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In this paper, we propose a two-level nonconforming rotated finite element (TNRFE) method for solving the Navier-Stokes
equations. A new nonconforming rotated finite element (NRFE) method was proposed by Douglas added by conforming bubbles
to velocity and discontinuous piecewise constant to the pressure on quadrilateral elements possessing favorable stability
properties. The TNRFE method involves solving a small Navier-Stokes problem on a coarse mesh with mesh size H and a large
linearized Navier-Stokes problem on a fine mesh with mesh size i by the NRFE method. If we choose h = O (H?), the TNRFE
method gives the convergence rate of the same order as that of the NRFE method. Compared with the NRFE method, the TNRFE
method can save a large amount of CPU time. In this paper, the stability of the approximate solutions and the error estimates are
proved. Finally, the numerical experiments are given, and results indicate that the method is practicable and effective.

1. Introduction

When the Navier-Stokes equations are discretized by finite
element methods, two problems often arise: one is that the
discrete inf-sup condition is broken, and the other is that the
pseudo-oscillation is caused by the dominant convection
term. In order to solve the first problem, we use the new
nonconforming element proposed by Jim Douglas [1] added
by conforming bubbles to the velocity and discontinuous
piecewise constant to the pressure on quadrilateral elements
which possess favorable stability properties. Brezzi and Russo
[2] found that adding and eliminating bubbles to the finite
element space is equivalent to the addition of a stabilizing
term of a streamline diffusion type. It is equivalent to tuning
up the amount of streamline artificial viscosity and corre-
sponds to reducing the residual inside each element.

To deal with the second problem, we adopt the Newton
TNRFE method which involves solving one small Navier—Stokes
problem on a coarse mesh with mesh size H and a large lin-
earized Navier—Stokes problem on a fine mesh with mesh size .

It is well known that the approximate space of velocity
and pressure should generally satisfy the LBB condition
when solving Navier-Stokes equations by finite element
methods. This matching is difficult for the conforming el-
ement. For example, if the triangle element is used, the
velocity is a piecewise linear element, and the pressure is a
piecewise constant, then the LBB condition is not satisfied. If
the velocity is changed to piecewise quadratic, then the error
estimates for velocity will lose one order. If you use the
following two rectangular elements, (1) the velocity is a
bilinear polynomial interpolation and the pressure is a
piecewise constant; (2) the velocity is double polynomial
interpolation and the pressure is of bilinear form, then the
LBB condition is not satisfied.

To some extent, the nonconforming element can over-
come this difficulty, and it is often used in practical com-
putation because of its simple structure, economical
calculation, and error matching. The nonconforming finite
element method for the Stokes problem was first proposed
by Crouzeix and Raviart [3], and they used the piecewise
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linear triangle element with three midpoints as the velocity
approximation space and the piecewise constant finite ele-
ment as the pressure approximation space to obtain an
approximation scheme (the C-R scheme) for the Stokes
problem. In this way, not only the LBB condition is satisfied
but also some optimal error estimates of velocity and
pressure are obtained. Temam [4] also proposed the non-
conforming linear element as the approximate space of
velocity, which obtained satisfactory error estimates. Be-
cause the rectangular element has the advantages of simple
mesh and less bandwidth of the stiffness matrix, Rannacher
and Turek [5] analyzed the rotational bilinear non-
conforming element with local base span {1, x, y, x* - y*}.
However, if the definition of the global nonconforming
space which requires continuity at the midpoint of the
common inner boundary of the adjacent elements is
adopted, the optimal error estimates for the real quadri-
lateral subdivision region will not be obtained. To solve this
problem, Jim Douglas et al. [1] modified the rotated bilinear
local basis span {1,x,y,x*—y*} to span {1,x,y, (3x*
—5x*) = (3> - 5y")}, which has the following properties:
<Lw;-wg>p, =0 and <L, w; >r, = 0. Han [6] proposed
that a nonconformmg rectangular element with five degrees
of freedom for the velocity, whose node parameters are the
function value at the center and the midpoint of the four
sides of the element, and the shape function space span
{1,x,y,1/2(5x* - 3x%),1/2(5y* = 3y*)} for the standard
element [-1,1]% can also obtain the best order error esti-
mate. Although the element has the same order of con-
vergence speed as the Douglas rotation element, it has one
more degree of freedom than the latter, which increases the
computational load and decreases the efficiency. In solving
the Stokes problem and the Navier-Stokes problem, Cai
et al. [7, 8] used the Douglas rotation element, added a
compatible bubble function to the velocity approximation
space as the internal degree of freedom, and used the
piecewise constant finite element space as the pressure
approximation space. Cai et al. [7] gave the existence and
uniqueness of the solution and the convergence rate of the
nonconforming Galerkin (NFG) method when the Douglas
rotation element was used for the velocity, but the numerical
experiments were not given.

