
Research Article
Federated Multitask Learning with Manifold Regularization
for Face Spoof Attack Detection∗

Yingyue Chen,1 Liang Chen,2 Chaoqun Hong ,3 and Xiaodong Wang3

1School of Economic and Management, Xiamen University of Technology, Xiamen, China
2School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China
3School of Computer Science and Information Engineering, Xiamen University of Technology, Xiamen, China

Correspondence should be addressed to Chaoqun Hong; cqhong@xmut.edu.cn

Received 7 September 2021; Revised 29 November 2021; Accepted 17 March 2022; Published 6 June 2022

Academic Editor: Paolo Spagnolo

Copyright © 2022 Yingyue Chen et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Face recognition has been widely used in personal authentication, especially on edge computing devices. However, face rec-
ognition systems su�er from face spoof attack. In this paper, a novel method for face spoof attack detection in edge computing
scenarios is proposed. It is based on federated learning and improves traditional federated learning with multitask learning and
manifold regularization, which is known as federated learning for face spoof attack detection (FedFSAD). In this way, local model
learning is completed on edge devices and global model learning only depends on the trained local models without using the
original image data. Besides, the performance is improved by imposing hypergraph manifold regularization in the global training
of multitask learning. �e results of comprehensive experiments show that the detection performance is improved by about 10%
and robust against stragglers and network delays, which indicates the e�ectiveness of FedFSAD.

1. Introduction

Personal authentication with face recognition has been
widely used currently. However, facial images can be easily
captured or faked. With these images, face spoof attack may
be conducted. In some interactive applications, such as
mobile payment and online banking systems, users are re-
quired to perform some prede�ned actions. In this way, face
recognition systems can ensure that a live person is rec-
ognized [1]. However, interactions may slow down the
authentication process. Besides, requirements are not always
satis�ed. �erefore, more advanced methods without in-
teractions are needed.

To detect face spoof attack without interactions, re-
searchers make use of di�erent image features, such as
motion features [2, 3], texture features [4], and image quality
features [5]. Due to the descriptive power, deep features are
also used [6, 7]. Since only a single type of features may not
su�cient to describe facial images, methods with multiple
features are proposed. Some of them make use of additional
sensors to obtain di�erent types of features, such as near-

infrared illumination [8] and depth information [9]. Atoum
et al. used HSV and YCC images instead of RGB images. In
this way, features in both color images and depth images can
be extracted [10].

To make better use of the above features, learning
methods are also critical. With Local Binary Pattern (LBP)
features, support vector machines (SVMs) were used to train
the detection model [4]. �e blinking-based approach using
conditional random �elds (CRFs) was used to detect face
spoof attack [11]. To improve the e�ciency for edge face
recognition systems, spoof attack score is measured with
Hamming distance [12]. Furthermore, some novel methods
are proposed to handle multiple features. Deep learning is
one of the representative frameworks to train the model with
multiple features. For example, both spatial and temporal
features in CNN were used for attack detection [7]. Shearlet
features, RGB images, and optical ¥ow were used as image
quality, pixel colors, and motion cues by Feng et al. [13].
�ey were also combined in neural networks.

As we know, a large number of face recognition systems
run on edge devices due to the growing storage and
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computational power. *ey are used in mobile authenti-
cation, security entrance, and so on [14]. *ese devices can
be easily connected by a fast network. *erefore, face spoof
attack detection is also needed on these devices. In this
scenario, the data come from different sources. Researchers
try to make better use of these data. Shao et al. made use of
metalearning and the feature space with deep learning to
tackle the domain generalization problem [15]. In addition,
training images are not directly shared between data owners
due to legal and privacy issues, which bring in new challenge in
many applications [16–18]. Face spoof attack detectionmakes use
of facial images, and they are also critical personal information.
To tackle it, researchers try to store data locally and push more
network computation to the edge. Federated learning is a novel
framework proposed to trainmodels on devices [19].*en, these
models can be used in classification or regression without
touching the training images directly [20]. Shao et al. have
done the pioneer work on using federated learning for face
spoof attack detection [21]. However, they focus on tackling
data centers with significant domain shift effectively but not
improving the performance of federated learning framework.

