for each cycle. (is ap-
proach is continued until the exit iteration criteria or
the lowest cost are satisfied.(e GBest is utilized as the
output.
Sub-block II ABC: initially, input variables are specified
in terms of the general population. As explained in the
prior section, optimization problems are now given
with proper constraints, boundary problems, and ob-
jective functions. (e next two steps entail the creation
of employer and out-looker bees, followed by a fitness
evaluation based on food sampling at each level. Each
cycle, new values for the global best (GBest), and local
best (LBest) are evaluated. (is process is repeated by
new scout bees until the conditions for the lowest cost
or exit iteration are met. (e GBest is taken as the
output.
To begin, the system will use ABC and PSO to calculate
the exchange of ratios between sources. (e next phase
will result in the optimum source combination based on
economic factors. Based on this data, power flow analysis
is performed using Boruvka load flow analysis.

Computational Block III - Optimal Power Flow: ini-
tially, each user’s linkages to neighbors and the grid, as
well as the grid architecture, are identified. Each
transmission station is now weighted (K) based on
maximum capacity and transmission line cost. Equa-
tion (13) explains the power equation, where U is the
voltage and Y is the transmission line impedance.

Pi � Kij ∗Ui 

N

i,j

Yij ∗Uj. (13)

(e method is now repeated until the least loss path is
identified by selecting the lightest weighted node for a
user. (is procedure is repeated until a user is con-
nected to at least one other user or grid. (e following
step is to utilize UCB to determine the best swarm
model.
Computational Block IV - UCB: after a number of
iterations, this block is utilized to identify the best
swarm optimization model. (is is split down into
sections.
Sub-block I: (e models receive a credit or penalty
based on the number of times their divergence between
real and planned is less than 5%.
Sub-block II: we compute the average reward Ri,
maximum range N, deviation delta, and the ma-
chine’s confidence interval up to n rounds at a time,
and range ri is found as shown in equations (14) and
(15)

ri(n) � Ri

(n)

Ni

(n), (14)

Δi �
��
ri

√
. (15)

Sub-block III: the machine with the maximum UCB is
selected:

ri(n) − Δiri(n) + Δi ⇒SEL. (16)

3. Results and Discussions

A simulation framework is created to put the notion into
action. A proteus design suite simulation is used to generate
sample data. Some of the sample information comes from
the real world and is fed into the simulation. Figure 2 shows a
distribution system consisting of 20 homes each of whom is
connected to one or more of their neighbors. Each user is
connected to a battery, a solar photovoltaic (SPV), a diesel
generator (DG), a microwind source (MWG), and different
miscellaneous sources (MS) such as a natural gas turbine.
(ere is also a direct or indirect link to the main grid (MG).
(e sample status of connected sources for a set of users is
shown in Table 1. Each source has a maximum capacity of
1 kW.

As such, each user will have access to a variety of sources,
and each user may connect to one or more sources at the
same time. Analysis is performed based on this data. Table 2
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displays the example source generation status of five users
whose load is smaller than the production capacity. Table 3
displays the example source generation status of five users
whose load exceeds production capacity.

(e next step is to calculate transmission line factors.
Each transmission line has its own transmission loss, which
is denoted by a per unit value ranging from 0 to 1. Table 4
shows the sample transmission line per unit loss for three
different sample consumers across five different
interconnections.

DATA PREPROCESSING AND THREADING

Initialize Population

SOURCE

Energy Monitoring
Circuit

WIFI CONTROLLER

SWITCHING
CIRCUIT

LOAD

Initialize Population

Determine cost and loss function

Evaluate the fitness Initialize onlooker bees and evaluate fitness

Initialize onlooker bees and evaluate fitness Assign
Scout bee

Yes

YesYes

NoNo No

Evaluate GBest and LBestUpdate Position and Velocities

Update GBest and LBest

Initialize employee bee and evaluate fitness

Evaluate Confidence

Update bounds and confidence

Bound and Confidence Block

Minimum
cost and loss Best solution Exit criteria

Load/Source Distribution

Model selection

Boruvka Weighted Load flow analysis

Rewards and Penalties

Figure 1: Architecture of multiswarm model for an intelligent economic load dispatch.
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8

2

4

16

19

1

Figure 2: Sample grid used for simulation.

Table 1: Sample source connection status of 10 users.