A part of the work of this paper is to solve the steady
Stokes equations and Navier-Stokes equations by using the
NRFE method, explain the existence and uniqueness of the
solution and the convergence speed, and give the concrete
design process and numerical experiment of the algorithm.

In practice, solving the Navier-Stokes equations is very
time-consuming, so people try to save computing time as
much as possible. One of them is the two-layer grid method,
which is to solve a nonlinear equation on a coarse grid, and
the purpose of solving a linear equation on a fine mesh is to
obtain the approximate solution of the nonlinear equation in
less time and to maintain the optimal convergence speed,
specifically. The two-layer mesh method is based on the
finite element space X, X, for the velocity approximation
(H is the coarse mesh size parameter, and h is the fine mesh
size parameter, h < H) and on the finite element space
My, M, for the pressure approximation; the first step is to
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get the solution of uy, py; on a coarse grid by the NRFE
method. Generally speaking, because the grid is coarse, it
does not take much time. The second step is to solve a linear
equation using known uy;, py. In some papers, the third step
is to solve a correction problem on the coarse grid by the
correction technique. In recent years, the two-layer grid
method has attracted more and more attention. Layton [9],
Li and Hou [10], He and Li [11], Mei [13], Shi and Wang
[14], Chen [15], and others have done a lot of work in this
field.

The other main work of this paper is to prove the stability
and convergence rate of the TNRFE method for solving
Navier-Stokes equations. The design process and numerical
experiment of the algorithm are given.

The TNRFE method is used to solve a nonlinear problem
on a coarse grid with a grid size of H and a linear problem on
a fine grid with a grid size of h. However, the NRFE method
is used to solve a nonlinear problem on a fine grid with a grid
size of h. Therefore, the TNRFE method is simpler than the
NRFE method in calculation and can save a lot of CPU time,
and the TNRFE method has the same order of convergence
speed as the NRFE method when the grid size is selected
properly. In this paper, the numerical experiments and
theoretical analysis prove that the Newton TNRFE method
and the NRFE method have the same order of convergence
speed under the condition of h = O (H?).

In Section 2, we briefly review some knowledge and
important properties of Sobolev spaces and give the varia-
tional forms and the existence, uniqueness, and regularity
estimates of solutions for the Navier-Stokes equations. In
Section 3, we first introduce the construction and properties
of the nonconforming rectangular element space. We ex-
plain the NRFE method, existence, uniqueness, and con-
vergence rate of the approximation solution for Stokes
equations. The design process and finite element analysis of
the algorithm are given in detail. In Section 4, the NRFE
method, existence, uniqueness, and convergence rate of the
approximate solution for Navier-Stokes equations are dis-
cussed. In Section 5, the stability and convergence rate of the
solution of the TNRFE method for Navier-Stokes equations
are proved. In Section 6, a large number of numerical ex-
periments are given to verify the correctness and effec-
tiveness of the algorithm.

2. Governing Equations

In this paper, we study the linearized energy-conservative

finite element method for the following nonlinear
Navier-Stokes equations:
—-VAu+(u-Viu+Vp=f, VxeQ,
V'UZO, VXEQ, (1)
u=0, Vx €T,

where Q is a bounded domain and convex domain in R?
(d=2,3), u= (u,(x),u,(x)) is the velocity vector,
p = p(x) is the pressure, f = f(x) is the external force
density, and v> 0 is the dynamic viscosity coefficient.
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In order to describe the variational form of Navier—
Stokes equations, the Sobolev space is introduced:

X = Hy(Q),
Y = L*(Q)?, 2)

M=12(Q) = {q e I2(Q); Jqux - o},

where (-,), |- ll, denotes the inner product and norm on
12(Q)? and X is equipped with the usual inner product and
norm.