Generally speaking, current methods for face spoof at-
tack detection significantly depend on the quantity of
training data. Federated learning can be used to alleviate this
issue, but existing models cannot collect and use the dis-
tributed data sufficiently and safely. In this paper, a novel
method for face spoof attack detection in edge computing
scenarios is proposed. It is based on federated learning and
improves traditional federated learning with multitask
learning and manifold regularization, which is known as
federated learning for face spoof attack detection (FedF-
SAD). *e contribution can be summarized as follows:

(1) First, we propose a novel framework for face spoof
attack detection in edge computing scenarios. It
models the problem of federated learning with the
multitask learning idea.

(2) Second, the process of multitask learning is further
improved with manifold regularization, in which the
inner relationships among different training tasks
are explored to learn a unified model.

(3) *ird, we propose hypergraph manifold regulari-
zation with sparse representation. Multiple vertices
are connected by one hyperedge and the connec-
tivities among features are computed by sparse
learning.

(4) Finally, with the trained model, face spoof attack is
detected in the classification process. Comprehensive
experiments are conducted to indicate the effective-
ness our method on three commonly-used bench-
mark datasets for face spoof attack detection.

*e remainder of our paper is organized below. In
Section 2, we outline the proposed FedFSAD first and then
introduce it in detail. After theoretical introduction, in
Section 3, we show the improvements of FedFSAD on face
spoof attack detection in edge computing scenarios. Finally,
in Section 4, we provide some discussion about the novelty
and improvements of the proposed method.

2. Federated Multitask Learning with
Manifold Regularization

2.1. Outline. *e proposed method can be outlined by
Figure 1. *e whole framework consists of local model
training in edge subsystems and global model training in the
server. Local models are trained separately and transferred to
the server. *en, the global model is trained using local
models and robust to a small fraction of subsystems un-
predictably dropping.

2.2. Notations. To make the paper clear, we summarize the
definitions of notations in Table 1.

2.3. Federated Learning Framework for LocalModel Learning.
*e proposed method is based on the routine of federated
learning. In the setting of federated learning, local model
training is completed on the edge directly. It brings in two
advantages. First, plenty of data can be collected in a dis-
tributed way. More training data can be used to improve the
performance since the quality of images captured by edge
devices is not always satisfactory [22, 23]. Second, image data
will not be transferred to servers and data privacy can be
preserved [24]. Assuming that X1, X2, . . . , Xm is the facial
image data captured on m edge devices and they can be
represented by image features F1, F2, . . . , Fm. To obtain the
global model, we need to solve the local subproblem and
compute the local models firstly. *en, the parameters of the
global model can be updated by incoming local data. In-
spired by CoCoA [25] and MOCHA [26], for the t-th device
and the corresponding image data denoted by Xt, the t-th
(t≤m) subproblem is defined by

minΔαt
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where w(α) � ∇R∗(Xα). wt(α) represents the values of
w(α) within the t-th task, which indicates the parameters
updated by the t-th task. <wt(α), XtΔαt > is the average of
wt(α) and XtΔαt. L

∗
t is the loss function of the t-th task,

which demonstrates the differences between the predicted
results and the ground truth. δ is a constant parameter to
control the updating speed of the federated model.
c(α) ≔ 1/mR∗(Xα). Mt is the t-th diagonal block of M,
which is defined as

M � (πηΩ⊗ I +(1 − η)I)
− 1

, (2)

where I is the identity matrix. Computing w(α) requires v �

Xα and vt is the t-th block of v, which is required to
transferred between devices and servers.

With α and v, we can define the dual problem as
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where αi
t is the dual variable for the data point (xi

t, yi
t) and y

is the label. *erefore, to solve the above subproblem and
compute Δαt, we have to find good definitions ofL,R, and
M.

