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This manuscript is related with the development of Alpha Power Generalized Inverse Rayleigh (APGIR) Distribution. The suggested
model provides fit of life time data more efficiently. Some of the important characteristics of the suggested model are obtained including
moments, moment generating function, quantile, mode, order statistics, stress-strength parameter, and entropies. Parameter estimates
are obtained by MLE technique. The performance of the suggested model is evaluated using real-world data sets. The findings of the
simulation and real data sets suggest that the newly proposed model is superior to other current competitor models.

1. Introduction

Rayleigh distribution (RD) is a special model and a modified
form of Weibull distribution when shape parameter equals 2.
The RD has many applications in various disciplines including
engineering and medical sciences, astronomy, and Physics. The
RD has been well investigated in the literature. Some researchers
have examined its significant properties [1-3]. Hoffman and
Karst [4] studied characteristics of the RD and demonstrated
how it can be used to analyze the responses of marine vehicles to
wave excitation. Dyer and Whisenand [5] also demonstrated the
use of RD in communication engineering. Polovko [6] showed
how it can be applied to electro vacuum devices. There are
various variants of RD recently introduced by researchers that
may be used for fitting of data more adequately. Voda [7]
proposed generalized Rayleigh (GR) distribution. Voda [8, 9]
obtained the ML estimates of the RD. Bhattacharya and Tyagi
[10] used RD for the analysis of medical data. Gomes et al. [11]

suggested Kumaraswamy generalized Rayleigh (KGR) distri-
bution. Merovci [12] presented transmuted Rayleigh (TR)
distribution for investigating lifetime data. Cordeiro et al. [13]
developed beta generalized Rayleigh (BGR) distribution. They
also studied its main mathematical features. Leao et al. [14]
proposed beta inverse Rayleigh (BIR) distribution. Ahmad et al.
[15] offered transmuted inverse Rayleigh (TIR) distribution.
Iriarte et al. [16] proposed slashed generalized Rayleigh (SGR)
distribution. Lalitha and Mishra [17], Ariyawansa and Tem-
pleton [18], Howlader and Hossain [19], Sinha and Howlader
[20], and Abd Elfattah et al. [21] are just few among others who
contributed to RD.

Let X be a random variable having Rayleigh distribution.
Symbolically, X ~ R(0). Then, its CDF and PDF are

f(x) = 26°x exp(~(6x)*)x >0,6>0,

F(x) = 1 - exp(~(6x)*)x 2 0,0>0,
where 0 represents scale parameter.
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One important variant of RD is the Inverse Rayleigh
Distribution (IRD), an important lifetime distribution. If X
follows RD, then (1/X) has the IRD. The PDF and CDF of
IRD are provided by

2 2
2w w
g(y;w) =—5 eXp<{—> )x,w>0,
X X
0\2
G(x;w) = exp(«() )x,w> 0.
x

It has several uses in different fields including reliability
analysis, engineering, and medicine. Voda [22] used the IRD
to estimate the lifetime distribution of many experimental
units. Trayer [23] proposed the IRD to accommodate sur-
vival and reliability data. Voda [22] discussed several
properties and derived expression of ML estimator for pa-
rameters of IRD. Mukarjee and Maitim [24] also studied
some important statistical properties of IRD. Closed form
expressions for some descriptive statistics of the IR distri-
bution were developed by Gharraph [25]. Furthermore,
Soliman et al. [26] and Gharraph [25] obtained parameter
estimates of IRD using classical and Bayesian estimating
approaches, respectively. Various extensions of the IRD are
available in the literature. These generalized forms have
been used in different disciplines comprising survival
and reliability analysis and so on. Rehman and Dar [27],
Ahmad et al. [15], and Leao et al. [14] developed EIR,
TIR, and BIR distributions, respectively. ShuaibKhan
[28] developed a modified form of IRD and discussed it
in depth. Potdar and Shirke [29] added an additional
shape parameter to scale family of distributions,
resulting in generalized inverted scale family of dis-
tributions. These distributions fit the complex data
better, and conclusions made from them appeared to be
quite comprehensive. Mudholkar et al. [30], Gupta et al.
[31], Nadarajah and Kotz [32], and Mudholkar and
Srivastava [33] studied generalization of several dis-
tributions in various statistical publications, generally
employed in reliability estimation.

Reshi et al. [34] analyzed scale parameter of Generalized
Inverse Rayleigh (GIR) distribution. The GIR distribution is
quite good at fitting lifetime data. Some of the applications of
GIR distribution include reliability analysis, operations re-
search, applied statistics, and communication engineering.
Bakoban and Abu Baker [35] discussed many important
characteristics of GIR distribution.

The PDF and CDF of GIR distribution are specified by

g(x) = %exp(—(@x)fz) [1 - exp(—(@x)fz)]y_l,
0 x (3)

x,9,0>0,

G(x)=1- [1 - exp(—(@x)fz)]yy, 6>0. (4)
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Here, y and 0 represent scale and shape parameter,
respectively.

