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In this paper, we propose a two-level nonconforming rotated finite element (TNRFE) method for solving the Navier–Stokes
equations. A new nonconforming rotated finite element (NRFE) method was proposed by Douglas added by conforming bubbles
to velocity and discontinuous piecewise constant to the pressure on quadrilateral elements possessing favorable stability
properties. .e TNRFE method involves solving a small Navier–Stokes problem on a coarse mesh with mesh size H and a large
linearized Navier–Stokes problem on a fine mesh with mesh size h by the NRFE method. If we choose h � O(H2), the TNRFE
method gives the convergence rate of the same order as that of the NRFE method. Compared with the NRFE method, the TNRFE
method can save a large amount of CPU time. In this paper, the stability of the approximate solutions and the error estimates are
proved. Finally, the numerical experiments are given, and results indicate that the method is practicable and effective.

1. Introduction

When the Navier–Stokes equations are discretized by finite
element methods, two problems often arise: one is that the
discrete inf-sup condition is broken, and the other is that the
pseudo-oscillation is caused by the dominant convection
term. In order to solve the first problem, we use the new
nonconforming element proposed by Jim Douglas [1] added
by conforming bubbles to the velocity and discontinuous
piecewise constant to the pressure on quadrilateral elements
which possess favorable stability properties. Brezzi and Russo
[2] found that adding and eliminating bubbles to the finite
element space is equivalent to the addition of a stabilizing
term of a streamline diffusion type. It is equivalent to tuning
up the amount of streamline artificial viscosity and corre-
sponds to reducing the residual inside each element.

To deal with the second problem, we adopt the Newton
TNRFEmethodwhich involves solving one smallNavier–Stokes
problem on a coarse mesh with mesh size H and a large lin-
earizedNavier–Stokes problem on a finemesh withmesh size h.

It is well known that the approximate space of velocity
and pressure should generally satisfy the LBB condition
when solving Navier–Stokes equations by finite element
methods. .is matching is difficult for the conforming el-
ement. For example, if the triangle element is used, the
velocity is a piecewise linear element, and the pressure is a
piecewise constant, then the LBB condition is not satisfied. If
the velocity is changed to piecewise quadratic, then the error
estimates for velocity will lose one order. If you use the
following two rectangular elements, (1) the velocity is a
bilinear polynomial interpolation and the pressure is a
piecewise constant; (2) the velocity is double polynomial
interpolation and the pressure is of bilinear form, then the
LBB condition is not satisfied.

To some extent, the nonconforming element can over-
come this difficulty, and it is often used in practical com-
putation because of its simple structure, economical
calculation, and error matching. .e nonconforming finite
element method for the Stokes problem was first proposed
by Crouzeix and Raviart [3], and they used the piecewise
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linear triangle element with three midpoints as the velocity
approximation space and the piecewise constant finite ele-
ment as the pressure approximation space to obtain an
approximation scheme (the C-R scheme) for the Stokes
problem. In this way, not only the LBB condition is satisfied
but also some optimal error estimates of velocity and
pressure are obtained. Temam [4] also proposed the non-
conforming linear element as the approximate space of
velocity, which obtained satisfactory error estimates. Be-
cause the rectangular element has the advantages of simple
mesh and less bandwidth of the stiffness matrix, Rannacher
and Turek [5] analyzed the rotational bilinear non-
conforming element with local base span 1, x, y, x2 − y2􏼈 􏼉.
However, if the definition of the global nonconforming
space which requires continuity at the midpoint of the
common inner boundary of the adjacent elements is
adopted, the optimal error estimates for the real quadri-
lateral subdivision region will not be obtained. To solve this
problem, Jim Douglas et al. [1] modified the rotated bilinear
local basis span 1, x, y, x2 − y2􏼈 􏼉 to span 1, x, y, (3x2􏼈

− 5x4) − (3y2 − 5y4)}, which has the following properties:
< 1, wj − wk > Γjk

� 0 and <1, wj > Γj � 0. Han [6] proposed
that a nonconforming rectangular element with five degrees
of freedom for the velocity, whose node parameters are the
function value at the center and the midpoint of the four
sides of the element, and the shape function space span
1, x, y, 1/2(5x4 − 3x2), 1/2(5y4 − 3y2)􏼈 􏼉 for the standard
element [− 1, 1]2 can also obtain the best order error esti-
mate. Although the element has the same order of con-
vergence speed as the Douglas rotation element, it has one
more degree of freedom than the latter, which increases the
computational load and decreases the efficiency. In solving
the Stokes problem and the Navier–Stokes problem, Cai
et al. [7, 8] used the Douglas rotation element, added a
compatible bubble function to the velocity approximation
space as the internal degree of freedom, and used the
piecewise constant finite element space as the pressure
approximation space. Cai et al. [7] gave the existence and
uniqueness of the solution and the convergence rate of the
nonconforming Galerkin (NFG) method when the Douglas
rotation element was used for the velocity, but the numerical
experiments were not given.

A part of the work of this paper is to solve the steady
Stokes equations and Navier–Stokes equations by using the
NRFE method, explain the existence and uniqueness of the
solution and the convergence speed, and give the concrete
design process and numerical experiment of the algorithm.

In practice, solving the Navier–Stokes equations is very
time-consuming, so people try to save computing time as
much as possible. One of them is the two-layer grid method,
which is to solve a nonlinear equation on a coarse grid, and
the purpose of solving a linear equation on a fine mesh is to
obtain the approximate solution of the nonlinear equation in
less time and to maintain the optimal convergence speed,
specifically. .e two-layer mesh method is based on the
finite element space XH, Xh for the velocity approximation
(H is the coarse mesh size parameter, and h is the fine mesh
size parameter, h≪H) and on the finite element space
MH, Mh for the pressure approximation; the first step is to

get the solution of uH, pH on a coarse grid by the NRFE
method. Generally speaking, because the grid is coarse, it
does not take much time. .e second step is to solve a linear
equation using known uH, pH. In some papers, the third step
is to solve a correction problem on the coarse grid by the
correction technique. In recent years, the two-layer grid
method has attracted more and more attention. Layton [9],
Li and Hou [10], He and Li [11], Mei [13], Shi and Wang
[14], Chen [15], and others have done a lot of work in this
field.

.e other main work of this paper is to prove the stability
and convergence rate of the TNRFE method for solving
Navier–Stokes equations. .e design process and numerical
experiment of the algorithm are given.

.e TNRFEmethod is used to solve a nonlinear problem
on a coarse grid with a grid size of H and a linear problem on
a fine grid with a grid size of h. However, the NRFE method
is used to solve a nonlinear problem on a fine grid with a grid
size of h. .erefore, the TNRFE method is simpler than the
NRFE method in calculation and can save a lot of CPU time,
and the TNRFE method has the same order of convergence
speed as the NRFE method when the grid size is selected
properly. In this paper, the numerical experiments and
theoretical analysis prove that the Newton TNRFE method
and the NRFE method have the same order of convergence
speed under the condition of h � O(H2).

In Section 2, we briefly review some knowledge and
important properties of Sobolev spaces and give the varia-
tional forms and the existence, uniqueness, and regularity
estimates of solutions for the Navier–Stokes equations. In
Section 3, we first introduce the construction and properties
of the nonconforming rectangular element space. We ex-
plain the NRFE method, existence, uniqueness, and con-
vergence rate of the approximation solution for Stokes
equations. .e design process and finite element analysis of
the algorithm are given in detail. In Section 4, the NRFE
method, existence, uniqueness, and convergence rate of the
approximate solution for Navier–Stokes equations are dis-
cussed. In Section 5, the stability and convergence rate of the
solution of the TNRFE method for Navier–Stokes equations
are proved. In Section 6, a large number of numerical ex-
periments are given to verify the correctness and effec-
tiveness of the algorithm.

2. Governing Equations

In this paper, we study the linearized energy-conservative
finite element method for the following nonlinear
Navier–Stokes equations:

− ]Δu +(u · ∇)u + ∇p � f, ∀x ∈ Ω,

∇ · u � 0, ∀x ∈ Ω,

u � 0, ∀x ∈ Γ,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where Ω is a bounded domain and convex domain in Rd

(d � 2, 3), u � (u1(x), u2(x)) is the velocity vector,
p � p(x) is the pressure, f � f(x) is the external force
density, and ]> 0 is the dynamic viscosity coefficient.
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In order to describe the variational form of Navier–
Stokes equations, the Sobolev space is introduced:

X � H
1
0(Ω)

2
,

Y � L
2
(Ω)

2
,

M � L
2
0(Ω) � q ∈ L

2
(Ω); 􏽚

Ω
qdx � 0􏼚 􏼛,

(2)

where (·, ·), ‖ · ‖0 denotes the inner product and norm on
L2(Ω)d and X is equipped with the usual inner product and
norm.

((u, v)) � (∇u,∇v),

‖∇u‖0 � ((u, u))
1/2

,
(3)

and 〈·, ·〉Γ, ‖| · ‖|Γ denotes the inner product and norm over
L2(Γ)d.

Define, respectively, the continuous bilinear form on
X × X and X × M:

a(u, v) � ]((u, v)), ∀u, v ∈ X,

d(v, q) � (∇ · v, q), ∀v ∈ X, q ∈M.
(4)

In addition, we introduce a closed subset of X:

V � v ∈ X; d(v, q) � 0,∀q ∈M􏼈 􏼉. (5)

Let Au � − Δu. As we all know, A is a linear, unbounded,
and self-conjugate operator in Y, defined in

D(A) � H
2
(Ω)

2 ∩X. (6)

Theorem 1 (see [4]). LetΩ be a smooth or convex polygon of
C2; for given f ∈ Y, the Stokes problem

− ]Δu + ∇p � f, ∀x ∈ Ω,

∇ · u � 0, ∀x ∈ Ω,

u � 0, ∀x ∈ Γ,

⎧⎪⎪⎨

⎪⎪⎩
(7)

there exists a unique solution of
(u, p) ∈ D(A) × (H1(Ω)∩M) and satisfies

‖u‖2 + ‖p‖1 ≤ c‖f‖0, (8)

where c is a positive constant dependent on Ω and ‖ · ‖i is a
norm over Hi(Ω) or Hi(Ω)2(i � 1, 2).

Define the trilinear form on X × X × X:

b(u, v, w) � ((u · ∇)v, w) +
1
2

((∇ · u)v, w)

�
1
2

((u · ∇)v, w) −
1
2

((u · ∇)w, v), ∀u, v, w ∈ X,

(9)

which satisfies the following properties:

((u · ∇)v, w) +((u · ∇)w, v) � 􏽚
Γ
(w · v)(u · n)ds − 􏽚

Ω
(w · v)∇ · udx, ∀u, v, w ∈ X

|b(u, v, w)|≤Cb‖∇u‖0‖∇v‖0‖∇w‖0,∀u, v, w ∈ X

b(u, v, w) � − b(u, w, v),∀u, v, w ∈ X.