2.4. Multitask Learning for Global Model Learning. *e key
of CoCoA and MOCHA is the solution to equation (1). In
the proposed method, we try to improve it. *erefore, we
propose to solve equation (1) using multitask learning. In
multitask learning, we set the training process on each edge
device as a task. *ey can be trained separately and then
combined to obtain a unified model. *is model can be
transferred back to the devices and used for face spoof attack
detection. *ere have been several definitions for L and R

in multitask learning provided by MALSAR [27]. L can be
arbitrary convex loss functions such as the hinge loss and so
on.R can be defined as a clustering loss and computed by a
biconvex function:

R(W,Ω) � λtr WΩW
T

􏼐 􏼑 +(π1 − λ)‖W‖
2
F, (4)

where the t-th column of W indicates the weight of the t-th
task and Ω indicates the weights among different tasks. W

can be updated according to equation (1). However,
updating W with equation (1) requires M and M depends on
Ω. *erefore, the key to the proposed method is computing
an optimal Ω.

2.5. Hypergraph Manifold Regularization with Sparse
Representation. Manifold regularization has been widely
used to describe the relationships among data [28]. Inspired
by it, we make use of manifold regularization to model the
weights among different tasks Ω, which is known as the
Laplacian matrix modeling the relationship of features in the
feature space. In the feature space, the LBP features of images
are considered as the vertices and the relationships are
connectivities among them. In contrast to the traditional
graph, hypergraph allows an edge to connect more than
two vertices. *us, an edge contains a subset of vertices.
Hypergraph has been proved to be a better idea to describe
the connectivities among related data. Notations used in
hypergraph regularization are summarized in Table 2.
Based on the patch alignment framework [29], we propose
Hypergraph Manifold Regularization with Sparse Rep-
resentation (HMRSR), in which Ω can be computed with
two steps:

2.5.1. Part Optimization. We define one patch to be the
vertices connected by one hyperedge. *us, the patch in the
proposed regularization process is defined by

argmin
y∈R|P|
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which means that we randomly choose two vertices in the
subset of vertices contained by a hyperedge, e, and sum the
value of

σ(e)
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Expanding (6) and combining items, we can get the
patch optimization for each hyperedge:
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Matrix E is

E �
−e

T

I

⎡⎣ ⎤⎦, (9)

where e � [1, . . . , 1]T, I is an n × n identity matrix.

2.5.2. Whole Alignment. In the hypergraph, the weight of a
hyperedge is computed by summing the similarity scores of
all the pairs of vertices contained in this hyperedge. *e
similarity score of any pair of vertices is defined as the
distance of image features:

S(p, q) � exp
1
σ
Sim(feat(p), feat(q))􏼒 􏼓, (10)

Multi-task
Learning

Local
Model

Local
Model

Local
Model

Local
Model

LBP
Feature

LBP
Feature
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Feature

Task # 1 Task # 2 Task # m

(b)

(a)
(c)

Figure 1: *e flowchart of the proposed federated learning
framework for face spoof attack detection. (a) For each subsystem
for face recognition, we set up a task to detect face spoof attack.
Facial images are represented by local binary pattern (LBP) fea-
tures. *ese features are used to train local models of subsystems.
(b) Local models are transferred to the server and multitask
learning is applied to train the global model. (c) Finally, the global
model is transferred back to subsystems and it can be used for face
spoof attack detection on them.
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where feat(p) represents the image feature vector of vertex p

and Sim is the similarity of feat(p) and feat(q). With the
hyperedge weighting matrix, the multiview hypergraph
Laplacian can be computed by summing the patch opti-
mization defined in (8) of all the hyperedges:

Ω �
1
2

􏽘
e∈E

􏽘
v∈e

Y

D
1/2
v

EH′D−1
e HE′

Y

D
1/2
v

. (11)

(11), there are three matrix to be initialized. *ey are H,
Dv and De. H is computed by obtaining the most similar
vertices:

H(p, q) �
1, if p is themost similar vertics of q,

0, else.
􏼨 (12)

*en, De can be computed with H. *e l-th item of De

can be computed by

Dell � 􏽘

n

k�1
Hlk. (13)

Finally, Dv can be computed with S. *e l-th item of Dv

can be computed by

Dvll � 􏽘
n

k�1
Slk. (14)

In (10) and (12), we need to define a reasonable mea-
surement for feature similarity. Traditionally, it is computed
by feature distances, such as L2 distances and so on. In this
paper, we make use of sparse learning. In the result of sparse
learning, one vector is represented by the combination of
basis vectors and only about 30% coefficients are nonzero.
*en, the coefficients can be used to represent the rela-
tionship between them [30]. *ere are several existing

Table 2: Definition of notations in the hypergraph regularization.