In statistical theory, new distributions have been de-
veloped in the last few decades by incorporating a spare
parameter, employing generators, or mixing existing dis-
tributions [36]. The major goal of doing so is to improve the
modelling flexibility of lifetime data when compared with
existing distributions.

This article is about the development of new probability
distribution, known as Alpha Power Generalized Inverse
Rayleigh (APGIR) distribution. This new model is obtained
using Alpha Power Transformation [37].

2. Alpha Power Transformation (APT)

The APT was proposed by Mahdavi and Kundu [37]. This

technique can be used to develop new distributions by in-

troducing a new parameter into available distributions.
The following is CDF and PDF of APT:

(XF(x) _
T) lf(x > 0, 04 5& 1.
Fpr (x) = @ (5)
F(x), ifa=1,
and
1
%f(x) o ifa>0, a1,
farr(x) = (6)
f (%), ifa=1

Initially, the proposed method of Mahdavi and Kundu
[37] was used for the inclusion of additional parameter in
exponential distribution. Later on, some other researchers
used APT to some other distributions. Hassan et al. [38] used
APT and proposed alpha power transformed extended ex-
ponential distribution. Nassar et al. [39] proposed Alpha
Power Weibull distribution. Dina and Magdy [40] and
Ihtisham et al. [41] introduced alpha power inverse Weibull
(APIW) and alpha power Pareto (APP) distribution,
respectively.

2.1. The Proposed Model. The main goal of this article is to
develop a novel probability distribution termed as Alpha
Power Generalized Inverse Rayleigh (APGIR) Distribution
and to evaluate its flexibility in modelling life time data. The
proposed model is a result of using the PDF and CDF of GIR
distribution given in (3) and (4).

A random variable X is said to have Alpha Power
Generalized Inverse Rayleigh distributed with three-pa-
rameters o, A, and f3 if its PDF is given by
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( 10g o 2ﬁ ) “2\18-1 1-[1-exp (-(Ax)2 A
w1 exp(—(/\x) )[1 - exp(—()tx) )] ol ( )] , x>0, a>1,1>0,
Jaram () =1 1 (), a=1, @
0, otherwise.
Definition 1. . A variable X follows Alpha Power General- The following are APGIR Hazard Rate (HR) Function
ized Inverse Rayleigh distributed with CDF as follows: and Survival Function (SF):
al—[l—exp(—(lx)’z)]/} _1
, a>1,
Fyperr (x) = a=1 (8)
0, a=1
L B pdf
APGIR ™ survivalfunction’
_ -2\18
2f3 log « exp(—(/lx)_z)[l - exp(—(Ax)_z)]ﬁ Lyt~ [1mep (-007)] ()
hapcir (%) = 5 3 I[1-ex (_(M),Z)],; , a>1,
A x ((x -« i )
Sapcir = 1 = CDF,
(a : al—[l—exp(—()tx)’z)]ﬁ > (10)
Sapcir (X) = a>1.
(a—1) '

The functions PDF, CDF, HF, and SF are plotted in  Proof. If f(x) is differentiable function and (d/dx)log f
Figures 1(a), 1(b), 2(a), and 2(b), respectively. (x) <0, then f (x) is also decreasing function and vice versa.
Taking the first derivative of the following expression,
Lemma 1. If f(x) is a decreasing function for <1, then  ie.,
f apcir (%) is also decreasing function.

%log favam (%) = %log[l"g 2 2 exp(-0 )1 - exp(—(Axrz)]ﬁlal-[l-exp(‘“"“)yg],

a—1 25
(11)

d 3 2 exp(-(Ax)~? A

alog S aprer (%) :—;—%[1+(/§—1)+/}10g a(l—exp(—(Ax) 2))/5 1].

For non-negative and less than 1 values of « and for A Lemma 2. If f (x) is decreasing function for a <1, f(x) is
and >0, it is clear that log-convex and then h,pcp (x) is decreasing function.

d
alog f apair (%) <0. (12)  Proof. If d*/dx?, f(x) exist and (d*/dx?*)logf (x) >0, then
f (x) is log-convex.
Hence, for a <1, fpg (x) is decreasing function. [ Differentiating (11), we get
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FIGURE 1: (a) Graph of PDF. (b) Graph of CDF.
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FiGure 2: (a) Graphs of HF. (b) Graphs of SF.