((u,v)) = (Vu, Vv),

3
IVully = (1)), ®

and (-, ), | - [l denotes the inner product and norm over
L2(T)%.

Define, respectively, the continuous bilinear form on
X x X and X x M:

a(u,v) =v((u,v)), Vu,velkX, @
div,q)=(V-v,q), VveX,qgeM.
In addition, we introduce a closed subset of X:
V={veX;d(v,q) =0,Yq € M}. (5)

Let Au = —Au. As we all know, A is a linear, unbounded,
and self-conjugate operator in Y, defined in

D(A) = H*(Q)*nX. (6)

Theorem 1 (see [4]). Let Q) be a smooth or convex polygon of
C?; for given f €Y, the Stokes problem

—-VAu+Vp=f, VxeQ,

V-u=0, Vx € Q, (7)
u=0, Vx €T,
there exists a unique solution of

(u, p) € D(A) x (H' (Q) N M) and satisfies
lleell, + Il <cll fllos (8)

where c is a positive constant dependent on Q) and | - ||; is a
norm over H' (Q) or H (Q)*(i = 1,2).

Define the trilinear form on X x X x X:

b(u,v,w) = (u-V)v,w) +% (V-u)v,w)

(u-Vv,w) +({(u-Vyw,v) = L(w V) (u-n)ds — Jo(w V)V udx,Vu,v,w € X

16 (u, v, w)| < Gy [IVullo VYl Vwllg, Yus, v, w € X

1 1
=3 ((u-V)v,w) — 3 ((u-Vw,v), Vu,v,we X,
9)
which satisfies the following properties:
(10)

b(u,v,w) = -b(u, w,v),Vu,v,w € X.

So, the variational form of problem (1) is

find(u, p) € X x M, so
a(u,v)—dW, p)+b(u,u,v) =(f,v), ¥VvelX, (11)
d(u,q) =0, Vg € M,
and problem (2) in the variational form is
find (u, p) € X x M, S0,
a(u,v)—d, p)=(f,v), YvelX, (12)
d(u,q) =0, Vg e M.

The inequalities that will be used in this article are de-
scribed here first.

(1) Holder’s inequality:
If uelLlP(Q)andve L1(Q),p,q are positive real
numbers, then

1 1
jqudxuuuLp ! (13)

(2) Young’s inequality:

If a,b, p,q, and € are all positive real numbers, then
ea? P11 1

ab<—+ —=

S+ 1. (14)
p 9 P 9

(3) Sobolev’s embedding theorem:



Let m >0 be an integer, 1 < p <co, and let Q) be an
open subset of R" and have Lipschitz continuous

[ 19(q),

L(Q),

W™ (Q) — 1

™ (Q),

| C” (O,

In this paper, we give the existence and uniqueness of
solutions for the classical Navier-Stokes equations.

Theorem 2 (see [16]). If v and f € X' satisfy

Gy (f,v)
Il <LASIZ = supyexi=—s 16
L <L = supegr (16)

then problem (11) has a unique solution of
(u, p) € D(A) x (H' (Q)NM), and u € V satisfies

1
IVullo < f1l-s- (17)

Theorem 3 (see [12]). If f € Y satisfies uniqueness condition
(8), then the solution of problem (11) satisfies the following
regularity estimate:

lfuell, +1plly <C, (18)

where C is a positive constant dependent on (v, f, Q).

3. A Nonconforming Rotated Finite Element
Method for the Stokes Equations

In the first section of this section, we review the construction
and properties of the nonconforming rotated rectangular
element space. In the second section, we discuss the exis-
tence, uniqueness, and stability of the solution of the
problem approximated by the NRFE method. In the third
section, we give the convergence rate of this method. In the
fourth section, the concrete design of the algorithm is in-
troduced. The key of solving the Stokes equations with the
NRFE method is to condense the internal degree of freedom
in the process of establishing the stiffness. In the fifth section,
we describe the finite element analysis of the method.