(10)

So, the variational form of problem (1) is

find(u, p) ∈ X × M, so

a(u, v) − d(v, p) + b(u, u, v) � (f, v), ∀v ∈ X,

d(u, q) � 0, ∀q ∈M,

⎧⎪⎪⎨

⎪⎪⎩
(11)

and problem (2) in the variational form is

find (u, p) ∈ X × M, so,

a(u, v) − d(v, p) � (f, v), ∀v ∈ X,

d(u, q) � 0, ∀q ∈M.

⎧⎪⎪⎨

⎪⎪⎩
(12)

.e inequalities that will be used in this article are de-
scribed here first.

(1) Hölder’s inequality:
If u ∈ Lp(Ω) and v ∈ Lq(Ω), p, q are positive real
numbers, then

􏽚
Ω

uvdx‖u‖Lp ‖v‖Lq ,
1
p

+
1
q

� 1. (13)

(2) Young’s inequality:
If a, b, p, q, and ϵ are all positive real numbers, then

ab≤
ϵap

p
+
ϵ− q/p

b
q

q
,
1
p

+
1
q

� 1. (14)

(3) Sobolev’s embedding theorem:

Mathematical Problems in Engineering 3



Let m> 0 be an integer, 1≤p<∞, and let Ω be an
open subset of Rn and have Lipschitz continuous

boundary, so the following embedding relationship
holds:

W
m,p

(Ω)⟶

L
q
(Ω), q �

np

n − mp
, mp< n

L
q
(Ω), ∀q ∈ [1,∞), mp � n

C
0,m− n/p

(Ω), mp> n>(m − 1)p

C
0,α

(Ω), ∀α ∈ (0, 1), n � (m − 1)p

C
0,1

(Ω), n<(m − 1)p

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

In this paper, we give the existence and uniqueness of
solutions for the classical Navier–Stokes equations.

Theorem 2 (see [16]). If v and f ∈ X′ satisfy

Cb

]2
‖f‖− 1 < 1, ‖f‖− 1 � supv∈X

(f, v)

‖∇v‖0
, (16)

then problem (11) has a unique solution of
(u, p) ∈ D(A) × (H1(Ω)∩M), and u ∈ V satisfies

‖∇u‖0 ≤
1
]
‖f‖− 1. (17)

Theorem 3 (see [12]). If f ∈ Y satisfies uniqueness condition
(8), then the solution of problem (11) satisfies the following
regularity estimate:

‖u‖2 +‖p‖1 ≤C, (18)

where C is a positive constant dependent on (], f,Ω).

3. A Nonconforming Rotated Finite Element
Method for the Stokes Equations

In the first section of this section, we review the construction
and properties of the nonconforming rotated rectangular
element space. In the second section, we discuss the exis-
tence, uniqueness, and stability of the solution of the
problem approximated by the NRFE method. In the third
section, we give the convergence rate of this method. In the
fourth section, the concrete design of the algorithm is in-
troduced. .e key of solving the Stokes equations with the
NRFE method is to condense the internal degree of freedom
in the process of establishing the stiffness. In the fifth section,
we describe the finite element analysis of the method.

In this paper, we use a rectangular partition of the same
scale for the velocity and pressure. Here and later, h is a
positive real parameter that tends to zero, and 0< h≤ 1.

Definition 1. Let τh � τh(Ω) be a partition of the region Ω
and Ωj be any unit of τh; if τh satisfies the following
conditions:

(i) .ere exists a constant σ > 0 so that
hj/ρj ≤ σ,∀Ωj ∈ τh, where
hj � diam(Ωj) � sup |x − y|, ∀x, y ∈ Ωj􏽮 􏽯 and ρj �

sup diam(S), S{ is any inside ball of Ωj}

(ii) .ere exists a constant c> 0 that has nothing to do
with h such that max h/hj,∀Ωj ∈ τh􏽮 􏽯≤ c, where
h � maxΩj

hj􏽮 􏽯

then τh is called the quasi-uniform regular partition
of the region Ω.

Let Ω � ∪ J
j�1Ωj ⊂ R2, andΩj is any quasi-uniform

regular quadrilateral element of the region Ω, recorded as

Γj � Γ ∩ Γj, Γjk � Γkj � zΩj ∩Γk. (19)

.e midpoints of Γj and Γjk are, respectively, ξj and ξjk.
We define the standard base on the standard unit:

Q( 􏽢K) � Span 1, ξ, η, ξη, ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼚 􏼛, (20)

Q Ωj􏼐 􏼑 � v: v � 􏽢v°F− 1
j , 􏽢v ∈ Q(􏽢K)􏽮 􏽯, (21)

where Fj is a reversible affine transformation and
Fj(

􏽢K) � Ωj.
Now, we construct the finite element space.

(1) Nonconforming rectangular finite element space

Xh � v: vj � v|Ωj
∈ Q Ωj􏼐 􏼑 × Q Ωj􏼐 􏼑, vj ξjk􏼐 􏼑 � vk ξkj􏼐 􏼑, vj ξj􏼐 􏼑 � 0,∀j, k􏼚 􏼛 (22)
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satisfies the following properties:

(i) Inverse inequality:
‖∇χ‖0,j ≤ ch

− 1
j ‖χ‖0,j,∀χ ∈ Xh. (23)

(ii) Poincaré–Friedrichs inequality:

‖v‖
2
0,j ≤ h

2
‖∇v‖

2
0,j + 􏽚

Γ1
vds􏼠 􏼡

2

,∀v ∈ H
1 Ωj􏼐 􏼑

2
, Γ1 ⊆ zΩj.

(24)

(iii) Trace inequality:

‖|v‖|j ≤ c h
− 1/2
j ‖v‖0,j + ‖v‖

1/2
0,j ‖∇v‖

1/2
0,j􏽮 􏽯,∀v ∈ H

1 Ωj􏼐 􏼑.
2

(25)

(iv)

􏽚
Γjk

vi􏼂 􏼃ds � 0, 􏽚
Γj

vids � 0,∀v � v1, v2( 􏼁
T ∈ Xh, i � 1, 2,

(26)

where ‖ · ‖2m,j � ‖ · ‖Hm (Ωj)
22, ‖ · ‖2j � 􏽐k∈Zj

‖ · ‖2
L2(Γjk)2

, andZj � k,Ωk ∩Ωj ≠∅􏽮 􏽯. Γjk can
be replaced by Γj at the outer boundary, and
[vi] � vi|Γjk

− vi|Γkj
means the jump of vi on the

public boundary Γjk, 1≤ j≤ J.

(2) Piecewise constant finite element space

Mh � q ∈M: q|Ωj
∈ P0 Ωj􏼐 􏼑,∀j􏼚 􏼛 (27)

satisfies the following properties:

(i) Inverse inequality:

‖∇q‖0,j ≤ ch
− 1
j ‖q‖0,j,∀q ∈Mh. (28)

(ii) Poincaré–Friedrichs inequality:

‖p‖
2
0,j ≤ h

2
‖∇p‖

2
0,j + 􏽚

Γ1
pds􏼠 􏼡

2

,∀p ∈ H
1 Ωj􏼐 􏼑, Γ1 ⊆ zΩj.

(29)

(iii) Trace inequality:

‖|p‖|j ≤ c h
− 1/2
j ‖p‖0,j + ‖p‖

1/2
0,j ‖∇p‖

1/2
0,j􏽮 􏽯,∀p ∈ H

1 Ωj􏼐 􏼑,

(30)

where ‖ · ‖2m,j � ‖ · ‖2Hm(Ωj), ‖ · ‖2j � 􏽐k∈Zj
‖

·‖2L2(Γjk), andZj � k,Ωk ∩Ωj ≠∅􏽮 􏽯. Γjk can be
replaced by Γj at the outer boundary, 1≤ j≤ J.

Let (·, ·)j � (·, ·)Ωj
, 1≤ j≤ J, define the discrete bilinear

form

ah(u, v) � ]􏽘

J

j�1
(∇u,∇v)j,∀u, v ∈ X∪Xh

dh(v, q) � 􏽘

J

j�1
(∇ · v, q)j,∀v ∈ Xh, q ∈Mh,

(31)

and norm

‖v‖1,h � 􏽘

J

j�1
‖∇v‖

2
0,j

⎛⎝ ⎞⎠

1/2

�

��������
1
]
ah(v, v)

􏽲

,∀v ∈ Xh. (32)

In addition, we introduce a closed subset of Xh:

Vh � v ∈ Xh; dh(v, q) � 0,∀q ∈Mh􏼈 􏼉. (33)

Define operator πj: H1(Ωj)⟶ Q(Ωj), which satisfies

􏽚
ei

j

πjvds � 􏽚
ei

j

vds,∀v ∈ H
1 Ωj􏼐 􏼑, i � 1, 2, 3, 4, (34)

and is equivalent to

πjv a
i
j􏼐 􏼑 �

1
e

i
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽚

ei
j

vds, i � 1, 2, 3, 4, (35)

where ei
j(i � 1, 2, 3, 4) are the four edges of Ωj, and their

corresponding midpoints are ai
j(i � 1, 2, 3, 4), satisfying the

following properties:

(i)

‖∇ v − πjv􏼐 􏼑‖0,j ≤ c‖∇v‖0,j,∀v ∈ H
1 Ωj􏼐 􏼑. (36)

(ii)

‖∇ πjv􏼐 􏼑‖0,j ≤ c‖∇v‖0,j,∀v ∈ H
1 Ωj􏼐 􏼑. (37)

Define operator Πh: X⟶ Xh, which satisfies

Πhv( 􏼁i|Ωj
� πjvi, ∀v ∈ X, ∀j, i � 1, 2, (38)

and satisfies the following properties:

(i)

dh Πhv − v, q( 􏼁 � 0,∀q ∈Mh. (39)

(ii)

‖Πhv‖1,h ≤ c‖∇v‖0, ∀v ∈ X. (40)

Define the projection operator Rh: H2(Ω)2⟶ Xh,
which satisfies

Rhv(ξ) � v(ξ),∀ξ � ξjk or ξj, (41)

and P0: H1(Ω)2⟶Λh × Λh satisfies

〈P0vj, z〉Γ �〈
zvj

znj

, z〉Γ,∀z ∈ P0(Γ)
2
,∀Γ � ΓjkorΓj, (42)

where if record tr(τ) � τ: δ, δ �
1 0
0 1􏼢 􏼣, and σ: τ

� 􏽐
2
i�1 􏽐

2
j�1 σijτij, then

Mathematical Problems in Engineering 5



Λh � λ: λjk � trΓjk
λ|Ωj

􏼒 􏼓 ∈ P0 Γjk􏼐 􏼑; λjk + λkj � 0; λj � trΓj λ|Ωj
􏼒 􏼓 ∈ P0 Γj􏼐 􏼑􏼚 􏼛. (43)

Define the projection operator Sh: H1(Ω)⟶Mh,
which satisfies

Shq, z( 􏼁 � (q, z),∀z ∈Mh, (44)

and Q0: H1(Ω)⟶ P0(Γ) satisfies

〈Q0q, z〉Γ � 〈q, z〉Γ,∀z ∈ P0(Γ),∀Γ � ΓjkorΓj. (45)

.ey satisfy the following properties:

(i) Orthogonality:

〈P0vj, wj〉Γjk
+〈P0vk, wk〉Γkj

�〈P0vj, wj − wk〉Γjk
� 0,∀w ∈ Xh.

