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Transportation is regarded as one of the most important issues currently being researched; this issue needs the search for
approaches or processes that might lessen many contemporary tra�c concerns. Congestion, pollution, and accidents have
escalated lately, negatively impacting urban environments, economic development, and citizens’ lifestyles.e rise of illnesses and
epidemics throughout the world, such as COVID-19, has created an urgent need to �nd the best way to save people’s lives. e
vehicle routing problem (VRP) is a well-known moniker for improving transportation systems and is regarded as one of the
ancient and contemporary di�culties in route planning applications. One of the main tasks of VRP is serving many customers by
determining the optimal route from an initial point to a destination on a real-time road map. e best route is not necessarily the
shortest-distance route, but, in emergency cases, it is the route that takes the least �tness cost (time) and the fastest way to arrive.
is paper aims to provide an adaptive genetic algorithm (GA) to determine the optimal time route, taking into account the
factors that in�uence the vehicle arrival time and cause delays. In addition, the Network Analyst tool in ArcGIS is used to
determine the optimal route using real-time map based on the user’s preferences and suggest the best one. Experimental results
indicate that the performance of GA is mainly determined by an e�cient representation, evaluation of �tness function, and other
factors such as population size and selection method.

1. Introduction

Transportation problems, which many countries have faced,
have been considered vitally signi�cant in the last few de-
cades; these problems necessitate a search for new tech-
niques or alternatives that could determine the shortest time
routes between any two locations. e vehicle routing
problem (VRP) appeared for the �rst time in 1959 [1] to
reduce the total route cost on continuously updated road
maps. Several situations, particularly emergencies, require
developing such techniques because the shortest-distance
path sometimes is insu�cient to save valuable human lives;
the shortest-time route is optimum.

Two distinct types of VRP have been extensively ex-
plored individually, while appearing to be the same or

overlapping at times due to mutual interests in network-
based optimization models and techniques. First, a dynamic
VRP that deals with dynamic road networks is a well-known
and extensively studied class. Several dynamic and
changeable characteristics, including tra�c �ow level, un-
anticipated occurrences, and weather conditions, impact
such networks. e second type of VRP is the timetabled or
scheduled VRP, which is concerned with public trans-
portation and services involving the conveyance of pas-
sengers, such as buses, and operates primarily on regular
timetables and trip schedules for public use.

is paper proposes a newly developed GA applied on a
weighted directed graph representing a real-time road
network of the study area, Al-Salt city in Jordan. An inte-
grated ArcGIS Network Analyst tool has been used to
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visually establish the optimal time route from a source point
to the destination and suggest potential routes based on user
preferences.

GA consists of consecutive procedures that attempt to
find the best solutions to problems when it is possible to
define the criteria used to evaluate and estimate the best
solutions.

+e proposed GA finds the shortest-time route with
fitness function, which calculates the time influenced by
different factors.+e fitness function uses static and dynamic
parameters to calculate each path’s fitness value. +e fixed
parameters tend to be almost constant through time as
follows:

(1) Route distance: the distance is the essential criterion
for the shortest path problem; GA uses the road
length as weight in the directed graph for obtaining
the best route.

(2) Easiness of driving: the safer and more comfortable
route is also a driver preference criterion. +e
proposed GA should find a vehicle route that ach-
ieves the driver requests based on this criterion;
furthermore, the determined solution should avoid
influencing factors like traffic signals.

(3) Streets conditions: these include street type, width,
street topology, and street regulations (e.g., allowed
velocity limit); the street conditions can be collected
using cameras, sensors, car navigation system, and
geodatabase of the real-time map. +e proposed
technique obtains the above parameters from the
geodatabase of Al-Salt downtown map.

+e dynamic factors, such as residential density, are
relatively variable throughout time (low, medium, and high
density). Travel time reflects the time spent travelling by
automobile, such as rush hour in the morning from 6 a.m. to
10 a.m. +e residential density in a given region may be
calculated using real-time map data and then updated on a
regular basis utilizing cameras and sensors, particularly
during peak hours.

2. Related Work

Several researchers have made a considerable effort to op-
timize transportation systems by improving and developing
various algorithms to solve VRP problems in route planning
systems. Figure 1 shows the most popular algorithms for
determining the optimal route in VRP, and they are clas-
sified as follows.