Name Definition
p, q Vertices in the hypergraph
y(p) *e label of the vertex p

e Edges in the hypergraph
σ(e) *e weight of an edge e

ϵ(e) *e degree of an edge, e. It illustrates how many vertices are connected by e. In traditional graph representation, ϵ(e) � 2.
ξ(m) *e degree of a vertex p. It is calculated by summing the weighting values of edges connected to this vertex.
Dv *e diagonal matrix containing the vertex degrees
De *e diagonal matrix containing the edge degrees
H In this matrix, H(p, e) � 1 if p ∈ e

Σ *e diagonal matrix containing the weights of hyperedges
Y *e set of labels
V *e set of vertices
E *e set of edges

Table 1: Definitions of notations.

Name Type Definition
L Function Loss function in multitask learning
R Function Regularization function in multitask learning
L∗,R∗ Function Conjugate dual functions of L and R

G Function Local subproblem in federated learning
tr Function Trace of the matrix
EXP Function *e exp function
X Matrix Image data
W Matrix Weighted matrix of samples within tasks
I Matrix Identity matrix
F Matrix Image feature matrix
Ω Matrix Weighted matrix among tasks
A Matrix Affinity matrix among tasks
M Matrix Symmetric positive definite matrix defined as M � (λ1Ω⊗ I + λ2I)− 1

α Vector *e dual variables
w Vector Primal variables
v Vector Information transferred among devices
δ Scalar Parameter to control the updating speed of the federated model
λ Scalar Parameter to control the global and local weights.
η Scalar Parameter to control the contribution of task relationships
k Scalar *e number of nearest neighbors
m Scalar *e number of local nodes
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solutions for sparse learning. Among them, we choose the
approximation by L1 norm [31].*en, the l-th image feature
Fl can be represented as the combination of the whole
feature set. In this way, the whole feature set is used as the
basis vectors. *en, the coefficient can be computed by

P1(τ): mina‖β‖s.t. Fl � Fβ. (15)

where β is the resulting coefficients. To compute (15), we
choose the LARS with Lasso modification implemented by
SparseLab [32].

2.6. Implementation Details. *e training process of the
proposed FedFSAD is shown in Algorithm 1. With the
trained model, the input image can be classified as a real
image or a fake image.

3. Simulated Evaluations

3.1. Datasets and Settings. In the experiments, we use three
challenging datasets for face spoof attack detection. *e first
one is the NUAA Photograph Imposter Database (NUAA).
NUAA is collected by generic and commonly-used webcams
[33]. It is collected in three sessions. *e place and illumi-
nation conditions of each session are different.*ere are 5105
real faces and 7509 fake images from 15 subjects in total.

*e second dataset is theMultispectral-Spoof face spoofing
database built at Idiap Research institute (MSSPOOF) 2. It
contains both color images (VIS) and infrared images (NIR)
[34]. Similar to NUAA, images in MSSPOOF are recorded in
different light conditions. *e number of subjects in the da-
tabase is 21.*ere are 70 real faces and 144 fake images for each
subject. Examples of the database are shown in Figure 2.

*e third dataset is the CASIA Face Antisproofing
Database (CASIA-SURF) [35], which is collected by Au-
tomation, Chinese Academy of Sciences 3. It contains 29266
training samples, 9608 validating samples, and 57710 testing
samples. A color image, a depth image, and an infrared
image are provided for each sample.