Users Battery SG DG MWG MG
1 No No Yes No Yes
2 Yes Yes No Yes No
3 Yes Yes Yes No No
4 Yes No Yes No Yes
5 No No No No Yes
6 Yes Yes No No Yes
7 No No No No Yes
8 Yes No No No No
9 Yes No No Yes Yes
10 No Yes Yes Yes No
Note. ∗Yes: source is connected; No: source is not connected.
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(e next step is to design the cost factor for transmission
between the users. For the transmission between user, for
each side, the cost of transmission will be different. (is is
due to the fact that a user may sell energy at a separate price
while purchasing energy at a different price. Bidirectional
cost variations for five transmission elements are shown in
Table 5. Table 6 depicts the cost of pooling as determined by
each user over a 24-hour period, whereas Table 7 depicts the
individual cost factor split of five users during a defined time
period. As a result, each user (HG), node, and grid (MG) will
have a unique price indexing, and the system will have to
select the optimal economic model from among all potential
ones.

In the following stage, the optimization method must be
implemented. (e first step is to establish how much power
will be pulled from the grid and how much from local users.
(is was done first for ABC and then for PSO. UBC will use
this information later to choose the best approaches. For
preliminary purposes, the load is adjusted from no load to
full load. For home grid (HG) and main grid (MG), the
performance of each approach across these values is de-
termined by calculation time and iterations. Table 8 depicts
the performance analysis of the swarm models as the load
step varies for 100W. It has been discovered that when it
comes to low load, PSO has demonstrated the best per-
formance; thus, GBest is a suitable choice, whereas lower load
may utilize ABC. However, this is not always the case; thus, a
UCB is used at this stage to select the best model.

(e number of iterations has an effect on the compu-
tations as well. As a result, the influence of iterations is
discovered in the following step. Figure 3 shows the effects of

iterations in terms of RMSE, whereas Figure 4 shows the
consequences of iterations in terms of time. It should be
emphasized that as the number of iterations rises, so does the
accuracy. However, this is not a linear deviation, and if
required, an early stop is possible, as inaccuracy beyond a
certain number of repetitions is less effective. When it comes
to iterations and time, though, it resembles a stepped linear
curve.

After assessing the impact of iterations and time, the exit
criteria were defined. As shown in Table 9, after 100 iter-
ations of the PSO technique, the optimal solution shifts from
local to global best. Hence, it is set as the exit point.

At this point, a comparison of PSO and ABC solution
convergence might be considered. As previously stated, the
optimal output is typically achieved in fewer than 200 it-
erations. Different techniques will indicate different fitness
convergence in distinct ranges. As previously stated, ABC
has a superior impact over PSO in a number of scenarios.
(is does not imply, however, that ABC is always the better
choice. Figure 5 depicts the comparison of PSO and ABC
solution convergence for three different cases for both
methods.

So, once the cost functions and source status have been
determined, the following step is to select a trading ratio
between users and grid. (e fixed cost (FC) and operating
cost (OC) for both the home grid and the main grid, as well
as the transmission line cost, have all been specified. It is
expressed in a scale of 0 to 1. (e cost of pooling is de-
termined by the user and the main grid. After meeting his
own needs, the user will constantly seek to contribute as
much energy to the grid as feasible. (e user will also make
an effort to reduce supply while boosting cost. Table 10
depicts trade pooling for five users. (e same procedure will
be followed for nearby houses that will be replaced by the
utility grid if the cost exceeds the grid’s cost. Table 11 depicts
grid pooling among individual houses while also taking
transmission line characteristics into consideration.

Once the trade of ratio and percentage share of each user
has been determined, the following stage is to locate the best
sources. In most situations, the system will be built to satisfy
peak demand, but because peak load occurs only for a

Table 2: Sample source generation status of 5 users - demand less than generation.

Users Battery (Watts) SG (Watts) DG (Watts) MWG (Watts) MS (Watts) Load (Watts)
1 0 16 257 0 44 321.18
2 0 0 889 0 0 908.82
3 228 710 0 844 12 1850.91
4 700 0 523 0 0 1263.81
5 155 0 827 562 902 2500.02

Table 3: Sample source generation status of 5 users - demand greater than generation.

Users Battery (Watts) SG (Watts) DG (Watts) MWG (Watts) MS (Watts) Load (Watts)
1 0 0 334 573 342 1279
2 0 747 0 151 0 1385
3 0 14 476 0 0 1203.84
4 0 105 637 0 0 1556.1
5 732 761 0 681 0 1878.24

Table 4: Transmission loss parameters between nodes.

Node Transmission loss
1 to 12 0.154
1 to 14 0.486
1 to 17 0.193
2 to 7 0.989
3 to 18 0.906
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Table 5: Cost factors of transmission system between nodes.