2.1. Exact Algorithms. A comparative study has been con-
ducted for different VRP algorithms to evaluate their ef-
fectiveness in real-time routing applications and simulate
the performance of Dijkstra’s algorithm (DA) among them
[2]. Position parameter [3, 4] was added to DA using the
global positioning system (GPS). Once GPS retrieves the
current position, DA calculates the distance from the source
to every node in the graph [5, 6].

+e researchers in [7] improved the DA; moreover, they
have examined the weaknesses of other shortest path al-
gorithms. Dijkstra algorithm was also applied in public
transport planning system for Bangkok Metropolitan Area
for Buses as in [8], intelligent bus transportation system in
Philippines [9], shortest-distance bus routes in Yangon city
[10], and parking system in Malaysia [11]. Other research
works [12, 13] used breadth-first traversal (BFT) to improve
the efficiency of DA in the searching process for the best
solution for VRP.

2.2. Heuristic Algorithms. A∗ search algorithm has been
studied and used to find the point-to-point shortest route
using a weighted directed graph [14]. Another research [15]
shows that the execution time of DA is lower than the A∗
search algorithm when a large number of nodes are selected.
A public transportation system of Yangon’s downtown area
applied the A∗ approach in finding the shortest route [16].
+e research in [17] has applied the branch-and-bound
algorithm on the cost function f(x), while the branch-and-
cut algorithm was used in [18, 19] to solve the vehicle as-
signment problem and the two-echelon vehicle routing
problem, respectively.

2.3. Metaheuristic Algorithms. GA is an evolutionary tech-
nique developed for the first time by Holland et al. in 1975
[20]. GA always begins with an initial population of ran-
domly selected chromosomes; each chromosome represents
a potential solution containing a combination of genes [21].

GA commonly uses one crossover and one mutation
operator to solve the problem and determine a new optimal
solution, but researchers in [11] defined one crossover and
three mutation operators to find the optimal path.
Depending on the experimental results, the algorithm was
quick, prosperous, and stable and had a good convergence
with high efficiency in determining the shortest emergency
route [22]. Variable-length chromosomes with string type
are proposed in [23].

When compared to other recent metaheuristics, GA
offers a wide range of applications, including a vehicle
routing problem (VRP) combining time frames [24–30] and
a school bus routing issue [31–33]. A route guiding system
used GA in a mobile application to determine the quickest
driving time for Ankara’s traffic network [34].

Several metaheuristic algorithms are also applied to solve
VRP problem like Ant Colony Optimization (ACO) as in
[35–38], Tabu Search in [39–43], and Particle Swarm Op-
timization (PSO) in [44]. Figure 1 summarizes the main
three approaches, exact, heuristic, and metaheuristic algo-
rithms, applied in VRP using real-time maps.

Many studies have demonstrated the effectiveness and
importance of GIS in optimizing transportation systems and
determining the most fitting routes for vehicles.

+e ArcGIS Network Analyst tool has recently been used
to optimize several route planning applications. +e re-
searchers in [45, 46] have used GIS Network Analyst to
optimize the solid waste management field. In [47], the
authors planned to provide information about tourist
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attractions in Bandung and create a tourism-specific mass
transit route. Based on a network-based spatial analysis of a
GIS-basedmap, the study in [48] uses Dijkstra’s algorithm to
identify the shortest-distance route.

+is study uses an integrated Network Analyst tool with
a GA approach for vehicle routing optimization to deter-
mine a multiobjective optimal route based on user prefer-
ences. Generally, GA works well in problems with a huge
solution space, long search times, and complex fitness
functions. Furthermore, it performs well and gives better
results when the function is discontinuous and noisy or has
many local optimums. According to this study, GA becomes
more complex when there are a considerable number of
nodes in the real-time road network because unlimited-
length chromosomes are created.

3. Study Area

Al-Salt city is one of the ancient and densely populated cities
in Jordan. +e city is located about 30 kilometers northwest
of Amman, the capital city of Jordan, between longitude (35°
43′ 30″) east and latitude (32° 02′ 30″) north, at the height of
795 to 1,110 meters above sea level.