In the experiments, the performance is measured by the
classification accuracy, which is computed by

ACC �
Correct count
Total count

. (16)

where correct count is the number of correctly classified
samples. Classification is completed with a simple SVM
regularized by the trained model [26]. For cross validation, we
randomly choose 75% samples in training and the rest samples
are used in testing. By default, samples in the datasets are
equally assigned to tasks. In addition, to simulate the scenario
of federated learning, edge subsystems randomly drop. *is
process is repeated 20 times and the average results are shown.
All the facial parts are detected and resized to 200 × 200. A
laptop with i7-9750H CPU, 16G RAM, and GTX1650 GPU is
used. Evaluations are run on MATLAB R2017a.

3.2. Comparison of Different Manifold Learning Methods.
Manifold regularization has been comprehensively studied.
In this part, we demonstrate the effectiveness of the

proposed Hypergraph Manifold Regularization with Sparse
Representation (HMRSR). We compare it with existing
manifold learning methods, such as LDA, DLA, LPP, NPE,
LSDA, and ISOMAP [29]. *e results are shown in Figure 3.
*anks to hypergraph learning and sparse representation, the
proposed HMRSR can capture the connectivities among fea-
tures and achieve better performance.

3.3. Parameter Sensitivities. As shown in Table 1, the pro-
posed method depends on 3 parameters.*ey are δ, λ, and k.
*e setting of δ is quite complicated, and we followMOCHA
[26]. Performance is influenced by λ and k. Reasonable λ and
k should be set for different datasets. *e performance with
different λ is show in Figure 4. We can figure out that the
performance of FedFSAD is achieved when λ � 0.5 for
NUAA, λ � 0.6 for MSSPOOF, and λ � 0.7 for CASIA-
SURF.

*e performance with different k is show in Figure 5. We
can figure out that the performance of FedFSAD is achieved
when k � 15 for NUAA, k � 20 for MSSPOOF, and k � 25
for MSSPOOF.

3.4. Comparison with Existing Methods. First, we emphasize
the improvement of the proposed FedFSAD with multi-task
learning andmanifold regularization. FedFSAD is compared
with a fully global model, a fully local model, and previous
multitask model MOCHA. Besides, some state-of-the-arts
are also included in the numerical comparison. In this ex-
periment, we refer to the following methods:

(1) CoCoA [25]: CoCoA is a communication-efficient
framework for distributed learning. It uses train local
models in a primal-dual setting. In this way, the
amount of transferred information can be reduced.

(2) MOCHA [26]: MOCHA extends CoCoA with
multitask learning and is applied to federated
learning.

(3) SeetaFace6 [36]: SeetaFace is an open-source project
for face applications with computer vision. *e latest
version, which is named SeetaFace6, provides face
spoof attack detection. *e model has been trained
and we directly use it in testing.

(4) Guided Scale Local Binary Pattern (GS-LBP) [4]: GS-
LBP makes use of the edge-preserving property of
the guided scale space. Besides, joint quantization is
used to encode the spatial locality. *erefore, it can
be used as the facial image feature. SVM is used as the
classifier.

*e result is shown in Table 3. *e items with the best
performance in each dataset are highlighted in red. Gen-
erally speaking, CASIA-SURF is the most difficult. Seeta-
Face6 and GS-LBP provide stable performance. However,
they have not considered the improvements with multiple
tasks. *anks to the application of multi-task learning, MO-
CHA achieves better performance than the fully global model
and the fully localmodal. In addition, the proposed FedFSAD is
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Figure 4: Performance with different values of λ. (a) NUAA. (b) MSSPOOF. (c) CASIA-SURF.

Figure 2: Sample images in theMSSPOOF dataset are shown.*e first row is images taken with in VIS, while the second one is images taken
in NIR.*e first column is real accesses.*e second column is VIS attacks.*e third column is NIR attacks. NIR is near-infrared spectra and
VIS is visible spectra. *ey are approaches to capture images.
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Input: Image X, initialized α
Output: Multitask face spoof attack detection model.