(46)

(ii) Approximation property:

‖v − Rhv‖0 + h 􏽘

J

j�1
‖∇ v − Rhv( 􏼁‖

2
0,j

⎛⎝ ⎞⎠

1/2

+ h
1/2

􏽘

J

j�1
‖|v − Rhv‖|

2
j

⎛⎝ ⎞⎠

1/2

+ h
3/2

􏽘

J

j�1
‖|

zv

znj

− P0v‖|
2
j

⎛⎝ ⎞⎠

1/2

≤ ch
2
‖v‖2, v ∈ H

2
(Ω)

2

‖q − Shq‖0 + h
1/2

􏽘

J

j�1
‖|q − Q0q‖|

2
j

⎛⎝ ⎞⎠

1/2

≤ ch‖q‖1, q ∈ H
1
(Ω).

(47)

Here and later, nj, 1≤ j≤ J, represents the unit outer
normal vector of zΩj.

.en, the nonconforming finite element approximation
problem of (12) is

find uh, ph( 􏼁 ∈ Xh × Mh, so

ah uh, v( 􏼁 − dh v, ph( 􏼁 � (f, v), ∀v ∈ Xh,

dh uh, q( 􏼁 � 0, ∀q ∈Mh.

⎧⎪⎪⎨

⎪⎪⎩
(48)

Proposition 1 (see [7]). If the bilinear form d(·, ·) satisfies
the inf − sup condition, there is a constant β> 0 such that

sup
v∈X

d(v, q)

‖∇v‖0
≥ β‖q‖0,∀q ∈M, (49)

then the bilinear form dh(·, ·) satisfies the discrete inf − sup
condition: there is a positive constant β0 such that

sup
v∈Xh

dh(v, q)

‖v‖1,h

≥ β0‖q‖0,∀q ∈Mh. (50)

Theorem 4 (see [7]). Under the condition of Proposition 1, if
Vh is not empty, problem (48) has a unique solution
(uh, ph) ∈ Xh × Mh, and uh ∈ Vh satisfies

‖uh‖1,h ≤
1
]

‖f‖∗, ‖f‖∗ � sup
v∈Xh

(f, v)

‖v‖1,h

. (51)

Proposition 2 (see [7]). Let (u, p) and (uh, ph) be, re-
spectively, the solutions of problems (12) and (48); there is a
positive constant of c such that

‖u − uh‖1,h ≤ c inf
v∈Xh

‖u − v‖1,h + sup
v∈Vh

ah(u, v) − (f, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

‖v‖1,h

⎛⎝ ⎞⎠

‖p − ph‖0 ≤ c inf
q∈Mh

‖p − q‖0 + sup
v∈Xh

ah(u, v) − dh(v, p) − (f, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

‖v‖1,h

+ inf
v∈Xh

‖u − v‖1,h + sup
v∈Vh

ah(u, v) − (f, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

‖v‖1,h

⎛⎝ ⎞⎠.

(52)
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Proposition 3 (see [7]). Let 〈f, g〉j � 􏽒
zΩj

fgds, for
∀ϕ, w ∈ X∪Xh, satisfy the following properties:

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

J

j�1
〈

zw

znj

, ϕ〉j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ch‖w‖2‖ϕ‖1,h,∀w ∈ D(A)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

J

j�1
〈q,ϕ · nj〉j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ch‖q‖1‖ϕ‖1,h,∀q ∈ H

1
(Ω).

(53)

Theorem 5 (see [7]). Let (u, p) ∈ H2(Ω)2 × H1(Ω) and
(uh, ph) ∈ Xh × Mh be, respectively, the solutions of problems
(12) and (48); then,

‖u − uh‖1,h + ‖p − ph‖0 ≤ ch ‖u‖2 + ‖p‖1( 􏼁. (54)

Using the dual argument method, we estimate the error
of L2.

Consider the linear duality problem:

− ]Δψ + ∇χ � u − uh ∀x ∈ Ω,

∇ · ψ � 0 ∀x ∈ Ω,

ψ � 0 ∀x ∈ Γ.

⎧⎪⎪⎨

⎪⎪⎩
(55)

.e variational form is

find(ψ, χ) ∈ X × M, so

a(v,ψ) − d(v, χ) � u − uh, v( 􏼁, ∀v ∈ X,

d(ψ, q) � 0, ∀q ∈M.

⎧⎪⎪⎨

⎪⎪⎩
(56)

If u is the nonsingular solution of problem (2), then
problem (56) has a unique solution (see [16]).

In order to establish an estimate of the L2 error of ve-
locity, Aubin–Nitsche argumentation method is used here.
Let problem (34) be H2 regular, i.e.,

‖ψ‖2 + ‖χ‖1 ≤ c‖u − uh‖0. (57)

Let (ψ, χ) be the solution of problem (56), and
(ψh, χh) ∈ Xh × Mh, satisfying

‖ψ − ψh‖1,h + ‖χ − χh‖0 ≤ ch ‖ψ‖2 + ‖χ‖1( 􏼁. (58)

Theorem 6 (see [7]). Let (u, p) ∈ H2(Ω)2 × H1(Ω) and
(uh, ph) ∈ Xh × Mh be, respectively, the solutions of problems
(12) and (48); if problem (55) is H2 regular, then

‖u − uh‖0 ≤ ch
2

‖u‖2 + ‖p‖1( 􏼁. (59)

Fis section presents the algorithm design for solving
problem (48).

3.1. Step 1: Condensation of Internal Degrees of Freedom.
Let the four edges of the standard cell 􏽢K � [− 1, 1]2 be, re-
spectively, 􏽢e1, 􏽢e2, 􏽢e3, and 􏽢e4; the corresponding midpoints are
􏽢a1 � (0, − 1), 􏽢a2 � (1, 0), 􏽢a3 � (0, 1), and 􏽢a4 � (− 1, 0), and
the shape functions for each node of the Douglas rotation
element obtained are, respectively,

φ1(ξ, η) �
1
4

−
1
2
η +

3
8

ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼒 􏼓

φ2(ξ, η) �
1
4

+
1
2
ξ −

3
8

ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼒 􏼓

φ3(ξ, η) �
1
4

+
1
2
η +

3
8

ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼒 􏼓

φ4(ξ, η) �
1
4

−
1
2
ξ −

3
8

ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼒 􏼓

. (60)

It is easy to verify

􏽚
􏽢ei

φjd􏽢s � δij|􏽢ei|, i, j � 1, 2, 3, 4, (61)

where δij is the Kronecker symbol and |􏽢ei| is the length of the
edge of 􏽢ei.

.e element speed interpolation with additional node-
free speed terms can be expressed as follows:

u1 � 􏽘
4

i�1
φiu

1
i + λ1ξη,

u2 � 􏽘
4

i�1
φiu

2
i + λ2ξη,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(62)

where λ1 and λ2 are the undetermined coefficient in the
element’s internal definition, known as the internal degree of
freedom.

.e expression is expressed in the matrix form:

u � ua + uλ, (63)

i.e.,

u1

u2
􏼢 􏼣 �

φ1 φ2 φ3 φ4 0 0 0 0

0 0 0 0 φ1 φ2 φ3 φ4
􏼢 􏼣

u
1
1

u
1
2

u
1
3

u
1
4

u
2
1

u
2
2

u
2
3

u
2
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
ξη 0

0 ξη
􏼢 􏼣

λ1
λ2

􏼢 􏼣

. (64)

.e element pressure is interpolated as follows:

p � p1ζ1, (65)

where ζ1 � 1.
We discretize equation (48) on the unit Ωj using the

interpolation functions of u and p. Since
v � (v1, v2)

T ∈ Xh and q ∈Mh is arbitrary, we can choose
the following:
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(1) v �
φl

0􏼢 􏼣, l � 1, 2, 3, 4, and v �
ξη
0􏼢 􏼣.

](∇u,∇v)j

� ]B
Ωj

∇u1 · ∇v1 + ∇u2 · ∇v2( 􏼁dΩ

�

]􏽘
4

j�1
u
1
jB
Ωj

∇φj∇φldΩ + ]λ1B
Ωj

∇(ξη)∇φldΩ v1 � φl, l � 1, 2, 3, 4,

]􏽘

4

j�1
u
1
jB
Ωj

∇φj∇(ξη)dΩ + ]λ1B
Ωj

∇(ξη)∇(ξη)dΩ v1 � ξη,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(∇ · v, p)j

� B
Ωj

p
zv1

zx1
+

zv2

zx2
􏼠 􏼡dΩ

�

p1B
Ωj

ζ1
zφl

zx1
dΩ v1 � φl, l � 1, 2, 3, 4,

p1B
Ωj

ζ1
z(ξη)

zx1
dΩ v1 � ξη,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(f, v)j � B
Ωj

f1v1 + f2v2( 􏼁dΩ

�

B
Ωj

f1φldΩ v1 � φl, l � 1, 2, 3, 4,

B
Ωj

f1ξηdΩ v1 � ξη.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(66)

(2) v �
0
φl

􏼢 􏼣, l � 1, 2, 3, 4, and v �
0
ξη􏼢 􏼣.

](∇u,∇v)j �

]􏽘
4

j�1
u
2
jB
Ωj

∇φj∇φldΩ + ]λ1B
Ωj

∇(ξη)∇φldΩ v2 � φl, l � 1, 2, 3, 4,

]􏽘
4

j�1
u
2
jB
Ωj

∇φj∇(ξη)dΩ + ]λ1B
Ωj

∇(ξη)∇(ξη)dΩ v2 � ξη,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(∇ · v, p)j �

p1B
Ωj

ζ1
zφl

zx2
dΩ v2 � φl, l � 1, 2, 3, 4,

p1B
Ωj

ζ1
z(ξη)

zx2
dΩ v2 � ξη,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(f, v)j �

B
Ωj

f2φldΩ v2 � φl, l � 1, 2, 3, 4,

B
Ωj

f2ξηdΩ v2 � ξη.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(67)
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(3) q � ζ1.