+e study area represents road networks in the down-
town of Al-Salt city; the greater municipality of Al-Salt
provided the study with real-time maps and the road net-
works for the study area in cooperation with Al-Balqa’
Applied University, which provided the study with the re-
quired equipment and tools used for data collection.

+e streets in the city of Al-Salt represent 4% of Jordan’s
total streets, including secondary and main streets.
According to the road classification law at the Ministry of
Public Works, Table 1 shows the types and lengths of roads
in Al-Salt city in 2018 [49].

+e roads were classified according to the width of each
road as follows:

(i) Main road: the width of the road is 8m or more.
(ii) By road: the width of the road is 6m up to less than

8m.
(iii) Track road: the width of the road is 3m up to 6m.

Studying the road networks is one of the critical fields in
transportation systems; it combines the spatial relation of
the road networks with their characteristics then analyzes

them according to space. Figures 2 and 3 show satellite
images of the study area with the associated digitized road
networks.

4. Methodology

Photogrammetry refers to the process of measuring and
interpreting images in order to extract data needed for
geospatial applications, which is often acquired by satellites
and airplanes.

+e key tool in this case study is ArcGIS. It is an ESRI-
developed geographic information system (GIS) for dealing
with maps and geographical information. It provides a
framework for making maps, assembling geographic data,
evaluating mapped data, and integrating maps with geospatial
databases in a variety of applications [50]. Figure 4 depicts the
methods for producing the study map to be combined and
used with GA to discover the best-time route.

4.1.GPSFieldSurvey toGet theGroundControlPoints (GCPs).
+e next step is to take the GPS data and postprocess it by
importing raw data (the data from the GPS receivers) and
exporting the final local grid coordinates and other
coordinates. It is composed of the points BAU, reference,
az, bs, seha, sew, hassan, hesba, salalem, and fatma. Only
two receivers were used to measure the entire network.

+e local grid coordinates of the points BAU, reference,
az, bs, seha, sew, hassan, hesba, salalem, and fatma are
derived and known as UTM ZONE 36 North projection and
WGS84 Ellipsoid. Figure 5 displays the local grid coordi-
nates for the previous selected points.

4.2. Process the GPS Field Data by Leica SKI-Pro Software to
Get Values of GCPs. Leica’s SKI-Pro software includes a
comprehensive set of programs for GPS surveying with
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Figure 1: Classification of route planning algorithms.

Table 1: Classification for the main types of roads in study area.

Type of road Distance (km) Percentage (%)
Main road 216.31 28.40
By road (secondary) 415.62 54.66
Asphalt (track) 128.51 16.94
Total 760.44 100
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Figure 2: Real-time road networks of study area.

Figure 3: Satellite aerial photo of study area.
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postprocessing capabilities and real-time support. In SKI-
Pro, GPS data that belong together can be collected and
stored as shown in Figure 6.

4.3. Process GCPs Using Leica Photogrammetry Suite (LPS) to
Construct the Digital Elevation Model (DEM) and
Orthophotos. In this study, Leica Photogrammetry Suite
(LPS) is applied to find the overlap area between two images,
also known as triangulation, by rectifying images to de-
termine orthophoto as well as extracting DTMs and contour
maps for use in ArcGIS. Figures 7 and 8 display the locations
of GCPs and determine their type and usage.

4.4. Using ArcGIS to Construct a Geodatabase and Feature
Classes to Represent the Real-World Entities of the StudyArea.
+e process of digitizing GIS data is to convert scanned images
or hard copies of geographic data into vector maps by tracing
their features. It is one of the ways to ensure that real-world
spatial data is accessible. +e digitization process involves

capturing the underlyingmap features as coordinates, either as a
point, line, or polygon. +e task is accomplished by creating
layers in ArcCatalog and then adding features to them in
ArcMap. Several layers have been created in this stage for the
study area in order to use them for retrieving the required
spatial data by GA to calculate the optimal time route, as il-
lustrated in Figure 9.