exp(—(Ax)_ 2)(2 - 3A2x2)
2 1*x°

3
1 - - _Z
Fp og f apcir () FERY

{1+B-1+p1oga(1 - exp(-00) %))}
(13)
exp(—2 (/lx)fz)
- 22x°

{2ﬁ log a (- 1)(1 - exp(—()tx)ﬂ))ﬂ—z}

When « is non-negative and less than 1 and when A and 2.2. Quantile Function (QF). Let X~APGIR (a, A, f3), then
B>0, then (d*/dx?)logf spgr () > 0. the QF is described by
Thus, when 0 <@ <1, f pgr () is log-convex [42]. O x=F ), (14)
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“1—[1—exp(—(/1x)'2)]ﬂ -1 1

where u ~ U|[0, 1]. The QF of APGIR distribution is
(17)

a—1 T2

al—[l—exp(—(lx)’z)]ﬂ -1 . (15)

After some calculations, we obtain the following result of

a—1
After simplification, we have median:
g 712 1 2log a—(a+1) AR
= [ rog] [l etostuten 1 | Median:mzi[—log 1_{?} ] |
A log « 0g o
2.3. Median. To obtain median, we have 2.4. Mode. To obtain mode, we have
d d (loga 2B -2 —2\18-1 1-[1-exp (-(Ax)2)]*
afAPGIR(x) = O:a (oc ] Wexp(—(/\x) )[1 - exp(—()tx) )] o' ( ) = o,
_3x74 exp(—(/lx)_z)(l - exp(—(/lx)_z))& l(xl‘(l‘exp(‘(“)i))ﬁ |
x_3(exp(—()tx)_2)(2)t ()Lx)_s))(l - exp(—()tx)_z))&1()41‘(1“9"?’(‘0"‘)’2))’3
-x3 exp(—(/lx)fz)((ﬁ - 1)(1 - exp(—(/\x)fz))ﬁfz(exp(—()tx)fz)zk (/\x)’3))(x1’(1’ex1°(*()‘x)’z))ﬁ+ =0, (19)

x? exp(—()tx)_z)(l - exp(—()tx)_z))ﬁ_1

“1—(1—exp(—()tx)72))ﬁlog (X(ﬂ(l _ exp(—(lx)_z))& l(exp(—(/\x)_Z)ZA (AX)_3)>

-3 2 _
PRt [1 — (B - 1)exp(~(Ax) 2){

(1- exp(l—ux)z)) } + B exp(-00 )1 - exp(—ux>2)}] ~0.

2.5. R™ Moment of APGIR Distribution. Let X ~APGIR

Equation (19) is satisfied by mode of APGIR distribution.
(a, A, B), then the following is the »™ moment:

© loga 28 _ _ 1 1 exn (— (1) 2) 18
/! _ r\ _ 108 2 2\18 1-|1—ex] (Ax)
W,=EX")= ,[o X mexp(—(lx) )[1 —exp(—()tx) )] ot~ [-exe ( N dx. (20)
Put in (20) 1-exp(—(Ax)"?) = y=2/A%> exp (- (A Let yPf =z=pyP'dy = dz, Y 0,2 O, and
—2) dx = -d _I/A[_l (1_ )]—1/2 nd _Zl/[j y—’LZ—)l
39 0, 5 x = 7dy, x = og y , a y=z""
. r rl _r
x oY 0 —r Q1)=y, = @ log oc(l) I (—log(l - z”ﬁ)) Pade.
= “G)r Jl (-log(1-y) 2 Yo' dy. (21 A
1) |, Clog(=y) 2 ¥ la" " dy. (22)

Aur_(“_l)



Using the following series representation in (22),

00 1B
—log(l—zl/ﬁ) Z il ( ) for'z”ﬁ'<1,

" (23)
L&l

5 s

k=0

—r/2
1 1 © m m
52 G Ecmorief (& corteryim) e

The expression of ¢/, is incomplete integral; therefore, it
can be solved approximately using numerical integration
techniques.

M, (t) =

-1

Using series notation e = Y °2 t"x"/r! in (25), we get

< o [® .28 loga
M, (t) = t) /r! =
<0 ;)()/r Jox/lzx3 (oc—l)exp

Utilize (24) in (26), we get

alog(xzzt (- log(x)

M, (t) = — D LT

rOkO

The result in equation (27) is incomplete integral, and it
may be solved on the basis of numerical integration
methods.

2.7. Mean Residual Life Function (MRLF). The MRLF is the
average remaining life of a component that has survived till

! _ (' loga 28
Joxf(x)dx—jo Pt

B = [ L exp(-07) 1 - exp(-00 ) e e GO g

Mathematical Problems in Engineering

to have

(24)

2.6. Moment Generating Function (MGF). Let X ~APGIR
(a, A, B), then MGF is defined as follows:

(25)
(=000 2)[1 = exp(=0) )] e e 0] g (26)
0 (v (_ B\ —r/2
j<2%> Zdz. (27)
0\ m=1

time t. Here, X is lifetime of an object with f(x) and S(x)
provided in (7) and (10), respectively. The MRLF is given by