CO,m— nl/p (5)’
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boundary, so the following embedding relationship

holds:
Vg e [1,00), mp=mn
mp>n>(m—1)p (15)
Va e (0,1), n=(m-1)p
n<(m-1)p

In this paper, we use a rectangular partition of the same
scale for the velocity and pressure. Here and later, h is a
positive real parameter that tends to zero, and 0<h< 1.

Definition 1. Let 7, = 7, (Q) be a partition of the region Q
and Q; be any unit of 7,; if 7, satisfies the following
conditions:

(i) There exists a 0>0 so that
hjlp;<0,¥Q; € 1), where
hj = diam(Qj) = sup{|x—y|,Vx,y € Qj} andpj =
sup{diam (S), S is any inside ball of Qj}

constant

(ii) There exists a constant y >0 that has nothing to do
with h such that max{h/hj,VQj € Th} <y, where
h = maij{h j}
then 7, is called the quasi-uniform regular partition

of the region Q.

Let O=U’,Q;CR%andQ; is any quasi-uniform
regular quadrilateral element of the region (), recorded as

I;=TNT, Ty =T =0Q;nT,. (19)

The midpoints of I'; and T'j; are, respectively, §; and & .
We define the standard base on the standard unit:

0(K) = Span{l,f, 1, &n, <£2 - 554) —<172 —%174)}, (20)

3
a(Q;) ={v: v=9F",v e @(K)}, (21)
where F. is a reversible affine transformation and

F;(K)=Q;
Now, we construct the finite element space.

(1) Nonconforming rectangular finite element space

X = vy = vla, € @(9)) x @), vy (&) = (&) (&) = 0.V} (22)
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satisfies the following properties:
(i) Inverse inequality:
IVl < e lixlo j» Vx € X (23)
(ii) Poincaré-Friedrichs inequality:
2
2
vl < B IV +(L vds) ¥y e H'(Q;),T, <00,
1

(24)
(iii) Trace inequality:
NI < s il ; + vl IV vl } Vv € HY ().
(25)
(iv)

L [v;]ds =0, L vids = 0,¥v = (v, v,)" € Xpi=1,2,

Jk J

(26)
where |17, = Il | (Q) I-15 = Qkez,
” "LZ(F )2) andz = kaﬂQ :/:@} er can

be replaced by F] at the outer boundary, and
vl = |1"k v |r means the jump of v; on the
public boundary jl"]k, 1<j<].

(2) Piecewise constant finite element space
M, = {q € M: qlg, € PO(Qj),Vj} (27)

satisfies the following properties:
(i) Inverse inequality:

19l <ch; gl ;. Vg € M, (28)

(ii) Poincaré-Friedrichs inequality:

2
IpI2, <1V pI2, +( J. pds) Vp e H'(Q).T, can,
(29)
(iii) Trace inequality:
lpll; <c{h;lplo; + Iplly ;1Vplo: |, ¥Yp € H'(Q;)),
(30)
where ||-||fn] [l - ”HmQ)S [l - ||2 Zkezj"

-IIEZ(rjk), andZ; = {k QkﬂQ 9E®} jk can be
replaced by F- at the outer boundary, 1<j<].

Let (-, ) = (s )Q ,1<j<], define the discrete bilinear
form

]
a, (u,v) = vz (Vu,Vv)j,‘v’u,v e XUX,

- (31)

J
d,(v,q) = Z (V-v.q);, Vv € X;,q € My,
=i

and norm

1/2
]
1
||v||1,h=<z||vV||3J) — e eX, (3
j=1

In addition, we introduce a closed subset of X,

Vi, ={veX,;d,(v,q) =0,Yq € M,}. (33)