5. Proposed GA for Route Planning Systems

+e most critical and challenging task for developing GA to
this problem is how to encode a route in a weighted directed
graph into a chromosome.+is paper proposes a newGA for
solving the shortest-time routing problem and determining
the shortest-time route (optimal). Variable-length individ-
uals (chromosomes) have been used; the genes in each
chromosome represent nodes included in a path between a
selected pair consisting of source (start) and destination
(end) positions, and a priority-based encoding procedure is
followed, which can probably represent all feasible routes in
a graph.

5.1. GraphDesign. In an implicit way, a road network can be
represented as a directed graphG� (V, E), whereN is a set of
vertices (nodes) and E is a set of edges (arcs). +e ID of a
node in the graph has given a unique positive integer value
from 1,. . ., N, where N is the number of nodes as in
Figure 10.

Each chromosome is created to represent a solution for
the shortest-time routing problem, and it should not in-
clude duplicated nodes. Source and destination nodes are
indicated by F and E, respectively, and each link (i, j) has
associated with link connection indicator expressed by Iij,
which takes a part and plays an important role in chro-
mosome production and encoding via providing connec-
tion information; this information describes whether the
link from node i to node j is included in the routing path or
not.

+e connection information of the nodes with each other
can be determined with an adjacency matrix as follows:

Iij �
1, if i and j are connected(adjacent),

0, otherwise.
 (1)

An adjacency matrix in Figure 11 is used to ensure the
connectivity of the randomly selected pair of vertices; the
length of the edge is considered as the weight of that edge in
the graph. +e adjacency matrix illustrates that all the di-
agonal elements of Iij must equal zero, where the source and
destination nodes are the same (S� E). +e minimum po-
tential value of the chromosome length is equal to the total
number of nodes in the whole graph, because, in some worst
cases, the shortest path may contain the total number of
nodes. +e gene length of a graph withN number of nodes is
equal to N or more.

5.2. Chromosome Representation (Encoding).
Chromosome length is variable, but it must not increase
beyond the maximum feasible size, which, in the worst case,

GPS field survey to get the Ground Control Pints (GCPs).

Process the GPS field data by Leica SKI-Pro so�ware to get
values of GCPs.

Process GCPs using Leica Photogrammetry Suite (LPS) to
construct the Digital Elevation Model (DEM) and ortho photos.

Using ArcGIS to construct a geodatabase and feature classes to
represent the real-world entities of the study area.

Figure 4: Procedures of georeferencing the study area.

Figure 5: Local grid coordinates of the study area.
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is the total number of nodes in the network since the
chromosome length does not require more than the total
number of nodes in order to create a routing path. Figure 12
shows the chromosome representation where the genes are

selected randomly from source node 1 to destination node 4
based on the topological information database of the net-
work; each chromosome should indicate a feasible route for
the proposed GA.

Figure 6: Distribution and adjustment of GCPs.

Figure 7: Location of GCPS on study map.

Figure 8: +e type and usage of GCPs.
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Figure 9: Digitized layers view concerning the rectified orthophoto.
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5.3. Initial Population. +e initial population consists of
chromosomes (individuals), the lengths of which are variable.
+e first gene of each chromosome is the first node (S) and the
last gene is the target node (E); if the path is between S, a new
gene is produced; typically, all the chromosomes in the first
generation are produced by this approach.

+e large population is practically useful, but it requires
unnecessary costs in both capacity and time. As expected,
choosing a sufficient population size is critical for efficiency
demands; for that reason, many researchers used the heu-
ristic approaches for producing the chromosome for the
initial population instead of the random method.

5.4. Fitness Function. Table 2 contains the cost attributes
or parameters used in determining the fitness value for
each segment of the road path and affects the result
obtained.

Based on these criteria, the fitness cost for the candidate
road pathways (chromosomes) from source node 1 to
destination node 4 could be computed, and the optimum
option with the least driving time would be chosen. Figure 13
depicts an actual value for each route in the research area’s
road network. Equations (2) to (7) define the fitness function
of the GA while taking into account all of the associated
parameters as follows:

Table 2: Attributes table for road network segments.