Flow A Cost Flow B Cost
1 to 12 0.202 12 to 1 0.323
1 to 14 0.709 14 to 1 0.554
1 to 17 0.054 17 to 2 0.302
2 to 7 0.604 7 to 3 0.96
3 to 18 0.199 18 to 4 0.175

Table 6: Cost of pooling of 5 users for a day.

Time User 1 User 2 User 3 User 4 User 5
0–4 0.456 0.332 0.674 0.294 0.764
4–8 0.489 0.49 0.968 0.54 0.476
8–12 0.782 0.776 0.656 0.617 0.906
12–16 0.471 0.475 0.808 0.316 0.336
16–20 0.723 0.172 0.435 0.755 0.606
20–24 0.45 0.374 0.569 0.136 0.786

Table 7: Cost of pooling divisions of 5 users.

Users Fixed cost Operating cost Transmission cost
User 1 0.054 0.141 0.251
User 2 0.02 0.219 0.092
User 3 0.112 0.163 0.029
User 4 0.027 0.14 0.373
User 5 0.17 0.171 0.232

Table 8: Compassion of ABC and PSO for a full load range.

Time Load (W)
PSO ABC

Best
HG (W) MG (W) Time (m/s) Total (W) HG (W) MG (W) Time (m/s) Total (W)

1 10 6.72 6.96 531 13.68 12.33 0 88.25 12.33 ABC
2 20 14.77 9.21 522 23.98 18.07 3.19 74.66 21.26 ABC
3 25 20.25 10.72 314 30.97 24.42 4.11 75.03 28.53 ABC
4 40 26.67 14.56 307 41.23 41.05 2.53 80.6 43.58 PSO
5 50 39.9 14.22 314 54.12 45.23 8.72 86.4 53.95 ABC
6 60 37.29 30.26 310 67.55 52.51 9.71 90.7 62.22 ABC
7 75 50.25 26.25 314 76.5 64.95 18.88 86.8 83.83 PSO
8 90 57.71 41.37 317 99.08 57.34 36.95 82.3 94.29 ABC
9 100 69.45 38.76 310 108.21 64.12 45.61 87 109.73 PSO
Note. ∗HG: home grid; MG: main grid.
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Figure 3: Effects of iterations in RMSE.
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portion of the day, alternative source combinations will be
available to meet the need. Both PSO and ABC are being
used at this time. Implementation involves two phases:
bounding and nonbounding paradigms.

As long as power generation is fixed, boundary models
are employed to calculate power. Solar and wind energy are
unreliable, and additional power must be obtained through a
grid connection as necessary. In this situation, an

600

400
Ti

m
e

200

0
0 200 400 600

Number of iterations
800 1000

Time

Figure 4: Effects of iterations in time.

Table 9: Drift from LBest to GBest for PSO.

Iterations LBest GBest

10 59.21 59.21
20 50.68 59.21
30 86.84 86.84
40 78.36 86.84
50 69.97 86.84
60 68.73 86.84
70 58.97 86.84
80 25.35 86.84
90 97.18 97.18
100 90.99 97.18
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Figure 5: Comparison of PSO and ABC solution convergence.
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Table 10: Grid pooling decision making with only main grid.

Users
Cost factors Forecasted power

(W) Demand (W)

HG
TF

MG
MG HG Actual demand Pooled power

FC OC FC OC
User 1 0.98 0.82 0.41 0.80 0.20 52.78 85.8 145.49 138.58
User 2 0.84 0.90 0.98 0.26 0.56 61.99 99.88 171.58 161.87
User 3 0.68 0.54 0.10 0.37 0.28 51.99 90.16 170.23 142.15
User 4 0.74 0.40 0.02 0.41 0.51 65.34 51.28 125.94 116.62
User 5 0.76 0.54 0.31 0.31 0.74 39.92 85.37 137.81 125.29

Table 11: Grid pooling decision making with nearby users.

Users
Cost factors Forecasted power

(W) Demand(W)

HG
TF

MG
MG HG Load Pooled

FC OC FC OC
User 1 0.744 0.475 0.649 1 0.516 0 61 67.1 61
User 2 0.737 0.133 0.193 0.729 0.991 45.65 87.67 136.11 133.32
User 3 0.743 0.54 0.557 0.054 0.817 100 18 114.35 118
User 4 0.384 0.005 0.06 0.977 0.325 81.67 67.88 160.61 149.55
User 5 0.269 0.68 0.298 0.031 0.505 100 59.75 160.54 159.75

Table 12: Source selection using PSO.