Define operator mj H! (Qj) — @(Qj), which satisfies

J_ﬂjvds=JvdvaEH(Q)1—1234 (34)

and is equivalent to
iy_ 1 ds.i—
ﬂjv(aj) = m e'lv s,i=1,2,3,4, (35)

where e i (i=1,2,3,4) are the four edges of Q and their
correspondlng midpoints are a; (i = 1,2,3,4), satlsfylng the
following properties:

@)
V(v =79l <clVvlly j, Vv € H'(Q;). (36)

(ii)
IV (vl < cl Vol ;o Vv € H' (). (37)

Define operator II,: X — X, which satisfies

(Hhv)ilﬂj =TV,

i YveX,Vj,i=12, (38)

and satisfies the following properties:
@)
d, (Il,y —v,q) = 0,Yq € M,,. (39)

(ii)
TVl <clVvllg, VveX. (40)

Define the projection operator R;: H?(Q)* — X,
which satisfies

R, (&) =v(§),VE = fjk oré;, (41)

and Py: H' (Q)* — A;, x A, satisfies

ov.
(Pyvj2)p ={z5 201, ¥z € Py (I)°,VT =T yorT;,  (42)
)

on

10

where if record 01

2 2 tT(T):T: 8,6 :|:
= Zi:l Z]’:l 0iTij> then

], ando: T



A, = {,\: Ajk - trw(’”ﬂj) € PO(ij);)ij +

Define the projection operator S,: H'(Q) — M,
which satisfies
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A =031, = trrj<)t|ﬂj> € Po(rj)}. (43)

They satisfy the following properties:
(i) Orthogonality:

(849:2) = (¢, 2),Vz € My, (44) (Povjpwidr, +{Pyvi widr, ={Pyvjw; —wi)r, = 0,Yw € X,,.
and Q,: H' (Q) — P, (T) satisfies (46)
(Qug> 201 =< 2)1> ¥z € Py (I), VI = T jporT ;. (45) (ii) Approximation property:
; 12 ; 12
v = Ryvly + h(Z IV (v- th)ué,j) + h”2<2 v - th|||§>
= =
L5 12
+ h3/2<z [ P0v|||2->
= on; ! (47)
<ch?|v|,, v € H*(Q)°
; 12
lg - Suqlly + 1" <z g - QoqIHf) <chlgll;,q € H' (Q).
=
d,(v,q)
Here and later, n;,1<j<], represents the unit outer i I = Boligllo, Vg € M, (50)
veAp >

normal vector of 0Q) ..
Then, the nonconforming finite element approximation
problem of (12) is

ﬁnd(uh,ph) € Xh X Mh’
ap (wy v) = dy (v, pu) = (7). Vv € X,
dy (> q) = 0, Vg € My,

$0
(48)

Proposition 1 (see [7]). If the bilinear form d(-,-) satisfies
the inf — sup condition, there is a constant 3> 0 such that
d(v,q)

su 49
AT (49)

then the bilinear form d,, (-,-) satisfies the discrete inf — sup
condition: there is a positive constant [3, such that

|ah(u, v)—(f, v)|
o vl

vevV,

)

EAE c( inf = v
veX,

|ah (u,v) —d, (v, p) -

Theorem 4 (see [7]). Under the condition of Proposition 1, if
V., is not empty, problem (48) has a unique solution
(up> py) € X, X My, and uy, € V,, satisfies

"uh”LhS%”f”*’"f”* _ (f,v)

vl

sup
veX),

(51)

Proposition 2 (see [7]). Let (u,p) and (uy, p,) be, re-
spectively, the solutions of problems (12) and (48); there is a
positive constant of ¢ such that

(52)

(f>7) v) = (f,v)]

sup

veXy, ”V"Lh

Ip = pil Sc<qg}vgh Ip -l +

).

sup Iah (,
v,

+inf [lu—vll,, +
veX, > VeV,



Mathematical Problems in Engineering

Proposition 3 (see [7]). Let (f, g) = fao fgds, for
V¢, w € XUX,, satisfy the following propertzes

ow
Z<$’ ¢)
j=1 7T

j| < chllwll gl Vw € D (A)

(53)

J
N<a.¢-n | <chlqh gl Vg € H' (Q).