Segment ID Segment description (S, E) Distance (m) Allowable velocity limits (km/h)
S1 (1, 2) 500 60
S2 (2, 1) 500 60
S3 (1, 3) 500 60
S4 (3, 1) 600 60
S5 (3, 5) 300 40
S6 (5, 3) 400 40
S7 (4, 5) 200 40
S8 (5, 4) 200 40
S9 (2, 4) 800 40
S10 (4, 2) 800 40
S11 (2, 3) 300 60
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1 2 3 5 4

421

Locus

Chromosome 1

Chromosome 2

Chromosome 3

1 2 3 4 5

300

500

400

300

200

800

1

3

5

2

4800

600

500

500

200

Figure 12: Chromosome representation procedure.
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T1ij � 

j

n�i

disij

Vij

 . (2)

Fij is the cost value from i to j, where i≠ j.

T1ij � 

j

n�i

2disij

Vij − VRij
 in rush hours, (3)

where disij is the length of segment between i and j and Vij

represents the allowable velocity limits between i and j.
+en,

Dy �
 L

A
× 100, (4)

T2ij � 

j

n�i

Dy

Vij

 , (5)

T3ij � T1ij− T2ij, (6)

where

T4ij � T3ij − (NOTL∗ 0.5)(minimum), (7)

Fij � 

j

n�i

Tij. (8)

Tij is the time required to travel between i and j. Dy is the
density of the roads network.  L is the total length of the
network roads. A is the area of the study region (square
kilometer). NOTL is the number of traffic light signals. VRij

is the estimated vehicle’s speed in rush hours.

5.5. Selection and Crossover Procedures. +e tournament
selection method is the type of selection used for the pro-
posed GA, two individuals are selected, and the more ap-
propriate individual is chosen compared to the fitness of the
other chromosomes in the population, but the corre-
sponding individual should not be selected twice as a parent
in the population.

In 1983, Birndlerproposed a tournament selection
technique in which individuals, in pairs, were selected
according to their fitness values from a stochastic roulette
wheel. Selection of the individuals with the highest fitness
values leads to the next generation.

+e crossover between the two most fitting parents
chosen by the selection increases the probability of gener-
ating offspring having robust characteristics [51]. +e
arithmetic crossover is used in this case as follows:

Xi � δ.X
1
i +(1 − δ).X

2
i , (9)

where δε(0, 1).
According to the previous equation, the new offspring

generated by the arithmetic crossover are

Pi � δ.Xi+(1− δ)Yi
,

qi � δ.Xi+(1− δ)Yi
.

(10)

Figure 14 shows an illustrative example of the proposed
crossover procedure.

5.6. Mutation Procedure. Mutation procedure leads to a bit
of increment in the probability of producing the infeasible
chromosomes; it keeps the diversity in the population

Figure 13: Attribute table of streets layer in ArcMap.
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solutions. Figure 15 illustrates a comprehensive description
for the proposed mutation procedure in GA.

5.7. Reorganizing (Repairing) Function. GA is developed
based on ideas inspired by evolutionary mechanisms, where
successive generations of solutions become more and more

efficient until an optimal or nearly optimal set of alternatives
are reached.

Loops in the shortest-time route routing issue can be
produced during the crossover and mutation procedures,
resulting in infeasible chromosomes. +ere are two pri-
mary approaches to dealing with infeasible chromo-
somes. +e first is to eliminate them, and the second is to
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Figure 15: Mutation procedure.
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reorganize a chromosome with a repair function. +e
first is to apply a penalty, and the second is to reorganize
a chromosome by removing and deleting the loop; in
this work, the rearranging function is utilized to
detect and eliminate the loops without incurring any
additional capacity or time expenses. Figure 16 shows a
description of the proposed reorganizing function with
an example.

Algorithm 1 displays a pseudocode showing how the
algorithm finds the minimum travel time route for the
provided graph from start node to the end node.

6. Results and Findings

+e road network in this study consists of 226 nodes
(junctions) and 280 edges (segments), and each route has
several interconnected edges. Determining the size of the
initial population is crucial and influential in the effec-
tiveness of the algorithm’s performance. +e initial pop-
ulation size tends to increase exponentially with the size of
the road network due to an increase in chromosome length.