1 1
u(t) = S(t)(E(t) Joxf(x)dx) - t>0, (28)
where
exp( (Ax)_z) [1 - exp(—()tx)_z)]&1041"[1"6"1’(_(“)72)][3 dx (29)
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Let 1 —exp(—(Ax)~ 2= y=> (2/A%x 3exp (- (Ax)~ Hdx = Then,
—dy,x = (1/A) (-log(1 — ) "

IOg o Jl—exp (%)Lt)'z)

_ _ ~125, B-1 1-yF
Ta-1) (“log(1-y))" "“By™ a7 dy. (31)

(30)= J; o (x)dx = —

Put 1 - yf = z=ByP 1dy = -dz, y = (1 - 2)"# to have

(—log(l -(1- z)l/ﬁ))_l/zcxzdz. (32)

log o J-(l(lexp((/\t)z))ﬁ)

1
onf(x)dx “Aa-1D

Using the followin % series representatlon in (32), we
have —log(1 - (1-2)"F) = ¥, (-1 (= (1 - 2)"#)*/k and
af =y 2, (log oc)”/n' (z)

1 k -1/2
1 ~ log a & (log a)" (1—(1—exp(%)tt)’2))ﬁ) X B B " (33)
joxf(x)dx ey ZO . JO kzl O —a-2B | k| (e
The expression in (33) is an integral that is incomplete.
This may be solved approximately using numerical inte-
gration techniques.
© ®© loga 2 - - - ~[1-exp (-0 2)]°
E(t) = JO L (1) = JO 5 Aﬁ exp(—()72)[1 - exp(=() )| el e O gy, (34)
Insert 1 —exp(—(Af)” 3= y= (2/)L2t3&ExponentzalE ) Put 1 - yﬁ = z:ﬁyﬁ’ldy =-dz, y=(1- 2)"# in (35)

x p(=(A 1) Hdt = —-dy and t = (1/A) (-log(1 — y))~ 2 in to have
(34) to have

log a ! 1/ -172 5
E(t) = —log(1-(1-2) o“dz.  (36)
E(t) = ﬁ(log ;x) Jl((—log(l 3 y))—l/Z)yﬁ—l(xl—yﬁdy. (35) AMa—1) Jo( ( ))
0

Using the following series representation in (36), we
have

~log(1-(1-2)"F) = Z( DY (=1 - 2)") "Ik,

of = Z (loga)"/n! (2)", (37)

n=0

_ loga (log a)" X (- 1)( ( Z)l/ﬁ) »
E(t)—Ma_l)Z > J (Z Z"dz.

k=1
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Putting (10), (31), and (35) in (28), we get

kN 12

. log a < (log )| (1 [ & (—1)k<—(1 —Z)l/ﬁ) "

u(t) = ( 17[1724)”),2];3 ) r;) nl |:J0 (}; X Z'dz
Ma-—«a

(1’(1’6_%72),3) « ugyk\ T2
_ J <Z - (_(;_Z) ) ) Z'dz| - t.
0

(38)

k=1

The result of ¢ (¢) is an incomplete integral. Numerically, =~ X ;) <X, <...<X,. The PDF of i"™ order statistic is
it can be approximated utilizing numerical integration  specified by
techniques.

_ n! -1 (n-i)
fin 0 = Gz 9 FIT - F1 ",

2.8. Order Statistics. Suppose X, X,,X;,..., X, denote (39)
sample of size n. The corresponding order statistics are Substituting f (x) and F (x) in (39), we get
n! 2f3 log « [ 1-[1=exp (=0x) )] =1 -2\18-1
Jen) = i a1y ee(-007) [l e CEIT [T exp(-0)72)]
(40)
) Ocl—[l—exp(—()uc)’z)]/3 o (Xl—[l—exp(—(/lx)’z)]lg ]n_l.
We get PDF of the smallest order statistic by inserting
i =1 in (40), that is,
2 1 _ 2\18 oy 111
Srn(x) = -1 . " ﬁ/\;)% aexp(—(/\x)_z)[l - exp(—()tx)_z)]ﬁ tol e GO0y gi-[i-ep (-007)] ) (41)
- x
Put i = n in (40), we acquire the PDF of the largest order
statistic
_\18 (n—1) _ 2\18
Fun ) = gy 2[;0% Fexp(-(1) )@ Lo COIT 1|7 - exp(-(a ) e (e CRIEL ag)
- X
To get distribution of the median, substitute i = #/2 in
(40) as
n! 2p log « —2\[ 1-[1-exp (-10)2) ] (w/2-1)
_ n -ty
f1 O = T e 1 e SR )]e
2 (43)

n—n/2

. [1 _ exp(_(lx)—Z)]ﬁ_ l(xl—[l—exp(—(lx)_z)]ﬁ |:‘x . al—[l—exp(—(/\x)'z)]ﬁ ]
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2.9. Stress-Strength Parameter (SSP). Let X, and X, be two oo

independent and identically distributed random variables. R= Jfoo f1(x)F, (x)dx. (44)
Suppose X, ~ APGIR(«, A, ;) and X, ~ APGIR (a, A f3,).