Jj=1

Theorem 5 (see [7]). Let (u, p) € H*(Q)* x H' (Q) and
(up> p) € X, x My, be, respectively, the solutions of problems
(12) and (48); then,

e = wyll o+ 1p = prllo < ch (llully + lply)- (54)

Using the dual argument method, we estimate the error
of L%,
Consider the linear duality problem:

—-VAY +Vy=u-u, Vxel,
V-y=0 Vx € Q, (55)
y=0 Vx eT.
The variational form is
find (v, y) € X x M, SO
av,v)—=dv,y) = (u—u,v), VYveX, (56)
d(y,q) =0, Vq € M.

If u is the nonsingular solution of problem (2), then
problem (56) has a unique solution (see [16]).

In order to establish an estimate of the L? error of ve-
locity, Aubin-Nitsche argumentation method is used here.
Let problem (34) be H? regular, i.e.,

lylly + lxlly < cllu =yl (57)

Let (y,x) be the solution of problem (56), and
(¥ Xn) € X X My, satistying

ly = walls + I = Xallo < ch (vl + lixll)- (58)

Theorem 6 (see [7]). Let (u, p) € H>(Q)* x H' (Q) and
(uy, py) € X, x My, be, respectively, the solutions of problems
(12) and (48); if problem (55) is H* regular, then

et = wayllg < ch? (lull, + 1 p1l,)- (59)

This section presents the algorithm design for solving
problem (48).

3.1. Step 1: Condensation of Internal Degrees of Freedom.
Let the four edges of the standard cell K = [-1,1]? be, re-
spectively, &, e,, €5, and €,; the corresponding midpoints are
a, = (0,-1),a, = (1,0),a; = (0,1), anda, = (-1,0), and
the shape functions for each node of the Douglas rotation
element obtained are, respectively,

7
e =363 ()
et o33 -36)(-30)
(60)
e <brnd(E30) (-3
g e R C)
It is easy to verify
|ots=s,etij=1.234 o

where 8 is the Kronecker symbol and [¢;| is the length of the
edge of e;.

The element speed interpolation with additional node-
free speed terms can be expressed as follows:

4
Uy = Z?’i”il + A, &n,

i=1

Uy = ZS":” +18n,

(62)

where A, and A, are the undetermined coefficient in the
element’s internal definition, known as the internal degree of
freedom.

The expression is expressed in the matrix form:

u=u,+u, (63)
ie,
- 1A
5}
1
&)
1
U3
[”1] _|:‘P1 % 93 94 0 00 0] g
u 0000 2
2 P1 P2 P53 Pyl uy (64)
1
2
u;
2
L1
3 alli]
+
0 $nllA,
The element pressure is interpolated as follows:
p=p (65)
where {; = L.
We discretize equation (48) on the unit Q; using the
interpolation  functions of u# and p.  Since

v= (v, 1) €X, andg € M, is arbitrary, we can choose
the following:



Mathematical Problems in Engineering

_lo| _|én
1) v= [ 0 ],l— 1,2,3,4,and v = [ 0 ]

v(Vu, Vv)j

= v” (Vuy - Vvy + Vu, - V,)dQ
Q

Jj

4
vZu ” V(p]V<pldQ+vA ” ViEVe,dQ vy =¢,1=1,2,3,4,
Q

j=1 J

VYl ”Q VovEnda o, [| viEnvEnde v -

j=1 J

(V-v,p)j

ov, 8v2>
- o
” o? (ax1 ax, (66)

Plﬂ (1 aq)’ dQ v =¢,01=1,2,3,4,

P1” ‘:16(&1) v =41,
(fv); = Jjnj(flvl + f,v,)dQ
”Q]fl(pldQ v =¢,1=1,2,3,4,

”ijlfﬂdﬂ v =&n.