(∇ · u, q)j � 􏽘
4

j�1
u
1
jB
Ωj

zφj

zx1
ζ1dΩ + λ1B

Ωj

z(ξη)

zx1
ζ1dΩ + 􏽘

4

j�1
u
2
jB
Ωj

zφj

zx2
ζ1dΩ + λ2B

Ωj

z(ξη)

zx2
ζ1dΩ. (68)

By synthesizing (1)–(3) and making some adjustments,
the element discrete equations are obtained:

􏽘

4

i�1
K

11
ji u

1
i + 􏽘

4

i�1
K

12
ji u

2
i + K

13
j1λ1 + K

14
j2λ2 + K

15
j1p1 � R

1
j

􏽘

4

i�1
K

21
ji u

1
i + 􏽘

4

i�1
K

22
ji u

2
i + K

23
j1λ1 + K

24
j2λ2 + K

25
j1p1 � R

2
j

􏽘

4

i�1
K

31
1i u

1
i + 􏽘

4

i�1
K

32
1i u

2
i + K

33
11λ1 + K

34
12λ2 + K

35
11p1 � R

1
λ1

􏽘

4

i�1
K

41
2i u

1
i + 􏽘

4

i�1
K

42
2i u

2
i + K

43
21λ1 + K

44
22λ2 + K

45
21p1 � R

2
λ2

􏽘

4

i�1
K

51
1i u

1
i + 􏽘

4

i�1
K

52
1i u

2
i + K

53
11λ1 + K

54
12λ2 + K

55
11p1 � R

3
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j � 1, 2, · · · , 4.

(69)

Let

δi
j �

1 j � i,

0 j≠ i,
􏼨 (70)

where

K
τω
ji � δωτ ]B

Ωj

∇φi∇φjdΩτ,ω � 1, 2

K
13
j1 � K

31
1j � K

24
j2 � K

42
2j � ]B

Ωj

∇(ξη)∇φjdΩ

K
14
j2 � K

41
2j � K

23
j1 � K

32
1j � K

34
12 � K

43
21 � 0

K
33
11 � K

44
22 � ]B

Ωj

∇(ξη)∇(ξη)dΩ

K
k5
j1 � − B

Ωj

ζ1
zφj

zxk

dΩk � 1, 2

K
35
11 � − B

Ωj

ζ1
z(ξη)

zx1
dΩ

K
45
21 � − B

Ωj

ζ1
z(ξη)

zx2
dΩ

K
5k
1i � B

Ωj

zφi

zxk

ζ1dΩ k � 1, 2

K
53
11 � B

Ωj

z((ξη))

zx1
ζ1dΩ

K
54
12 � B

Ωj

z(ξη)

zx2
ζ1dΩ

K
55
11 � 0

R
k
j � B

Ωj

fkφjdΩ k � 1, 2

R
3
1 � 0.

(71)

Since the velocity uλ in the element does not participate
in the distribution of known loads, the equivalent load for λ
is zero, i.e., R1

λ1
� R2

λ2
� 0.

.e algebraic equations are obtained as follows:

K
11
11 · · · K

11
14 0 · · · 0 K

13
11 0 K

15
11

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

K
11
41 · · · K

11
44 0 · · · 0 K

13
41 0 K

15
41

0 · · · 0 K
22
11 · · · K

22
14 0 K

24
12 K

25
11

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 · · · 0 K
22
41 · · · K

22
44 0 K

24
42 K

25
41

K
31
11 · · · K

31
14 0 · · · 0 K

33
11 0 K

35
11

0 · · · 0 K
42
21 · · · K

42
24 0 K

44
22 K

45
21

K
51
11 · · · K

51
14 K

52
11 · · · K

52
14 K

53
11 K

54
12 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u
1
1

⋮

u
1
4

u
2
1

⋮

u
2
4

λ1
λ2
p1
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�

R
1
1

⋮

R
1
4

R
2
1

⋮

R
2
4

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(72)

Abbreviations are as follows:

K
11 0 K

13 0 K
15

0 K
22 0 K

24
K

25

K
31 0 K

33 0 K
35

0 K
42 0 K

44
K

45

K
51

K
52

K
53

K
54 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U
1

U
2

λ1
λ2
P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

R
1

R
2

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (73)

For the convenience of description, we write the stiffness
equation of the mixed element as follows:
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Kaa K
T
aλ K

T
pa

Kaλ Kλλ K
T
pλ

Kpa Kpλ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U

λ

P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

R

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (74)

By eliminating the internal degrees of freedom in the
upper first formula and third formula, the condensed ele-
ment equations are obtained:

Kaa − K
T
aλK

− 1
λλKaλ K

T
pa − K

T
aλK

− 1
λλK

T
pλ

Kpa − KpλK
− 1
λλKaλ − KpλK

− 1
λλK

T
pλ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
U

P
􏼢 􏼣 �

R

0
􏼢 􏼣 .

(75)

.e coefficient matrix in the equation is the element
stiffness matrix with an additional internal velocity term,
and the right-hand term is the load column array.

3.2. Step 2: Synthesis of Total Stiffness. Let the dimension of
the finite element space Xh and Mh be, respectively, NG1
and NG2, and the basis functions of these two spaces are,
respectively, ϕ1, ϕ2, . . . , ϕNG1􏼈 􏼉 and ψ1,ψ2, . . . ,ψNG2􏼈 􏼉.
.en, the solution of the equation can be expressed as

uh( 􏼁
j

� 􏽘
NG1

i�1
u

i
h􏼐 􏼑

j
ϕi, j � 1, 2ph � 􏽘

NG2

i�1
p

i
hψi. (76)

.e element stiffness matrix and the load array obtained
after condensation are synthesized, respectively. In order to
guarantee the uniqueness of the solution of ph, the limit of
the pressure Ph is added as follows:

􏽘

NG2

j�1
p

j

hB
Ω
ψjdΩ � 0. (77)

.e following algebraic equations are synthesized:

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33

0 0 A
43

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Uh( 􏼁
1

Uh( 􏼁
2

Ph

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

F
1

F
2

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (78)

Since the basis functions are piecewise polynomials
defined on quasi-uniform regular partition τh, the coefficient
matrix in the system of equation (78) is a large sparse matrix.
We use the column principal Gauss elimination method to
solve the system. For ease of calculation, we ordered
α � ((Uh)1, (Uh)2, Ph)T. It comes down to just finding a
vector α and setting the coefficient matrix to A1 and B1 for
the right-hand vector. Since A1 are 2NG1 + NG2 + 1 rows
and 2NG1 + NG2 columns, the column principal Gauss
elimination method requires that the coefficient matrix must
be a square matrix. .ere are two ways to convert a matrix
into a square matrix. .e first is to use the least squares to
convert A1 into a square matrix of 2NG1 + NG2; that is,
(A1T × A1)α � A1T × B1, and the second is to add the last
row of A1 to its last column, set the diagonal element to 1,
and add a variable, i.e.,

A
11

A
12

A
13 0

A
21

A
22

A
23 0

A
31

A
32

A
33

A
43

0 0 A
43 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Uh( 􏼁
1

Uh( 􏼁
2

Ph

x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

F
1

F
2

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (79)

By transforming A1 into 2NG1 + NG2 + 1 matrix, we
can obtain the solution of the Stokes problem by using the
column principal Gauss elimination method.

(1) Types of finite element:

(i) Douglas rotated element shape function:
For the velocity u, we use the four-node Douglas
rotated rectangular element to divide the region
Ω into several combinations of rectangular ele-
ments, each element as shown in Figure 1. Let
ai � (xi, yi), i � 1, 2, 3, 4; then, the centroid co-
ordinates (xc, yc) are

xc �
1
4

x1 + x2 + x3 + x4( 􏼁, yc �
1
4

y1 + y2 + y3 + y4( 􏼁.

(80)

.e standard element is a square region of space
(ξ, η) with sides of 2:
D: − 1≤ ξ ≤ 1 and − 1≤ η≤ 1. .e centroid co-
ordinates are at the origin (0, 0), and its degree of
freedom is the value of four points on a square,
which are distributed as shown in Figure 1.
Coordinate transformation:

ξ �
x − xc( 􏼁

a
, η �

y − yc( 􏼁

b
. (81)

Convert the rectangular element Ωj in the
(x, y)-plane to the standard element 􏽢K in the
(ξ, η)-plane, where
2a � |x2 − x4| and 2b � |y3 − y1|. Its Jacobi de-
terminant is

|J| � |
z(x, y)

z(ξ, η)
| � ab. (82)

Let the shape function of each node of
􏽢a1 � (0, − 1), 􏽢a2 � (1, 0), 􏽢a3 � (0, 1), and 􏽢a4 �

(− 1, 0) be

φ1(ξ, η) �
1
4

−
1
2
η +

3
8

ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼒 􏼓,

φ2(ξ, η) �
1
4

+
1
2
ξ −

3
8

ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼒 􏼓,

φ3(ξ, η) �
1
4

+
1
2
η +

3
8

ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼒 􏼓,

φ4(ξ, η) �
1
4

−
1
2
ξ −

3
8

ξ2 −
5
3
ξ4􏼒 􏼓 − η2 −

5
3
η4􏼒 􏼓􏼒 􏼓.

(83)

.e additional bubble function is ξη.
(ii) Piecewise constant shape function:
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For the pressure p, we use a piecewise constant
rectangular element to divide the region Ω into
several combinations of rectangular elements,
each of which is shown in Figure 2. Let a1 �

(xc, yc) also be the centroid coordinates. .e
standard rectangular element is a square region
in space (ξ, η) with a side length of 2, and let
􏽢a1 � (0, 0) also be the centroid coordinates at the
origin, as shown in Figure 2.
.e coordinate transformation from rectangular
element Ωj to standard element 􏽢K is the same as
for velocity u. .e node 􏽢a1 � (0, 0) corresponds
to a shape function

ζ1(ξ, η) � 1. (84)

(2) Automatic mesh generation of the finite element
method:

(i) Automatic mesh generation of the finite element
method for velocity u:
In this section, we mainly discuss the automatic
generation of 4-node rectangular elements, as
well as the node local encoding and the whole
encoding comparison table array II(4, LEE) and
the node’s actual coordinates’ array
XY(2, NG1). Let the region Ω be a rectangle,
evenly divided by n vertical lines and m hori-
zontal lines; then, the region Ω is divided into
n × m quadrilateral elements, as shown in
Figure 3.
Figure 3 represents the overall number and the
local number of velocity nodes on a small ele-
ment. .e code of the element and the code of
the node are arranged from left to right and from
bottom to top, so there are n × m elements and
n(m + 1) + (n + 1)m nodes in the whole area Ω.
Use i, j to denote the number of vertical and
horizontal lines, respectively. .en, i changes
from 0 to n, and j changes from 0 to m. .e
coordinates of (i, j) for any node are marked

(xi, yj). Assuming that the middle node of the
opposite side of each element is connected by a
straight line, there are 2n + 1 vertical lines and
2m + 1 horizontal lines in theΩ region. So, when
i changes from 0 to n and j changes from 0 to 2m,
the coordinates (xi, yj) can be represented by
left-right curved margins XLONG and up-down
curved margins YLONG. When j is even,

xi �
XLONG

n
􏼒 􏼓∗

(2i + 1)

2
,

yj �
YLONG

m
􏼒 􏼓∗

j

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(85)

When j is odd,

xi �
XLONG

n
􏼒 􏼓∗ i,

yj �
YLONG

m
􏼒 􏼓∗

j

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(86)

.e element whose vertical i element band in-
tersects the horizontal j element band is

LE � j∗m + i. (87)

.e number of previous nodes in the j element
band is

Nj � j∗ n + j∗ (n + 1) � (2n + 1)∗ j. (88)

.us, the overall code for the four nodes of el-
ement LE is

II(0, LE) � Nj + i; II(1, LE) � Nj + n + i + 1

II(2, LE) � Nj + 2n + 1 + i; II(3, LE) � Nj + n + i
.