+e quality of each chromosome in the population
must be calculated accurately using efficient fitness
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function. Based on a geodatabase of the study area
map, a multiobjective fitness function was used in GA
to estimate the minimum vehicle arrival time. In this

section, the fitness value is calculated for each factor
separately in order to illustrate their influence on the
estimated time.

(1) ►Input: Graph (V, E)
(2) fNode/∗ initial node in the route ∗/
(3) dNode/∗ destination node ∗/
(4) ►Output: Ch[]/∗array of Genes represents the optimal time route ∗/
(5) Define: Adj [][]/∗ 0, 1 Check nodes adjacency in the graph ∗/
(6) Ch [0]← fNode
(7) Pz←Population size
(8) Cr←Crossover rate
(9) Mr←Mutatino rate
(10) for each i, j where j� PZ
(11) Create_Chromosome (fNode, dNode)
(12) F←Calculate Fitness Value for each chromosome
(13) End for
(14) Count← 0
(15) Gen← 1
(16) While Count≤ 10 do
(17) Ch1, Ch2←RouletteWheel _Selection ()
(18) Ch1∗,Ch2∗ ←Crossover (Ch1, Ch2)
(19) Ch3←Mutation (Ch1∗)
(20) Ch4←Mutation (Ch2∗)
(21) F1← Fitness Value for the first chromosome
(22) F2← Fitness Value for the second chromosome
(23) Fm←Minimum Value of fitness function
(24) If Gen> 1 && Fm (Gen-1)� � Fm (Gen-2)
(25) Count ++
(26) if count> 10
(27) Break
(28) else
(29) count� 0
(30) End If
(31) End while
(32) Gen ++
(33) Go to 17

ALGORITHM 1: Pseudocode for GA implementation.

Table 3: +e calculated fitness value with allowable velocity limit for three chromosomes (routes).

Route Segment (S, E) Length (m)
Vehicle speed

40 km/h 60 km/h 90 km/h 120 km/h

Route 1

(1, 2) 500 0.750 0.50 0.333 0.250
(2, 3) 300 0.450 0.30 0.200 0.150
(3, 5) 300 0.450 0.30 0.200 0.150
(5, 4) 200 0.300 0.20 0.133 0.100

Total (minutes) 1.950 1.30 0.867 0.650

Route 2 (1, 2) 500 0.750 0.50 0.333 0.250
(2, 4) 800 1.200 0.80 0.533 0.400

Total (minutes) 1.950 1.30 0.867 0.650

Route 3
(1, 3) 500 0.750 0.50 0.333 0.250
(3, 5) 300 0.450 0.30 0.200 0.150
(5, 4) 200 0.300 0.20 0.133 0.100

Total (minutes) 1.500 1.00 0.667 0.500
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Table 3 shows the calculated fitness value for three
chromosomes for the route from node 1 to node 4, con-
sidering the allowable velocity limit in measuring the value.

Figure 17 illustrates the effect of allowable velocity limits
on the arrival time from node 1 to node 4 for three separate
routes. As a result, the shortest-time route is not necessarily
the shortest-distance one. +e vehicle speed on the road,

which is determined according to street condition (e.g., street
type), has a significant effect on the time needed to arrive.

During peak hours, traffic congestion causes the creation
of automobile lines, which decreases the speed of cars and
delays their arrival at their destinations. Despite the fact that
vehicle deceleration in real-world conditions is not exactly
uniform, the delay for a specific vehicle may be estimated
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Figure 18: +e effect of the rush hours on the expected arrival time.
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Figure 19: +e effect of residential density of study area on the expected arrival time.
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Table 4: +e calculated fitness value in rush hours for three chromosomes (routes).