0 0
2)v= [ ],l =1,2,3,4,and v = [ ]
7 &
4
vZu?” VoV, dQ + w\l“ V(&n)Ve,dQ v, =@l =1,2,3,4,
j=1 9 Q
v(Vu, Vv)j =4
4
vyl || vovenaosn | venvenda v -t
j=1 J 7

plﬂ 4 a(Pl dQ  vy=gul=1,234,

(V-v,p); =1 (67)
P1” (= (&7) v, =&,

” f20dQ v, =¢,1=1,2,3,4,
Q

7

(fiv); = 1

”ijzfﬂdﬂ v, = &n.
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(3)g= (1'

A, el

]

By synthesizing (1)-(3) and making some adjustments,
the element discrete equations are obtained:

ZK” ‘+ZK12 {+ KA+ Kiph, + K p, = R
4
D+ Z K3ju; + KA, + Kb, + K3 py = R

i=1

s Z K5iui + Kyjhy + Kk, + Koy py = Ry

511

Kiiu; + Z Kizuf + K53)L + K54A + Knp1
j=12,---,4
(69)
Let
. 1 j=1
) ={ / (70)
Tolo o j#i,
where
= 8fv‘|’JQ.VgoiV(pdeT,w =12
]
13 31
Kj1 _Klj_KJZ_K QV(En)Vgode
j
14 41 23 32 34 43
sz :sz :Kjl :Klj =K,=K; =0

K= K = vﬂﬂ V(EV (En)dQ

J

a(pj
o= —dQk=1,2
j Jjﬂj(1 axk

S|

B(Eﬂ)

a(fn) o

da + Z j“n %’i{ldﬂ + AZH

j=1 J Q;

“l.a

og;

(68)

8(511)

(1ko= 1,2

U
=[], e uan
H

3 (&) 71

Q, 0x,

£,dQ

-3

0
” Sigjd0k=1.2

R
R =0.

Since the velocity u, in the element does not participate
in the distribution of known loads, the equivalent load for A
is zero, i.e., R/1 = R)L2 =0.

The algebralc equations are obtained as follows:

1A

11
(Kl -

K, 0 0 K}i 0 1<15“-u1 'R!
Ky - Ky 0 - 0 Ky 0 Ky flu}| |R]
0 0 Kk o KK | [
0 - 0 Kij - K 0 Ky K |lu?| |R
K1k o 0 k8o K7 ] |
0 0 K2 k2 0 kEKE||n| |0
LK}y - Kyy Ky - Kog Ky K, 0 Jlped L0
(72)
Abbreviations are as follows:
‘K 0 KB o KSIrUtl TR
0 K2 o k* k¥l R?
K" 0o K® o K*||A|=]0 (73)
0 K*¥ o K" K*|| A, 0
K K2 kPt o llp 0

For the convenience of description, we write the stiffness
equation of the mixed element as follows:
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T T
Kau Ka,\ Kpa U R
T -
Ko Ky Ky Al=10] (74)
K, Ky 0 JLP 0
By eliminating the internal degrees of freedom in the
upper first formula and third formula, the condensed ele-
ment equations are obtained:
L]
P o]

(75)

T -1 T T 1T
Kaa = KopKuKy Ky = KKK,

-1
Ko =K KyKa

—1,-T
pa _Kp)LKM Kp).

The coefficient matrix in the equation is the element
stiffness matrix with an additional internal velocity term,
and the right-hand term is the load column array.

3.2. Step 2: Synthesis of Total Stiffness. Let the dimension of
the finite element space X}, and M, be, respectively, NG1
and NG2, and the basis functions of these two spaces are,

respectively, {¢1,¢s....¢na1} and  {y, 90 Yneat-
Then, the solution of the equation can be expressed as

NGl NG2
) =Y ()'¢nj=L2pi =Y pyi  (76)
i=1 i=1
The element stiffness matrix and the load array obtained
after condensation are synthesized, respectively. In order to
guarantee the uniqueness of the solution of pj,, the limit of
the pressure Pj, is added as follows:

NG2

> piﬂ y,dQ = 0. (77)
j=1 o
The following algebraic equations are synthesized:
FUR I 1 i
A2 AR A% (Uh)2 P2
eIt U | = ol (78)
0 o acl" P 0