Battery (WH) SG (W) DG (W) MWG (W) MS (W) Total generation (W) Total load (W)
User 1
Generation 0 641 910 0 146 1697 1000
Cost factor 0.259 0.55 0.707 0.264 0.733 After optimization
Final selection 0 0 910 0 146 1056 1000
User 2
Generation 788 665 734 463 640 3290 2000
Cost factor 0.806 0.111 0.876 0.047 0.795 After optimization
Final selection 788 0 734 0 640 2162 2000
User 3
Generation 405 565 552 432 194 2148 1700
Cost factor 0.334 0.279 0.718 0.963 0.28 After optimization
Final selection 405 565 552 0 194 1716 1700
∗MS: miscellaneous sources.

Table 13: Comparison of PSO and ABC.

PSO

Battery 1
(WH)

Battery 2
(WH)

SG 1
(W)

SG 2
(W)

DG 1
(W)

DG 2
(W)

MWG 1
(W)

MWG 2
(W)

MS 1
(W)

MS 2
(W) Total

966 15 384 443 699 922 188 388 395 795 5195
Total demand 2408.66W

155.23 0.009 54.528 0 13.84 0 10.22 93.97 68.53 105.7 Demand 2456
Time 257 millisecond

ABC

Battery 1
(WH)

Battery 2
(WH)

SG 1
(W)

SG 2
(W)

DG 1
(W)

DG 2
(W)

Wind 1
(W)

Wind 2
(W)

MS 1
(W)

MS 2
(W) Total

966 15 384 443 699 922 188 388 395 795 5195
Total demand 2729.0612W

0 0 384 7.30 0 922 188 367.39 231.50 628.84 Demand 2456
Time 167 millisecond

∗MS: miscellaneous sources.
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unbounded model is employed. Source selection using PSO
is shown in Table 12. Table 13 compares the efficacy of PSO
and ABC when it comes to selecting sources.

When the source optimization is complete, the power
flow analysis is carried out using the specified sources and
transmission line factors. Table 14 provides the nodes and
transmission line factors that were chosen, whereas Figure 6
depicts the optimum power flow between sources.

(e UBC is now being used to determine the optimal
optimization model for the next iteration. UBC is used to
assess each model’s output in terms of both time and ac-
curacy. As a result, the system will continually evaluate the
results of each model. Whenever a new value arrives for
execution, the UBC will choose the best model based on the
incentives and penalties from previous stages. Table 15
shows example of each model’s rewards and penalties,

Table 14: Selected nodes and transmission line factors.

From To TF
0 8 0.7
1 4 0.2
2 6 0.9
2 5 0.5
3 7 0.9
4 7 0.6
5 1 0.4
5 3 0.3
6 5 0.8
6 7 0.8
6 10 0.1
7 1 1
7 9 0.6
8 10 0.2
9 4 0.5
10 1 0.5
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4

79

Figure 6: Optimal power flow between nodes.

Table 15: Selected nodes and transmission line factors.

ABC PSO
Rewards Penalties Rewards Penalties
0.41 0.92 0.18 0.1
0.88 0.79 0.45 0.35
0.21 0.69 0.03 0.23
0.84 0.76 0.69 0.12
0.55 0.28 0.32 0.58
0.28 0.82 0.1 0.9
0.98 0.57 0.96 0.5
0.65 0.83 0.34 0.46
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and Figure 7 provides 360-instances of selections of the
swarm model.

4. Conclusion

(is work developed a smart economic load dispatch model
for a demand response system by combining a multi-
threaded swarm model with reward-based reinforcement
learning. Particle swarm optimization and artificial bee
colony (ABC) optimization methods were used to analyze
users, the grid, and neighboring users in order to determine
the most cost-effective power sharing model. An upper
bound confident (UBC) model is used as a semisupervised
reinforcement model for each input data point to choose the
best swarm model. (e weighted Boruvka’s Algorithm is
used to determine the optimal power flow depending on
transmission line costs and transmission losses. Each
model’s efficiency is assessed using the identical data for
both models, and an error analysis is carried out. RMSE is
used to verify the effectiveness of the findings. When it
comes to economic trade calculations, ABC is proven to have
an advantage over PSO in the majority of cases. PSO is still
more accurate for optimal power sharing. A multithreaded
model with improved accuracy, processing time, and effi-
ciency was constructed supported by UBC.
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