(89)

(ii) Automatic mesh generation of the finite element
method for pressure p:

x

y

0

Ωj

a1

a2

a3

a4

(a)

ξ

η

0−1 1

−1

1

K̂â4 â2

â3

â1

(b)

Figure 1: Transformation from the rectangular element to the standard element for the Douglas rotation rectangular element.
(a) Rectangular element Ωi. (b) Standard element 􏽢K.
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In this section, we focus on the automatic
generation of 1-node rectangular elements, as
well as the node’s actual coordinate array
XYC(2, NG2). If the region Ω is a rectangle,
divided evenly by an n vertical line and an m

horizontal line, then the region Ω is divided into
n × m quadrilateral elements, as shown in
Figure 4.
Figure 4 represents the overall number and the
local number of pressure nodes on a small ele-
ment. .e code of the element and the code of
the node are arranged from left to right and from
bottom to top, so there are n × m elements and
nodes in the whole region Ω. Using i, j to denote
the number of vertical and horizontal lines, re-
spectively, then i changes from 0 to n, j changes
from 0 to m, and each node (i, j) is marked with
the coordinates (xi, yj) which can be repre-
sented by the left-right curve space XLONG and
the up-down curve space YLONG.

xi �
XLONG

n
􏼒 􏼓∗

(2i + 1)

2
,

yj �
YLONG

m
􏼒 􏼓∗

(2j + 1)

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(90)

We have given all the constructions of the matrix in the
specific form through the overall coding and local coding
and the relationship between the base function and the shape
function. We can convert all the integrals into standard
units, and then we can do all kinds of integrals on standard
units.

We need to deal with the integral. When we do nu-
merical integral, we usually do not use the formula to cal-
culate the integral, but use the higher algebraic precision
Gauss-type numerical integral formula. It is not only con-
venient to write the standard procedure of the integral but
also, according to the construction characteristic of the basis
function, it is mainly the integral of the polynomial. If the

x

y

0

Ωj

a1

(a)

η

0

−1

−1

1

1
K̂ â1

ξ

(b)

Figure 2: Transformation from the rectangular element to the standard element for the piecewise constant rectangular element.
(a) Rectangular element Ωi. (b) Standard element 􏽢K.

0 1 2 3

4 5 6 7 8

9 10 11 12

13 14 15 16 17

18 19 20 21

22 23 24 25 26

27 28 29 30

31 32 33 34 35

36 37 38 39

(a)

0

1

2

3

(b)

Figure 3: Overall number and local number of velocity nodes. (a) Overall number of nodes. (b) Local number of nodes.
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integral is calculated by the formula, it will cause too much
rounding error because of the complicated calculation
method. Gauss-type integral is to select some special integral
point ξi and weight Hi so that the calculation formula

􏽚
1

− 1
f(ξ)dξ � 􏽘

n

i�1
Hif ξi( 􏼁 (91)

is accurate for all 2n − 1th polynomials.
We have the same formula for double integrals:

I � 􏽚
1

− 1
􏽚
1

− 1
f(ξ, η)dξdη, (92)

and then 􏽒
1
− 1 f(ξ, η)dξ � 􏽐

n
j�1 Hif(ξi, η) � ϕ(η).

I � 􏽚
1

− 1
ϕ(η)dη � 􏽘

n

j�1
Hjϕ ηj􏼐 􏼑 � 􏽘

n

j�1
Hj 􏽘

n

i�1
Hif ξi, ηj􏼐 􏼑⎛⎝ ⎞⎠.

(93)

So,

I � 􏽚
1

− 1
􏽚
1

− 1
f(ξ, η)dξdη � 􏽘

n

i,j�1
HiHjf ξi, ηj􏼐 􏼑. (94)

With the above analysis, we convert the integrals into
double integrals on the standard element and use the 9-node
Gauss integral formula; then,

􏽚
1

− 1
􏽚
1

− 1
f(ξ, η)dξdη � 􏽘

n

i,j�1
HiHjf ξi, ηj􏼐 􏼑 � 􏽘

n

i,j�1
Hijf ξi, ηj􏼐 􏼑.

(95)

.e coordinates of Gauss point ξi, ηj and corresponding
weights are

ξi, ηj􏼐 􏼑 � (HX(i), HX(j))

1≤ i, j≤ 3Hij

� GH(i) ∗GH(j)

1≤ i, j≤ 3,

(96)

where

HX(i) � (− 0.774597, 0, 0.774597)

1≤ i, j≤ 3

GH(i) � (0.555556, 0.888889, 0.555556)

1≤ i, j≤ 3.

(97)

4. A Nonconforming Rotated Finite Element
Method for the Navier–Stokes Equations

In the first section of this section, the existence, uniqueness,
and stability of the solution of the NRFE approximation
problem are discussed. .e convergence rate of the NRFE
method is given in the second section; there are two steps in
solving the Navier–Stokes equations with the NRFEmethod:
dealing with the linear part and dealing with the nonlinear
part. .e first step has been solved in the last section. Here,
we mainly discuss how to solve the nonlinear term by the
Newton iteration method.

Let (·, ·)j � (·, ·)Ωj
, 1≤ j≤ J, define the discrete bilinear

form

ah(u, v) � ]􏽘

J

j�1
(∇u,∇v)j,∀u, v ∈ X∪Xh

dh(v, q) � 􏽘

J

j�1
(∇ · v, q)j,∀v ∈ Xh, q ∈Mh.

(98)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a)

0

(b)

Figure 4: Overall number and local number of pressure nodes. (a) Overall number of nodes. (b) Local number of nodes.
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and norm

‖v‖1,h � 􏽘

J

j�1
‖∇v‖

2
0,j

⎛⎝ ⎞⎠

1/2

�

��������
1
]
ah(v, v)

􏽲

,∀v ∈ Xh. (99)

For ∀u, v, w ∈ X∪Xh, define the discrete trilinear form

b1,h(u, v, w) � 􏽘

J

j�1
((u · ∇)v, w)j

bh(u, v, w) �
1
2

b1,h(u, v, w) − b1,h(u, w, v)􏼐 􏼑,

(100)

which satisfies the following properties:

(i)

b1,h(u, v, w) + b1,h(u, w, v) � 􏽘

J

j�1
〈 u · nj􏼐 􏼑v, w〉j

− 􏽘

J

j�1
((∇ · u)v, w)j.

(101)

(ii)

b1,h(u, v, w) � bh(u, v, w) +
1
2

􏽘

J

j�1
〈 u · nj􏼐 􏼑v, w〉j

−
1
2

􏽘

J

j�1
((∇ · u)v, w)j.

(102)

(iii)

b1,h(u, v, w)≤ cb‖u‖1,h‖v‖1,h‖w‖1,h, bh(u, v, w)

≤ cb‖u‖1,h‖v‖1,h‖w‖1,h.
(103)

(iv)

bh(u, v, w) � − bh(u, w, v). (104)

Here and later nj, 1≤ j≤ J, represents the unit outer
normal vector of zΩj. See [7, 17] for its proofs.

In addition, we introduce a closed subset of Xh:

Vh � v ∈ Xh; dh(v, q) � 0,∀q ∈Mh􏼈 􏼉. (105)

.en, the nonconforming rotated finite element ap-
proximation problem of problem (6) is

find uh, ph( 􏼁 ∈ Xh × Mh, so

ah uh, v( 􏼁 − dh v, ph( 􏼁 + bh uh, uh, v( 􏼁 � (f, v), ∀v ∈ Xh,

dh uh, q( 􏼁 � 0, ∀q ∈Mh.

⎧⎪⎪⎨

⎪⎪⎩

(106)

Theorem 7 (see [7]). Under the condition that Proposition 1
is established, if

cb

]2
‖f‖∗ < 1, ‖f‖∗ � sup

v∈Xh

(f, v)

‖v‖1,h

, (107)

then there is, to problem (50), a unique solution
(uh, ph) ∈ Xh × Mh, and uh ∈ Vh satisfies

‖uh‖1,h ≤
1
]

‖f‖∗. (108)

Proposition 4 (see [7]). Let (u, p) and (uh, ph) be the so-
lutions of problems (11) and (106), respectively; then, under
the condition of formula (51), there exists a positive number c

such that

‖u − uh‖1,h ≤ c inf
v∈Xh

‖u − v‖1,h + sup
v∈Vh

ah(u, v) + bh(u, u, v) − (f, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

‖v‖1,h

⎛⎝ ⎞⎠

‖p − ph‖0 ≤ c inf
q∈Mh

‖p − q‖0 + sup
v∈Xh

ah(u, v) − dh(v, p) + bh(u, u, v) − (f, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

‖v‖1,h

⎛⎝

+ inf
v∈Xh

‖u − v‖1,h + sup
v∈Vh

ah(u, v) + bh(u, u, v) − (f, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

‖v‖1,h

⎞⎠.

(109)

Proposition 5 (see [7]). Let 〈f, g〉j � 􏽒
zΩj

fgds, for
∀ϕ, w ∈ X∪Xh, satisfy the following properties:
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

J

j�1
〈

zw

znj

, ϕ〉j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ch‖w‖2‖ϕ‖1,h,∀w ∈ D(A)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

J

j�1
〈 w · nj􏼐 􏼑v, ϕ〉j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ch‖w‖1,h‖v‖2‖ϕ‖1,h,∀v ∈ H

2
(Ω)

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

J

j�1
〈q,ϕ · nj〉j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ch‖q‖1‖ϕ‖1,h,∀q ∈ H

1
(Ω).

(110)

Theorem 8 (see [7]). Let (u, p) ∈ H2(Ω)2 × H1(Ω) and
(uh, ph) ∈ Xh × Mh be the solutions of problems (11) and
(106), respectively; then,

‖u − uh‖1,h + ‖p − ph‖0 ≤ ch ‖u‖2 + ‖p‖1( 􏼁.( (111)

Using the dual argument method, we estimate the error
of L2.

Consider the linear duality problem:

− ]Δψ + ∇χ +(u · ∇)ψ + ∇u · ψ � u − uh ∀x ∈ Ω,

∇ · ψ � 0 ∀x ∈ Ω,

ψ � 0 ∀x ∈ Γ.

⎧⎪⎪⎨

⎪⎪⎩

(112)

Its variational form is

find(ψ, χ) ∈ X × M, so

a(v,ψ) − d(v, χ) +((u · ∇)v,ψ) +((v · ∇)u,ψ) � u − uh, v( 􏼁, ∀v ∈ X,

d(ψ, q) � 0, ∀q ∈M.