Route Segment description (S, E) Segment length (m) Allowable velocity limit Res. density
Time in rush hours (km/h)
40 60 90 120

Route 1

(1, 2) 500 60 0.208 0.033 0.025 0.017 0.013
(2, 3) 300 60 0.125 0.020 0.015 0.010 0.008
(3, 5) 300 40 0.188 0.020 0.015 0.010 0.008
(5, 4) 200 40 0.125 0.013 0.010 0.007 0.005

Total (minutes) 0.646 0.087 0.065 0.04 0.033

Route 2 (1, 2) 500 60 0.208 0.033 0.025 0.017 0.013
(2, 4) 800 40 0.500 0.053 0.040 0.027 0.020

Total (minutes) 0.708 0.087 0.065 0.04 0.033

Route 3
(1, 3) 500 60 0.208 0.033 0.025 0.017 0.013
(3, 5) 300 40 0.188 0.020 0.015 0.010 0.008
(5, 4) 200 40 0.125 0.013 0.010 0.007 0.005

Total (minutes) 0.521 0.067 0.050 0.03 0.025

8

7

6

5

4

3

2

1

0
0 20 40

Generation

Estimated Arriving Time

Fi
tn

es
s F

un
ct

io
n 

Va
lu

e (
Ti

m
e i

n 
m

in
)

60 80

(a)

8

7

6

5

4

3

2

1

0
0 50 100

Generation

Estimated Arriving Time

Fi
tn

es
s F

un
ct

io
n 

Va
lu

e (
Ti

m
e i

n 
m

in
)

200150 250

(b)

Figure 21: (a): Estimated time over 80 generations. (b) Estimated optimal time over 250 generations.
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using fundamental dynamics equations. Because cars
gradually slow down, this assumption should result in a
somewhat realistic estimate of the time delay. Figure 11
depicts the effect of driving during rush hour on arrival
time.

Figures 18 and 19 illustrate how deceleration of the
vehicle during rush hours and the residential density affect
the time needed to arrive, which are considered as important

parameters in calculating each chromosome’s fitness value
in the proposed GA.

In order to emphasize the effectiveness of the genetic
algorithm compared to heuristic algorithms such as the
A∗algorithm, a comparison was conducted according to the
execution time required to determine the optimal solution as
shown in Figure 20. Python is used to implement the al-
gorithm, and the GA solver evaluates GA using MATLAB.

Figure 23: +e first route from source to destination.

Figure 22: +e first route from source to destination.
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(a)

Figure 25: Continued.

Figure 24: +e shortest-time route for multiple locations.
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Table 4 shows the calculated time for three routes during
rush hour, along with the residential density for each seg-
ment of the route.

+e simulation results of GA using GA solver indicate
that the proposed GA determines the optimal time route
starting from 30 generations and performs effectively over
more than 200 generations up to 250, as illustrated in
Figures 21(a) and 21(b).

Based on various factors that affect the arrival time, the
experimental results showmultiple routes from the source to
the destination. Figures 22 and 23 illustrate the shortest-time
path obtained with multiobjective calculated time between
two locations using GA. +e results indicate that GA can be
used effectively to design the route planning system that

computes the optimal arriving time based on spatial data-
base within dynamic traffic information.

+e Network Analyst tool can also obtain the optimal
route for multiple locations. It can estimate the best route
between the source and destination, passing through specific
locations, as shown in Figure 24.

Using ArcGIS integrated with GA, the Network Analyst
tool can also provide the driver with other services besides
obtaining the optimal-time route and selecting a specific
route based on the driver’s preferences. Furthermore, the
application displays turn-by-turn directions for the pre-
ferred route with details that include the estimated distance
and time for that route, as shown in Figures 25 and 26,
respectively.

(b)

Figure 25: Route directions window.
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7. Conclusion

When the problem space includes a huge number of so-
lutions and searching takes a long time, GA might be a
useful alternative. To find the optimal route, a modified GA
with population initialization, crossover, mutation, and
repair functions is used. GA effectively obtained the
shortest-time route with variable-length chromosomes
based on several criteria (e.g., distance, speed limit, resi-
dential density, traffic signals, and rush hour) over 30
generations and remained near the optimum for 200
generations. By comparing the A∗ algorithm with the
adaptive GA, it was found that, under increasing node
density in spatial road networks, the proposed GA took the
least execution time to find the optimal solution. Using
ArcGIS to develop the Network Analyst tool helps users
determine the shortest-distance route and simultaneously
the shortest-time routes based on the user’s impedance. GA
will eventually be able to work perfectly with other heuristic
algorithms, such as A∗ and Dijkstra’s algorithm, in a wide
range of multiobjective optimization techniques in order to
maximize its effectiveness in determining the best or near
optimum solution.
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