The SSP is defined as follows: The SSP is calculated, by incorporating (7) and (8) in the

above equation:

-2\152
0 log(x 2/3 B B B,-1 e exp (— ()2 B p lf[lfexp(—(/\x) )] 1
R= [ (80 2P exp(-) 1 exp(-ta )] e ) )( E—— dx.

o i 1-[1-exp (-0 )] _
R:J <1°g @ 2P exp(—000) ) [1 - exp(-0x)2)]P Lo GO0 ><“2 ' 1)&—%
0

a -1 A% o, -1 a,—1)

(45)
Substituting 1 —exp (- (Ax)™?) = y= (2/A*x%)exp (- (A Using ser1esﬁ representation «, A =Y (<log a,)F
x)"%) dx = —dy in (45), we have IK! (yPr Y*and a,” = Y% (-log a,)"/m! (yP)" in (46) and
Bt a,log a 1 ) . . 1 simplifying, we get the following final result for stress-

R= m J- Yo ta, e, dy - () strength parameter:

1 2 ®*
(46)

po Fusloga 8 (Clogw)(loga)” 1 w

(= 1)(ay = 1) & — & klm! [51(1+k)+[32m) (- 1)

Lemma 3. Let X ~ APGIR(, A, ), then final expression for
Renyi entropy is given as follows:

RE (v) =

1 23 log « a2 & & (log a)f (-1)* . o
(l—v){vlo <)L2( )) < A ZZ k! Jo t (l—e) dt | +. (48)

k=0r=0

Proof. Renyi entropy is defined as

REy (v) = ivlog{J-i:f(x)de},

1 (] 2 . A ol )
e~ [ (254 2 - A 0 Y o
RE (v) = a l_v) {log (ff(:):g?)) +log(J’:o x73yexp(—v()tx)72)(l —exp(—()tx)2))v(ﬁ_1)a””(1EXP((Ax)Z))ﬁdx)}.

(49)

Substitute 1 — exp(—(/\x)_z) = y to have

1 2B log « o [t 3(-1) 1061y )}
REy (v) = T {v log(liz(“_ 1)) +log<—2A137 Jo [-log (1 - y)] ( - ) dy . (50)
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Us1ng series representation a " = = Yoo (—log )k
k!(vy#)* in the above equation, we get

lo -1 - y— v )+
REy (v) = (ll_v)«{vlo <%)+10g<2‘;v3vz( (;cg| )" J- [log (1 - y)P* 2 (1 - ! (B-1) ﬁkdy>}. (51)

k=0

Using log(1-y) =t=dy = (y - )dt=dy = —¢'dt in
(51) and simplifying, we get

k=0r=0

1 28 1 vkzr—looool k_1k+11+r o
REy (v) = (1_V){vlog<%)_log<“;_3v 22%10t1 (1-¢) dt> } (52)

The expression of Renyi entropy is an incomplete in-  Lemma 4. The Mean Waiting Time (MWT) say i (t) is given
tegral. The solution of (52) is obtained on the basis of nu- by
merical integration techniques. O

-1/2

0 n 1_(1_8701)4)5 © (_] 1Bk
p(t) =t- log @ Z(log 2 J( )<Z( i ( -9") > Z'dz . (53)

A[al—[he*“’z]ﬁ _ 1] = 0 k=1

Proof. The MWT of APGIR distribution is described as Substituting the following results in (54),
1
— 4
RO =t j x f(x)dx. (54)
t log " (log a)" (1‘(1“37“72)/3) X (—1)k(—(1 - z)”ﬁ)k o
dx = | "dz, (55)
[, 21 G = Z 0 <kzl - > (2)'dz
and we obtain the required final expression as
1-[1—exp (-00)2) ]
O — 3 (56)
a-1
(a-1) loga & (log a)” (1-(1-exp (-0 2))) [ 1)k( ( z)”ﬁ) .
) =t- "dz|.
‘u( ) ((xl—[l—exp(—(/\t)’z)]ﬂ _ 1) A(Oc - 1) nz:(:) n! JO (}; ) (Z) Z (57)
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The expression for fi(t) is an integral that is incomplete. =~ Lemma 5. The Shannon entropy (SE) expression is given as
The solution of (57) may be obtained by numerical inte-  follows:
gration techniques. O

k=1

log « 2 © (log a)"2" (! L 0 (_l)k(_(l_z)l/ﬁ)k 3/2
S.E, = log (a_ 1) 2)‘/327 JO((I —2)((1-2) " -1))" - dz|. (58)
n=0 :