⎧⎪⎪⎨

⎪⎪⎩
(113)

If u is the nonsingular solution of problem (1), then
problem (113) has a unique solution (see [16]).

In order to establish an estimate of the L2 error of ve-
locity, the Aubin–Nitsche argumentation method is used
here. Let problem (112) be H2 regular, i.e.,

‖ψ‖2 + ‖χ‖1 ≤ c‖u − uh‖0. (114)

Let (ψ, χ) be the solution of problem (113), and
(ψh, χh) ∈ Xh × Mh satisfies

‖ψ − ψh‖1,h + ‖χ − χh‖0 ≤ ch ‖ψ‖2 + ‖χ‖1( 􏼁. (115)

Theorem 9 (see [7]). Let (u, p) ∈ H2(Ω)2 × H1(Ω) and
(uh, ph) ∈ Xh × Mh be the solutions of problems (11) and
(50), respectively; if problem (112) is H2 regular, then

‖u − uh‖0 ≤ ch
2

‖u‖2 + ‖p‖1( 􏼁. (116)

.ere are two steps in solving the Navier–Stokes
equations using the NRFE method: dealing with the linear
part and dealing with the nonlinear part. .e method of
dealing with the linear term is the same as that in Section 3.
When dealing with the nonlinear term, the most common
method is the Newton iterative method, and the Newton
iterative method requires higher initial value, so we choose
the solution of the Stokes problem as the initial value. Let the
initial value of the iteration be [u0

h, p0
h] and [un

h, pn
h] be the

nth computing solution; then, the iteration format is as
follows:

ah u
n+1
h , v􏼐 􏼑 − dh v, p

n+1
h􏼐 􏼑 + bh u

n+1
h , u

n
h, v􏼐 􏼑 + bh u

n
h, u

n+1
h , v􏼐 􏼑 � (f, v) + bh u

n
h, u

n
h, v( 􏼁,

∀v ∈ Xh,

dh u
n+1
h , q􏼐 􏼑 � 0,

∀q ∈Mh.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(117)

In this part, we only need to find the matrix obtained
from the nonlinear part and then add it to the matrix ob-
tained from the linear part (i.e., the coefficient matrix of the
Stokes equations A1 and the right-hand term B1). .en, the
solution of the Navier–Stokes equations can be obtained by

the iterative method. In the following, we come to explain
the concrete process of discretization.

(1) Using v �
ϕl

0􏼢 􏼣, l � 1, . . . , NG1 to discrete equation

(117), the iterative partial result is
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bh u
n+1
h , u

n
h, v􏼐 􏼑 �

1
2

􏽘

NG1

i�1
􏽘

NG1

j�1
u

i
n+1􏼐 􏼑

1
u

j
n􏼐 􏼑

1B
Ω

ϕi

zϕj

zx1
ϕl − ϕi

zϕl

zx1
ϕj􏼠 􏼡dΩ + u

i
n+1􏼐 􏼑

2
u

j
n􏼐 􏼑

1B
Ω

ϕi

zϕj

zx2
ϕl − ϕi

zϕl

zx2
ϕj􏼠 􏼡dΩ􏼢 􏼣,

bh u
n
h, u

n+1
h , v􏼐 􏼑 �

1
2

􏽘

NG1

i�1
􏽘

NG1

j�1
u

j
n􏼐 􏼑

1
u

i
n+1􏼐 􏼑

1B
Ω

ϕj

zϕi

zx1
ϕl − ϕj

zϕl

zx1
ϕi􏼠 􏼡dΩ + u

j
n􏼐 􏼑

2
u

i
n+1􏼐 􏼑

1B
Ω

ϕj

zϕi

zx2
ϕl − ϕj

zϕl

zx2
ϕi􏼠 􏼡dΩ􏼢 􏼣,

bh u
n
h, u

n
h, v( 􏼁 �

1
2

􏽘

NG1

i�1
􏽘

NG1

j�1
u

i
n􏼐 􏼑

1
u

j
n􏼐 􏼑

1B
Ω

ϕi

zϕj

zx1
ϕl − ϕi

zϕl

zx1
ϕj􏼠 􏼡dΩ + u

i
n􏼐 􏼑

2
u

j
n􏼐 􏼑

1B
Ω

ϕi

zϕj

zx2
ϕl − ϕi

zϕl

zx2
ϕj􏼠 􏼡dΩ􏼢 􏼣.

(118)

(2) Using v �
0
ϕl

􏼢 􏼣, l � 1, . . . , NG1 to discrete equation

(117), the iterative partial result is

bh u
n+1
h , u

n
h, v􏼐 􏼑 �

1
2

􏽘

NG1

i�1
􏽘

NG1

j�1
u

i
n+1􏼐 􏼑

1
u

j
n􏼐 􏼑

2B
Ω

ϕi

zϕj

zx1
ϕl − ϕi

zϕl

zx1
ϕj􏼠 􏼡dΩ + u

i
n+1􏼐 􏼑

2
u

j
n􏼐 􏼑

2B
Ω

ϕi

zϕj

zx2
ϕl − ϕi

zϕl

zx2
ϕj􏼠 􏼡dΩ􏼢 􏼣,

bh u
n
h, u

n+1
h , v􏼐 􏼑 �

1
2

􏽘

NG1

i�1
􏽘

NG1

j�1
u

j
n􏼐 􏼑

1
u

i
n+1􏼐 􏼑

2B
Ω

ϕj

zϕi

zx1
ϕl − ϕj

zϕl

zx1
ϕi􏼠 􏼡dΩ + u

j
n􏼐 􏼑

2
u

i
n+1􏼐 􏼑

2B
Ω

ϕj

zϕi

zx2
ϕl − ϕj

zϕl

zx2
ϕi􏼠 􏼡dΩ􏼢 􏼣,

bh u
n
h, u

n
h, v( 􏼁 �

1
2

􏽘

NG1

i�1
􏽘

NG1

j�1
u

i
n􏼐 􏼑

1
u

j
n􏼐 􏼑

2B
Ω

􏼒 ϕi

zϕj

zx1
ϕl − ϕi

zϕl

zx1
ϕj􏼠 􏼡dΩ + u

i
n􏼐 􏼑

2
u

j
n􏼐 􏼑

2B
Ω

ϕi

zϕj

zx2
ϕl − ϕi

zϕl

zx2
ϕj􏼠 􏼡dΩ􏼢 􏼣.

(119)

After discretization, the resulting iteration is as follows:

A2 �

A
11

A
12 0

A
21

A
22 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B2 �

F
1

F
2

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (120)

where

A
τω

� ali( 􏼁NG1×NG1, F
τ

� bl( 􏼁NG1

ali �

1
2

􏽘

NG1

j�1
u

j
n􏼐 􏼑

σB
Ω

ϕi

zϕj

zxσ
ϕl − ϕi

zϕl

zxσ
ϕj􏼠 􏼡dΩ +

1
2

􏽘

NG1

j�1
u

j
n􏼐 􏼑

σB
Ω

ϕj

zϕi

zxσ
ϕl − ϕj

zϕl

zxσ
ϕi􏼠 􏼡dΩτ � ω

1
2

􏽘

NG1

j�1
u

j
n􏼐 􏼑

cB
Ω

ϕj

zϕi

zxc

ϕl − ϕj

zϕl

zxc

ϕi􏼠 􏼡dΩ +
1
2

􏽘

NG1

j�1
u

j
n􏼐 􏼑

τB
Ω

ϕi

zϕj

zxc

ϕl − ϕi

zϕl

zxc

ϕj􏼠 􏼡dΩτ ≠ω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bl �
1
2

􏽘

NG1

j�1
􏽘

NG1

i�1
u

j
n􏼐 􏼑

σ
u

i
n􏼐 􏼑

σB
Ω

ϕj

zϕi

zxσ
ϕl − ϕj

zϕl

zxσ
ϕi􏼠 􏼡dΩ + u

j
n􏼐 􏼑

c
u

i
n􏼐 􏼑

σB
Ω

ϕj

zϕi

zxc

ϕl − ϕj

zϕl

zxc

ϕi􏼠 􏼡dΩ􏼢 􏼣.

(121)

In the formula above, τ,ω, σ, c � 1, 2, and σ ≠ c.
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In this way, we can construct a finite element system of
equations, (A1 + A2)αm+1 � B1 + B2, and solve it iteratively.
Until ‖αm+1 − αm‖ is less than given ε, we can get the solution
uh, ph of equation (64).

5. A Two-Level Nonconforming Rotated Finite
Element Method for the
Navier–Stokes Equations

Because of the nonlinear and incompressible conditions of
the Navier–Stokes equations, it is very difficult to solve them
numerically, and they consume a lot of CPU time. To
overcome these difficulties, many methods have been pro-
posed, including the two-level method. .e aim of the two-
level method is to obtain the approximate solution of the
nonlinear equation in less time and to maintain the optimal
convergence speed. .e concrete calculation is to solve a
nonlinear problem on the coarse grid and a linear problem

on the fine grid. .e theoretical and numerical experiments
in this paper show that, compared with the NRFE method,
the TNRFE method can save a lot of time when the con-
vergence rate reaches the same order, which shows that it is
an effective algorithm. In this section, we prove the stability
and convergence rate of the TNRFE method.

We choose a coarse grid H and a fine grid h with
H≫ 0, H, h to represent the coarse and fine grid scales of the
velocity and pressure spaces and then establish a non-
conforming finite element space XH × MH, Xh × Mh, and
XH × MH ⊂ Xh × Mh. Similarly, they satisfy all the prop-
erties mentioned in the previous section.

.e Newton two-level nonconforming finite element
method is divided into two steps:

Step 1: solving a nonlinear Navier–Stokes problem on a
coarse grid:

find uH, pH( 􏼁 ∈ XH × MH, so

ah uH, v( 􏼁 − dh v, pH( 􏼁 + dh uH, q( 􏼁 + bh uH, uH, v( 􏼁 � (f, v), ∀(v, q) ∈ XH × MH.
􏼨 (122)

Step 2: solving a linearized Navier–Stokes problem on a
fine grid:

find u
h
, p

h
􏼐 􏼑 ∈ Xh × Mh, so

ah u
h
, v􏼐 􏼑 − dh v, p

h
􏼐 􏼑 + dh u

h
, q􏼐 􏼑 + bh u

h
, uH, v􏼐 􏼑 + bh uH, u

h
, v􏼐 􏼑 � (f, v) + bh uH, uH, v( 􏼁, ∀(v, q) ∈ Xh × Mh.

⎧⎪⎨

⎪⎩
(123)

Define a generalized bilinear form on
(X × M) × (X × M):

B((u, p); (v, q)) � a(u, v) − d(v, p) + d(u, q). (124)

So, the variational form of problem (1) is as follows: find
(u, p) ∈ X × M such that

B((u, p); (v, q)) + b(u, u, v) � (f, v),∀(v, q) ∈ X × M.