(1) Local model learning:
(2) Extract LBP features of X and get F;
(3) Compute feature similarities with (15);
(4) for all each task do
(5) Compute H with (12);
(6) Compute De with (13);
(7) Compute S with (10);
(8) Compute Dv with (14);
(9) Compute Ω with (11);
(10) Compute M;
(11) Update α and W with (1);
(12) Solve dual problem with (3);
(13) end for
(14) Global model learning:
(15) Train the multi-task model with (4);
(16) return *e multi-task model;

ALGORITHM 1: Details of training FedFSAD.
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Figure 6: Comparison on statistical heterogeneity. (a) NUAA. (b) MSSPOOF. (c) CASIA-SURF.
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Figure 5: Performance with different values of k. (a) NUAA. (b) MSSPOOF. (c) CASIA-SURF.
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better than MOCHA due to the usage of manifold
regularization.

Second, we show the robustness of the proposed
FedFSAD. In the scenario of federated learning, stragglers
and network delays are critical. Stragglers appear when it
takes too much time to train local models, while network
delays appear when it takes too much time to transfer local
models to the server. In these experiments, we take CoCoA
and MOCHA into comparison and show the results on
statistical heterogeneity and system heterogeneity. *e re-
sults are shown in Figures 6 and 7. As the time elapse, primal
suboptimality can be reduced. We can figure out that the
proposed FedFSAD is robust and outperforms state-of-the-
arts when stragglers and network delays appear. We also
conduct the cross datasets testing, which is shown in Table 4.
We can figure out that the proposed method is still appli-
cable in cross-set scenario. Besides, if a larger training set,
such as CASIA-SURF, is used, the performance is better.

4. Conclusion and Discussion

According to the methodology of face spoof attack detection
and the improvements of simulated performance, the

novelty and contribution of the proposed FedFSAD can be
shown.

First, the proposed method tries to tackle the issue of face
spoof attack detection on edge devices. Based on the framework
of federated learning, we introduce multitask learning.
*erefore, we proposed a solution to federated learning with
multitask learning. Besides, it is improved by using manifold
learning. In this way, the relationships among tasks on edge
devices are explored by hypergraph manifold regularization
with sparse representation.*erefore, the proposedmethod is a
novel method for face spoof attack detection.

Second, comprehensive simulation has been conducted.
According to the results, FedFSAD outperforms exiting
methods on accuracy of face spoof attack detection. It proves
that a better model is obtained with multitask learning and
manifold learning. Besides, we simulate the situations of
stragglers and network delays. Although some information
is late or missed in these situations, FedFSAD is still better
than exiting methods. In this way, robustness is also
improved.

In the future, we will focus on the unexpected problems
on edge devices, such as hardware failure, network dis-
connection, and so on. In these situations, both the per-
formance and robustness can be further improved.
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Figure 7: Comparison on system heterogeneity. (a) NUAA. (b) MSSPOOF. (c) CASIA-SURF.

Table 3: Comparison of different models and methods.

Model NUAA MSSPOOF CASIA-SURF
Global 0.777 ± 0.031 0.739 ± 0.131 0.614 ± 0.119
Local 0.872 ± 0.013 0.512 ± 0.129 0.533 ± 0.12
MOCHA 0.993 ± 0.003 0.997 ± 0.001 0.819 ± 0.006
SeetaFace6 0.886 ± 0.007 0.793 ± 0.005 0.736 ± 0.013
GS-LBP 0.861 ± 0.005 0.776 ± 0.003 0.644 ± 0.015
FedFSAD 0.996 ± 0.001 0.998 ± 0.003 0.871 ± 0.005

Table 4: Cross dataset testing.

Train
NUAA MSSPOOF CASIA-SURF

NUAA — 0.633 ± 0.114 0.751 ± 0.135
MSSPOOF 0.798 ± 0.118 — 0.867 ± 0.123
CASIA-SURF 0.736 ± 0.117 0.589 ± 0.109 —

8 Mathematical Problems in Engineering



Data Availability

*e NUAA dataset is provided for research purposes to a
researcher only and not for any commercial use. *e data
cannot be released and the link cannot be redistributed
without the authors’ permission.*erefore, we contact them
and obtain the data with permission. *e MSSPOOF dataset
is available at https://www.idiap.ch/dataset/msspoof.
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