Proof. The Shannon entropy is described by

5., = Elclog () = | g 2% P xp(-127%) 1 - exp(-aa ) Lo O] (s
[( 2B log « 1 _ 1AL 1T exn (— ) )T
S.E, = -log -(m)E{FeXp(—(Ax) 2)[1—6Xp(—(/\x) 2)] lal [1-exp (-(x)?)] }:|)
— o0 {13exp(—(/1x)2) [1 - exp(-00) )] ‘al[lexpww)]‘*} ()
2f log « x
S.Ex = —log <m) J dx|.
{2t ()1 exp(-g ot e G |

Putting 1 - exp(—(/lx)fz) = y in (60), we get

I Y ! .
S'Ex_logKV(“—l))Jo(l P sy - o

Insert in (61), 1-yP =z=pyF'dy=-dz, and
y=(1- z)l/ﬁ to have

2
S.E, = log|[ 2p1( 182 (1= 2)((1 =2 — 1))o{—log(1 — (1 — 2)"¥)12dz |, (62)
1 0

o —

Using the following series in (62), a** = Y (log )™ We get the Shannon entropy as
(22)"/m! and —log(l — (-2 = ¥ (DR (-(1-
2)"P)¥ 1k, for| (1 - 2)"F| < 1.

n=0 k=1

2 00 nan oo_k__l/ﬁk3/2
S'Ele"g[(?g—?) WZ%II((I—@((I—@”’3—1))2"<Z( A (,lc 2 )> dz]. (63)
- ! 0
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The integral in (63) may be solved approximately with
the help of numerical integration techniques. O
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3. Parameters Estimation

3.1. Maximum Likelihood Estimation. Let X|,X,,..., X, be
a random sample drawn from APGIR (qa, 4, f3), then like-
lihood function is as follows:

(2Bloga) 1 X (9 e e (o)) o
Taking logarithm, (64) becomes
log I(er, A, 8) = n log(2f3 log a) —n log{)tz (o — 1)} - ilog x;” - i (Axi)_2+
) i-1 i:nl (65)
- (B-1) |:Z log(l - exp(—(/\xi)z))] +log a[n - (1 - exp(—()txi)z))ﬂ:|.
i=1 i=1
By differentiating (65) w.r.t o, A, and 8 and equating to 0,
we get the following equations:
dlog l(wAB)  n  n 1| & - anB|
> “aloga acT - |:n 2 (1 exp( (Ax;) )) ] =0, (66)
dlog l(a,1,B) 2n Zi () —2(8- 1) i[xi (Ax;)~° exp(—(Axi)Z):|
— = x;(Ax;) " —2(B - -
oA A i=1 ) i=1 (1 - exp(—(/\xi) 2)) (67)
+2f In “Z X; (/\xi)73(1 - exp(—(/\»x,»)fz))ﬁi1 exp(—(/\xi)fz) =0,
i=1
olog I(e,A,B) n |<x -
o = B + [; log(l - exp(—(/\xi) 2))] -

—log oc[‘i (1 - exp(—()txi)_z))ﬁlog(l - exp(—(/\xi)_z))] =0.

We can get estimates of &, A, and f3 by solving (64), (65),
and (66) together. The Newton-Raphson technique was
adopted for the solution of aforementioned equations. The
ML estimators are asymptotically normally distributed, that

[0°log | d*log 1 9°log 1]

is, /n(a- al— /LB —pB) ~ N;(0,%). The matrix ) is
achieved by inverting the observed Fisher information
matrix F as follows:

oo’

0 01 O 0P

9’log I d*log I d*log I

(69)

0A Ox

9’log I 9’log | 9’log

oA oAoB |

| 9B oa 9B o)

op’
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When we differentiate (64)-(66) w.r.t «,A,and 5, we get

+
da’ (a log a)’ (a-1° «

azlogl_—n(1+log ) n 1 |: :
2

i=1

2 exp(—()txi)ﬂ)

13

-3 (- el )|

dlogl 2n & 1 =1
e —?‘Qm‘”ﬁ‘”;z[

i=1 i

x;°A° ( 1- exp(—()tx,-)fz))

exp(—()txi)fz){ﬁz(l - exp(—(/\xi)fz)) - in-z eXp(—()in)z)}]+

)L6(1 - exp(—()tx,-)fz))

26 log az”: x2 () (1 exp(—(/lxi)_Z))ﬁ_l exp(-(Ax;)"?) |:—3 + 2()Lx,~)_2{ 1- (

i=1

(B-1) H
l—exp(—(/lxi)_z)) )

(1= exp(=(x,))) flog(1 - exp(_(Axi)-Z))}z], (70)

>

.azlogl:—_n_lo a[n
w £ A
‘azlog 128 i exp(—()txi)fz)(l - exp(—()txi)’z))’&1
da ol  a)’ & 2
d’log I e > B
oa ag/5 - ‘i [izl(l — exp(~(1x,)?)) log(1 - exp(-(Ax;) ))],

_leog 1 & | X (/\xi)i3 eXP(_(Axi)z)]
oL op zz[ (1-exp(-(Ax;)™?))

i=1

+2 log a il X; (/lxi)_3{(1 - exp(—()txi)_z))ﬁi1 + ﬁ(l - exp(—()txi)_z))& 1log(l - exp(—()txi)_z))}.