(125)

For given (u, p) ∈ X × M, we define its Stokes projection
(w, π) ∈ Xh × Mh as

Bh((w, π); (v, q)) � B((u, p); (v, q)), ∀(v, q) ∈ Xh × Mh.

(126)

.en, nonconforming rotated finite element approxi-
mation problem (124) is as follows: find (uh, ph) ∈ Xh × Mh

so that

Bh uh, ph( 􏼁; (v, q)( 􏼁 + bh uh, uh, v( 􏼁 � (f, v),∀(v, q) ∈ Xh × Mh.

(127)

Proposition 6. (i) Fere is a constant c> 0 such that

|B((u, p); (v, q))|≤ c ‖∇u‖0 + ‖p‖0( 􏼁 ‖∇v‖0 + ‖q‖0( 􏼁,∀(u, p), (v, q) ∈ X × M. (128)

(ii) Fere exists a constant α> 0 that depends on h:

α ‖uh‖1,h + ‖ph‖0􏼐 􏼑≤ sup vh,qh( )∈Xh×Mh

Bh uh, ph( 􏼁; vh, qh( 􏼁( 􏼁

‖vh‖1,h + ‖qh‖0
,∀ uh, ph( 􏼁 ∈ Xh × Mh. (129)
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Proof . ((70) proof (see [4, 16–18])). .e following is to
prove (129). Let (uh, ph) be a nonzero element in Xh × Mh.

Let qh ∈Mh be determined by the problem
dh(ψh, ph) � dh(ψh, qh),∀ψh ∈ Xh, so

Bh uh, ph( 􏼁; uh, qh( 􏼁( 􏼁 � ]‖uh‖
2
1,h − dh uh, ph( 􏼁 + dh uh, qh( 􏼁 � ]‖uh‖

2
1,h. (130)

Since there exists the constant δ > 0 for all ph ∈Mh ⊂M,
there exists v ∈ X satisfying ∇ · v � − ph and δ‖∇v‖0 ≤ ‖ph‖0.

Hence, derived from upper equations (39) and (40) and the
Young inequality,

Bh uh, ph( 􏼁; Πhv, 0( 􏼁( 􏼁≥ − ]‖uh‖1,h‖Πhv‖1,h − dh Πhv, ph( 􏼁

≥ − c]‖uh‖1,h‖∇v‖0 − dh Πhv − v, ph( 􏼁 + ‖ph‖
2
0

≥ − c]‖uh‖1,h‖∇v‖0 + ‖ph‖
2
0

≥ −
c
2]2

2δ
‖uh‖

2
1,h −

δ
2

‖∇v‖
2
0 + ‖ph‖

2
0

≥ −
c
2]2

2δ
‖uh‖

2
1,h +

1
2

‖ph‖
2
0.

(131)

Let wh � uh + (δ/c2])Πhv and rh � qh; from the above
two formulas, we can get

Bh uh, ph( 􏼁; wh, rh( 􏼁( 􏼁≥
]
2

‖uh‖
2
1,h +

δ
2c

2]
‖ph‖

2
0. (132)

Obtained from (50) and (40), the triangle inequality, and
the Hölder inequality,

‖wh‖1,h + ‖rh‖0

� ‖uh +
δ

c
2]
Πhv‖1,h + ‖qh‖0

≤ ‖uh‖1,h +
δ

c
2]

‖Πhv‖1,h +
1
β0

sup
ψh∈Xh

dh ψh, qh( 􏼁

‖ψh‖1,h

≤ ‖uh‖1,h +
δ
c]

‖∇v‖0 +
1
β0

sup
ψh∈Xh

dh ψh, ph( 􏼁

‖ψh‖1,h

≤ ‖uh‖1,h +
1
c]

‖ph‖0 +

�
2

√

β0
‖ph‖0.

(133)

From the above two formulas, it is easy to get (129). □

Theorem 10. Under the conditions of Proposition 6 and
Feorem 7, the solution (uh, ph) ∈ Xh × Mh satisfies

‖u
h
‖1,h + ‖p

h
‖0 ≤ c‖f‖∗. (134)

Here, c is a constant that depends on ], f, andΩ.

Proof. According to .eorem 7 and (122), there exists a
unique solution (uH, pH) ∈ XH × MH, and it satisfies

‖uH‖1,h ≤
1
]

‖f‖∗. (135)

In equation (123), we make v � uh and q � ph; then, from
(104), we can derive

]‖u
h
‖
2
1,h + bh u

h
, uH, u

h
􏼐 􏼑 � f, u

h
􏼐 􏼑 + bh uH, uH, u

h
􏼐 􏼑. (136)

Using (103), we can get

]‖u
h
‖
2
1,h ≤ cb‖u

h
‖
2
1,h‖uH‖1,h + ‖f‖∗‖u

h
‖1,h + cb‖uH‖

2
1,h‖u

h
‖1,h.

(137)

From (135), we can derive

]‖u
h
‖
2
1,h ≤

cb

]
‖f‖∗‖u

h
‖
2
1,h + ‖f‖∗‖u

h
‖1,h +

cb

]2
‖f‖

2
∗‖u

h
‖1,h.

(138)

After sorting through the equations, we can get

] 1 −
cb

]2
‖f‖∗􏼠 􏼡‖u

h
‖1,h ≤ 1 +

cb

]2
‖f‖∗􏼠 􏼡‖f‖∗. (139)

From .eorem 7, we can get

‖u
h
‖1,h ≤ c‖f‖∗. (140)

From Proposition 6 and (123), we can get
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α ‖u
h
‖1,h + ‖p

h
‖0􏼐 􏼑

≤ sup(v,q)∈Xh×Mh

Bh u
h
, p

h
􏼐 􏼑; (v, q)􏼐 􏼑

‖v‖1,h + ‖q‖0

≤ cb‖uH‖
2
1,h + ‖f‖∗ + 2cb‖u

h
‖1,h‖uH‖1,h.

(141)

From (135), (140), and (141), we can derive

‖u
h
‖1,h + ‖p

h
‖0 ≤ c‖f‖∗. (142)

□

Theorem 11. Under the conditions of Proposition 6 and
Feorem 7, there exists a constant c which has nothing to do
with h such that the solution (uh, ph) of problems (122) and
(123) satisfies

‖u − u
h
‖1,h + ‖p − p

h
‖0 ≤ c h + H

2
􏼐 􏼑. (143)

Proof . Multiply the two ends of the first formula of (1) by
v ∈ Xh and (102), and we can get

ah(u, v) − dh(v, p) + bh(u, u, v) − ]􏽘

J

j�1
〈

zu

znj

, v〉j + 􏽘

J

j�1
〈p, v · nj〉j +

1
2

􏽘

J

j�1
〈 u · nj􏼐 􏼑u, v〉j � (f, v). (144)

Suppose (w, π) is the projection of (u, p) on Xh × Mh,
and here, w ∈ Vh; then, by (125) and (144), we can get

ah u
h

− w, v􏼐 􏼑 − dh v, p
h

− π􏼐 􏼑 + dh u
h

− w, q􏼐 􏼑 � Bh u
h

− w, p
h

− π􏼐 􏼑; (v, q)􏼐 􏼑

� bh(u, u, v) − ]􏽘

J

j�1
〈

zu

znj

, v〉j + 􏽘

J

j�1
〈p, v · nj〉j +

1
2

􏽘

J

j�1
〈 u · nj􏼐 􏼑u, v〉j

+ bh uH, uH, v( 􏼁 − bh u
h
, uH, v􏼐 􏼑 − bh uH, u

h
, v􏼐 􏼑.

(145)

In (145), we take v � uh − w and q � ph − π. By using (3),
(103), and Proposition 5, we can get

]‖u
h

− w‖
2
1,h � bh u, u, u

h
− w􏼐 􏼑

− ]􏽘

J

j�1
〈

zu

znj

, u
h

− w〉j + 􏽘

J

j�1
<p, u

h
− w􏼐 􏼑 · nj > j

+
1
2

􏽘

J

j�1
〈 u · nj􏼐 􏼑u, u

h
− w〉j

+ bh uH, uH, u
h

− w􏼐 􏼑 − bh u
h
, uH, u

h
− w􏼐 􏼑 − bh uH, u

h
, u

h
− w􏼐 􏼑

� bh u − w, u, u
h

− w􏼐 􏼑 + bh w, u − w, u
h

− w􏼐 􏼑 − bh u
h

− w, uH, u
h

− w􏼐 􏼑

− bh uH − w, u
h

− w, uH − w􏼐 􏼑 − ]􏽘

J

j�1
〈

zu

znj

, u
h

− w〉j

+ 􏽘

J

j�1
〈p, u

h
− w􏼐 􏼑 · nj〉j +

1
2

􏽘

J

j�1
〈 u · nj􏼐 􏼑u, u

h
− w〉j

≤ cb‖u
h

− w‖
2
1,h‖uH‖1,h + cb‖u

h
− w‖1,h ‖u − w‖1,h‖∇u‖0 + ‖w‖1,h‖u − w‖1,h + ‖uH − w‖

2
1,h􏼐 􏼑

+ ch‖u
h

− w‖1,h ‖u‖2 + ‖p‖1 + ‖∇u‖0‖u‖2( 􏼁.

(146)
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From .eorems 2, 3, 7, and 8 and (135), we can get

‖u
h

− w‖1,h ≤ c h + H
2

􏼐 􏼑. (147)

From Proposition 6 and (145), we can get

‖u
h

− w‖1,h + ‖p
h

− π‖0 ≤ α
− 1 sup

(v,q)∈Xh×Mh

Bh u
h

− w, p
h

− π􏼐 􏼑; (v, q)􏼐 􏼑

‖v‖1,h + ‖q‖0

≤ c ‖∇u‖0 + ‖u
h

− w‖1,h + ‖w‖1,h􏼐 􏼑 ‖u − w‖1,h + ‖u
h

− w‖1,h􏼐 􏼑

+ c ‖u
h

− w‖1,h + ‖w − uH‖1,h􏼐 􏼑‖u
h

− w‖1,h + c‖w − uH‖
2
1,h

+ ch ‖u‖2 + ‖p‖1 + ‖∇u‖0‖u‖2( 􏼁≤ c h + H
2

􏼐 􏼑.

(148)

So,

‖u − u
h
‖1,h + ‖p − p

h
‖0

≤ ‖u − w‖1,h + ‖w − u
h
‖1,h + ‖p − π‖0 + ‖π − p

h
‖0

≤ c h + H
2

􏼐 􏼑.

(149)

From the above results, when the appropriate scaling
relation is chosen, i.e., h � O(H2), we can see that the NRFE
method and the Newton TNRFE method have the same
convergence rate. □

6. Computational Example

Here, examples are given to verify the correctness of the
theory and to show that the two-level nonconforming finite
element method for solving the Navier–Stokes equations is
superior to the nonconforming finite element method.