The asymptotic (1 — {)100% confidence intervals for the
parameters of suggested model are as follows:

a+ Zp\2,
X+ ZopEh (71)
Bt ZypZss.

Here, Z, represents the upper ot percentile of standard
normal distribution.

3.2. Simulation Study. Simulation is used to obtain esti-
mates, Mean Square Error (MSE), and Bias of parameters.
The following expression of QF was used to develop w = 100
samples of size n = 50, 90, and 200, respectively:

X - -1 1-— log o — logf{u (o — 1) + 1} AR
P_A Og log‘x ,

(72)

where u ~ U|[0,1]. The following expression is used to
calculate bias and MSE:

1=1

(73)

1 &~ 2
MSE = — b,-b),
w 2 (6i=b)

where b= (a,A,f3). For various choices of a,A,andp,
simulation results were obtained. Table 1 shows the simu-
lated expected values of MSEs and bias. In Table 1, with
increase in sample size, the consistency behavior may be
easily observed as estimates approach their parametric
values. Furthermore, as the sample size grows, the MSEs and
bias of the estimates drop for all parameter combinations. As
a result, we can infer that the MLE approach performs well
when it comes to estimating the parameters of the APGIR
distribution.

3.3. Applications. To see the performance and goodness of fit
of the proposed mode, the suggested distribution has been
fitted to two data sets. We found that the suggested model
performed better than other Rayleigh distribution variants
such as the Two-Parameter Rayleigh (TPR) distribution
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TaBLE 1: MSE and bias of MLE.

Parameter N MSE, (&) MSE () MSE, (1) Bias () Bias () Bias (1)
50 45.6174 0.0388 0.3961 -1.0590 0.0641 -0.3221

a = 18.4510 = 1.2510 A = 0.6534 90 26.8081 0.0334 0.2198 -0.6299 0.0584 —-0.1843
200 23.1193 0.0137 0.1735 0.5317 0.0341 -0.1389
50 31.9016 0.0976 0.2236 —1.2408 0.0827 —0.3266

a=17.4510 = 1.4510 A = 0.3534 90 18.4479 0.0454 0.2013 —-0.7485 0.0507 -0.2920
200 14.3389 0.0124 0.1530 -0.5075 -0.0053 -0.2155
50 44.2246 0.0463 0.3910 -1.8267 0.0683 -0.3208

o =17.4510 f =1.2510 A = 0.6534 90 34.9931 0.0259 0.3383 -1.6335 0.0210 -0.2738
200 17.5782 0.0133 0.1853 0.4444 0.0204 -0.1502
50 50.13503 0.0520 0.2882 -1.9696 0.0756 -0.2515

a=17.4510 f=1.3010 A = 0.6534 90 33.5026 0.0334 0.2850 -1.7621 0.0333 —-0.2255
200 22.2469 0.0138 0.2051 —-0.0078 0.0326 —-0.1635
50 39.7837 0.0753 0.4067 —-0.9935 0.0371 —-0.3436

a=17.4510 = 1.4510 A = 0.6034 90 37.8969 0.0406 0.3365 -0.2782 0.0349 —-0.2836
200 18.0537 0.0128 0.1725 0.1783 0.0062 —-0.1470

proposed by Dey et al. [43], the MIR distribution suggested £(x) = 2ay°x exp(—(yx)z)

by Khan [28], the EIR distribution developed by Rehman (76)

and Dar [27], the GR distribution offered by Raqab and Madi . (1 - exp(—(yx)z))a_ Lo, 7, X >0.

[44], the TIR distribution by Ahmad et al. [15], and the GIR

distribution by Potdar and Shirke [29]. PDF of TPR distribution is as follows:

Data set 1: the first set of data includes the survival times 5
(in years) of 46 individuals who received just chemotherapy. f () = 20(x - ‘u)exp(—oc (e —p) )’ x> «>0. 77

These data are a subset of the data taken from the study by
Bekker et al. [45]. The data points are 0.047,0.115, 0.121,
0.132, 0.164, 0.197,0.203, 0.260, 0.282, 0.296, 0.334, 0.395,
0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644,
0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485,
1.553, 1.581, 1.589, 2.178,2.343, 2.416, 2.444, 2.825, 2.830,
3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

Data set 2: the failure times of 84 aircraft windshields are
included in the second real data set. El-Bassiouny et al. [46]
provided this information. The following are the data points:

3.70,2.74,2.73, 2.50, 3.60, 3.11, 3.27,2.87, 1.47,3.11,4.42,
2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43,
2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20,
3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,
2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98,
2.76, 491, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59,

2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,
1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70,
2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05,
3.65.
PDF of GIR distribution is as follows:
2 _
fx)= /\2—/33exp(—(/\x) 2)
x (74)
1= exp(-0x) )] " x B A0,
PDF of EIR distribution is as follows:
236 0
f(x) = £3 exp({/j—z)), 0, 5, X >0. (75)
X X

PDF of GR distribution is as follows:

PDF of MIR distribution is as follows:

fx) = (oc N 2;)(%)2 exp(—% - 9(%)2) 0 6,X>0. (78)

PDF of TIR distribution is as follows:

oo (2]
(1 e {2)) oo

PDF of WR distribution is as follows:

2 -1
f(x) = afbx exp(ei) (exp(g—xz> - 1)
2 2
Ox? !
)
e ,o,0,3,X>0.

The APGIR model’s results are compared with other
Rayleigh distribution versions using well-known model
selection criteria such as Akaike’s Information Criteria
(AIC), Consistent Akaike’s Information Criteria (CAIC),
Bayesian Information Criterion (BIC), Hannan-Quinn In-
formation Criteria (HQIC), and Kolmogorov-Smirnov (K-
S) and their P values via the R programming language’s
Adequacy Model. The results are shown in Tables 2 and 3.

On the basis of several model selection criteria, Tables 2
and 3 show that our recommended distribution outperforms
than other forms of Rayleigh distribution.

(80)
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TABLE 2: Goodness of fit results for data set 1.
Distribution MLE AIC CAIC BIC HQIC K-S P value
APGIR 10.4662 0.4091 8.4132 137.2571 137.8425 142.6771 139.2776 0.14051 0.3073
GIR 0.2720 7.4680 148.2952 148.5809 151.9086 149.6422 0.77484 5.55le—16
TIR 0.0414 —0.8352 211.8820 212.1677 215.4953 213.229 0.43156 3.923e-08
APEIR 10.8661 0.8934 0.0477 196.7339 197.3192 202.1538 198.7544 0.75677 5.55le— 16
TPR 0.1898 -0.5973 138.6129 138.8986 142.2262 139.9599 0.21686 0.02449
EIR 0.1664 0.3224 234.1737 234.4594 237.787 235.5207 0.50772 2.82e—-11
TABLE 3: Goodness of fit results for data set 2.
Distribution MLE AIC CAIC BIC HQIC K-S P value
APGIR 17.4510 1.4510 0.6534 326.7218 326.9718 334.5373 329.8849 0.15139 0.02043
GIR 1.1357 —0.5285 353.6821 353.8058 358.8924 355.7908 0.17108 0.005739
TIR 1.9939 —0.8843 339.1298 339.2535 344.3401 341.2385 0.15364 0.01781
MIR -2.0768 6.4548 338.6148 338.7385 343.8251 340.7235 0.40002 2.531e— 14
EIR 7.9999 0.4095 354.4818 354.6055 359.6921 356.5905 0.18258 0.002544
APEIR 11.8642 0.2827 5.7878 339.3922 339.6422 347.2077 342.5553 0.78182 2.2e-16
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Figure 3 represents QQ and PP plot for data set 1. Figure 4
shows theoretical densities and CDFs for data set 1. The
graphs clearly show better fit for data set 1. Figure 5 represents

O
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0.2

0.4 0.6 0.8
Theoretical probabilities

Ficure 3: Graphs of QQ and PP plot for data set 1.

QQ and PP plot for data set 2. Figure 6 shows theoretical
densities and CDFs for data set 2. It is clear from the figures
that the data set 2 is better fitted by the proposed distribution.
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Histogram and theoretical densitie
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Empirical and theoretical CDFs
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FiGgure 5: Graphs of QQ and PP plot for data set 2.
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Histogram and theoretical densitie
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Empirical and theoretical CDFs

FIGURE 6: Graphs of theoretical densities and CDFs for data set 2.

4. Conclusion

In this paper, we have proposed a new distribution referred
to as Alpha Power Generalized Inverse Rayleigh (APGIR)
distribution. This distribution has been developed using
APT with the input as Generalized Inverse Rayleigh. Several
important mathematical properties including the moment
generating function, order statistics, mean residual life
function, mean waiting time, stress-strength parameter,
expression for entropies, quantile function, and rth moment
have been derived The parameter estimates were derived
using the MLE technique. The consistency of MLE’s was
assessed using simulation studies. The performance of the
proposed model was evaluated using two real data sets using
some goodness of fit criteria. The results clearly reveal that
our proposed model performs well as compared with other
types of Rayleigh distribution available in the literature.

Data Availability

The data sets are included within the main body of the paper.
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