Example 1. Let us take a true solution which satisfies the
conditions and set the two-dimensional rectangular region
Ω � [0, 1] × [0, 1]; the true solutions are as follows:

u(x, y) � u1(x, y), u2(x, y)( 􏼁,

u1(x, y) � x
2
(x − 1)

2
y(y − 1)(2y − 1),

u2(x, y) � − x(x − 1)(2x − 1)y
2
(y − 1)

2
,

p(x, y) � x − 0.5.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(150)

It is proved that the velocity term of this vector function
belongs to the nondivergence space, i.e., ∇ · u � 0, and the
pressure term satisfies 􏽒Ωp(x)dx � 0. By substituting
u(x, y), p(x, y) into Stokes (12), the right-hand term
f(x, y) � (f1(x, y), f2(x, y)) is obtained. Since the vis-
cosity coefficient has little effect on the accuracy of the
equation, we only consider the case when the viscosity
coefficient is ] � 1. .e numerical results of the non-
conforming finite element method with different values of h

are given in Table 1.
From Table 1, for solving the Stokes equations, we can

see that the NRFE method converges with h decreasing, and
it keeps the convergence rate. When the grid scale is
h � 1/25, the true solution and the calculation solution of the
velocity component u1 are shown in Figure 5.

.e contour of the true solution and the calculation
solution of the velocity component u1 is shown in Figure 6.

.e true solution and the calculation solution of the
velocity component u2 are shown in Figure 7.

.e contour of the true solution and the calculation
solution of the velocity component u2 is shown in Figure 8.

.e vector of the true solution and the calculation so-
lution of the velocity is shown in Figure 9.

.e images of the true solution and the calculation
solution of the pressure are shown in Figure 10.

.e contours of the true solution and the calculated
solution of the pressure are shown in Figure 11.

Here, examples are given to verify the correctness of the
theory and to show that the TNRFE method for solving the
Navier–Stokes equations is superior to the NRFE method.

Example 2. Let us take a true solution which satisfies the
conditions, and let the two-dimensional rectangular region
Ω � [0, 1] × ⌊0, 1⌋; the true solution is as follows:

u(x, y) � u1(x, y), u2(x, y)( 􏼁,

u1(x, y) � 10x
2
(x − 1)

2
y(y − 1)(2y − 1),

u2(x, y) � − 10x(x − 1)(2x − 1)y
2
(y − 1)

2
,

p(x, y) � 10(2x − 1)(2y − 1).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(151)

It is proved that the velocity term of this vector function
belongs to the nondivergence space, i.e., ∇ · u � 0, and the
pressure term satisfies 􏽒Ωp(x)dx � 0. By substituting
u(x, y), p(x, y) into Navier–Stokes equation (1), the right-
hand term of the equation can be obtained:
f(x, y) � (f1(x, y), f2(x, y)). Since the viscosity coefficient
has little effect on the accuracy of the equation, we only consider
the case when the viscosity coefficient is ] � 1. In this paper, we
present the numerical results of the TNRFE method and the
NRFE method when the value of h is different.

When the grid scale is h � 1/25, the true solution and the
calculation solution of the velocity component u1 are shown in
Figure 12.

.e contour of the true solution and the calculation
solution of the velocity component u1 is shown in Figure 13.

.e true solution and the calculation solution of the
velocity component u2 are shown in Figure 14.
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.e contour of the true solution and the calculation
solution of the velocity component u2 is shown in Figure 15.

.e vector of the true solution and the calculation so-
lution of the velocity is shown in Figure 16.

.e images of the true solution and the calculation
solution of the pressure are shown in Figure 17.

.e contours of the true solution and the calculation
solution of the pressure are shown in Figure 18.

From Tables 2 and 3, we can see that the NRFE method
and the TNRFE method have the same order convergence
speed when h � O(H2) for solving the Navier–Stokes
equations. .e TNRFE method we proposed is less time-
consuming than the NRFE method; actually, it nearly
saves half the CPU time. We plot the velocity by tracing

diagonal points. When the grid scale is
H � 1/5 and h � 1/25, the true solution and the compu-
tational solution of velocity component u1 are represented
in Figure 19.

.e contour of the true solution and the calculation
solution of the velocity component u1 is shown in Figure 20.

.e true solution and the calculation solution of the
velocity component u2 are shown in Figure 21.

.e contour of the true solution and the calculated
solution of the velocity component u2 is shown in Figure 22.

.e vector of the true solution and the calculated so-
lution of the velocity is shown in Figure 23.

.e images of the true solution and the calculated so-
lution of the pressure are shown in Figure 24.

Table 1: Convergence study of the NRFE method for the Stokes equations in Example 1.

h CPU (s) ‖u − uh‖1,h/‖u‖1,h ‖u − uh‖0/‖u‖0 ‖p − ph‖0/‖p‖0

1/9 1 0.05276735294 0.00683378123 0.00721657884
1/16 14 0.04930544340 0.00595934426 0.00672908995
1/25 249 0.04626780379 0.00524238897 0.00630336367
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Figure 5: True solution and calculation solution of velocity component u1 by the NRFEmethod for the Stokes equations. (a) True solution of
velocity component u1. (b) Calculation solution of velocity component u1.
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Figure 6: True solution contour and calculation solution contour of velocity component u1 by the NRFE method for the Stokes equations.
(a) True solution contour of velocity component u1. (b) Calculation solution contour of velocity component u1.
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Figure 7: True solution and calculation solution of velocity component u2 by the NRFEmethod for the Stokes equations. (a) True solution of
velocity component u2. (b) Calculation solution of velocity component u2.
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Figure 8: True solution contour and calculation solution contour of velocity component u2 by the NRFE method for the Stokes equations.
(a) True solution contour of velocity component u2. (b) Calculation solution contour of velocity component u2.
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Figure 9: True solution vector and calculation solution vector of velocity by the NRFE method for the Stokes equations. (a) True solution
vector of velocity. (b) Calculation solution vector of velocity.
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Figure 11: True solution contour and calculation solution contour of pressure by the NRFE method for the Stokes equations. (a) True
solution contour of pressure. (b) Calculation solution contour of pressure.
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Figure 10: True solution and calculation solution of pressure by the NRFE method for the Stokes equations. (a) True solution of pressure.
(b) Calculation solution of pressure.
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Figure 12: True solution and calculation solution of velocity component u1 by the NRFE method for the Navier–Stokes equations. (a) True
solution of velocity component u1. (b) Calculation solution of velocity component u1.
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Figure 14: True solution and calculation solution of velocity component u2 by the NRFE method for the Navier–Stokes equations. (a) True
solution of velocity component u2. (b) Calculation solution of velocity component u2.
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Figure 15: True solution contour and calculation solution contour of velocity component u2 by the NRFE method for the Navier–Stokes
equations. (a) True solution contour of velocity component u2. (b) Calculation solution contour of velocity component u2.
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Figure 13: True solution contour and calculation solution contour of velocity component u1 by the NRFE method for the Navier–Stokes
equations. (a) True solution contour of velocity component u1. (b) Calculation solution contour of velocity component u1.
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Figure 17: True solution and calculation solution of pressure by the NRFE method for the Navier–Stokes equations. (a) True solution of
pressure. (b) Calculation solution of pressure.
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Figure 18: True solution contour and calculation solution contour of pressure by the NRFE method for the Navier–Stokes equations.
(a) True solution contour of pressure. (b) Calculation solution contour of pressure.
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Figure 16: True solution vector and calculation solution vector of velocity by the NRFE method for the Navier–Stokes equations. (a) True
solution vector of velocity. (b) Calculation solution vector of velocity.
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Figure 19: True solution and calculation solution of velocity component u1 by the TNRFEmethod for the Navier–Stokes equations. (a) True
solution of velocity component u1. (b) Calculation solution of velocity component u1.
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Figure 20: True solution contour and calculation solution contour of velocity component u1 by the TNRFE method for the Navier–Stokes
equations. (a) True solution contour of velocity component u1. (b) Calculation solution contour of velocity component u1.

Table 2: Convergence study of the NRFE method for the Navier–Stokes equations in Example 2.

h CPU (s) ‖u − uh‖1,h/‖u‖1,h ‖u − uh‖0/‖u‖0 ‖p − ph‖0/‖p‖0

1/9 1 0.05285264668 0.00512070990 0.00660637377
1/16 29 0.05062843052 0.00469204715 0.00630851030
1/25 391 0.04858196977 0.00431486884 0.00603642962

Table 3: Convergence study of the TNRFE method for the Navier–Stokes equations in Example 2.

H h CPU (s) ‖u − uh‖1,h/‖u‖1,h ‖u − uh‖0/‖u‖0 ‖p − ph‖0/‖p‖0

1/3 1/9 1 0.04494406371 0.00682618493 0.00769732820
1/4 1/16 16 0.04332036000 0.00617399737 0.00729562730
1/5 1/25 196 0.04180897072 0.00561062878 0.00693386430
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Figure 22: True solution contour and calculation solution contour of velocity component u2 by the TNRFE method for the Navier–Stokes
equations. (a) True solution contour of velocity component u2. (b) Calculation solution contour of velocity component u2.
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Figure 23: True solution vector and calculation solution vector of velocity by the TNRFE method for the Navier–Stokes equations. (a) True
solution vector of velocity. (b) Calculation solution vector of velocity.
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Figure 21: True solution and calculation solution of velocity component u2 by the TNRFEmethod for the Navier–Stokes equations. (a) True
solution of velocity component u2. (b) Calculation solution of velocity component u2.
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.e contours of the true solution and the calculated
solution of the pressure are shown in Figure 25.

7. Conclusion

.e main work of this paper is as follows:

(1) .e inequalities on the elements used to prove the
standard polynomial approximation results are
given.

(2) .e existence, uniqueness, and convergence rate of
the NRFE method for the steady Stokes equations
and the Navier–Stokes equations are presented. .e
program design and numerical experiment results
are given to verify the theory that the method has the
same order of convergence speed as the conforming
finite element (CFE) method.

(3) .e stability and convergence rate of the Newton
TNRFE method for the steady Navier–Stokes
equations are proved, and the numerical results of
the method are given.

Further work is as follows:

(1) .e NRFE method and the TNRFE method are
extended to the unsteady Navier–Stokes equations,
and corresponding numerical results are obtained.

(2) .e rapid development of engineering and materials
science in recent years has put forward new and
higher requirements for the reliability of numerical
models (i.e., the existence and uniqueness of solu-
tions, convergence, and adaptability to the change of
computational background) and nonlinear behavior.
.e problem of overall optimization of the numerical
performance of the element is presented.
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Figure 25: True solution contour and calculation solution contour of pressure by the TNRFE method for the Navier–Stokes equations. (a)
True solution contour of pressure. (b) Calculation solution contour of pressure.
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Figure 24: True solution and calculation solution of pressure by the TNRFE method for the Navier–Stokes equations. (a) True solution of
pressure. (b) Calculation solution of pressure.
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