Since the basis functions are piecewise polynomials
defined on quasi-uniform regular partition 7, the coefficient
matrix in the system of equation (78) is a large sparse matrix.
We use the column principal Gauss elimination method to
solve the system. For ease of calculation, we ordered
a= ((Uh)l, (Uh)z,Ph)T. It comes down to just finding a
vector « and setting the coefficient matrix to Al and B1 for
the right-hand vector. Since Al are 2NG1 + NG2 + 1 rows
and 2NG1 + NG2 columns, the column principal Gauss
elimination method requires that the coefficient matrix must
be a square matrix. There are two ways to convert a matrix
into a square matrix. The first is to use the least squares to
convert Al into a square matrix of 2NG1 + NG2; that is,
(A1T x Al)a = A1T x BI, and the second is to add the last
row of Al to its last column, set the diagonal element to 1,
and add a variable, i.e.,

Mathematical Problems in Engineering

A AR AR 0 TW'] TF
A21 A22 A23 0 (Uh)z _ F2 . (79)
A31 A32 A33 A43 Ph 0

0 0 AY 1 x 0

By transforming Al into 2NGI1 + NG2 + 1 matrix, we
can obtain the solution of the Stokes problem by using the
column principal Gauss elimination method.

(1) Types of finite element:

(i) Douglas rotated element shape function:
For the velocity u, we use the four-node Douglas
rotated rectangular element to divide the region
Q into several combinations of rectangular ele-
ments, each element as shown in Figure 1. Let
a; = (x;, y;),i = 1,2,3,4; then, the centroid co-
ordinates (x,, y.) are

xX. =

1
c (1 + 2+ X3+ x0), e =~ (D1 + Y2+ Y3+ Ya)-
4

(80)

N,

The standard element is a square region of space
&n) with sides of 2
D: —1<&<land —1<#<1. The centroid co-
ordinates are at the origin (0, 0), and its degree of
freedom is the value of four points on a square,
which are distributed as shown in Figure 1.
Coordinate transformation:

Ez(x_xC))rlz(y_yc) (81)

a b

Convert the rectangular element Q; in the
(x, y)-plane to the standard element K in the
(&, n)-plane, where
2a = |x, — x4|and 2b = |y; — y,|. Its Jacobi de-
terminant is

o(x, y)
o(&n)

Let the shape function of each node of
a1 = (01_1)) az = (1> 0); a3 = (0, 1), andZi4 =

=1 | = ab. (82)

(-1,0) be
w243 (-F) - -30)
w1335 ()
=L bns3 (6 F) - -50)
=135 (- 3)

The additional bubble function is &7.
(ii) Piecewise constant shape function:
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For the pressure p, we use a piecewise constant
rectangular element to divide the region ) into
several combinations of rectangular elements,
each of which is shown in Figure 2. Let g, =
(x, y.) also be the centroid coordinates. The
standard rectangular element is a square region
in space (&,7) with a side length of 2, and let
a, = (0,0) also be the centroid coordinates at the
origin, as shown in Figure 2.

The coordinate transformation from rectangular
element () to standard element K is the same as
for velocity u. The node a, = (0, 0) corresponds
to a shape function

(&) =1 (84)

(2) Automatic mesh generation of the finite element
method:

(i) Automatic mesh generation of the finite element

method for velocity u:

In this section, we mainly discuss the automatic
generation of 4-node rectangular elements, as
well as the node local encoding and the whole
encoding comparison table array IT (4, LEE) and
the node’s actual coordinates’  array
XY (2, NG1). Let the region Q be a rectangle,
evenly divided by #n vertical lines and m hori-
zontal lines; then, the region Q is divided into
nxm quadrilateral elements, as shown in
Figure 3.

Figure 3 represents the overall number and the
local number of velocity nodes on a small ele-
ment. The code of the element and the code of
the node are arranged from left to right and from
bottom to top, so there are n x m elements and
n(m+ 1) + (n+ 1)m nodes in the whole area Q.
Use i, j to denote the number of vertical and
horizontal lines, respectively. Then, i changes
from 0 to n, and j changes from 0 to m. The
coordinates of (i, j) for any node are marked

n
1 ‘23
K a,
-1 0 1 13
4

I1(0,LE) =N;+i;
1I1(2,LE) :N]-+2n+1+i; 11(3,LE) :Nj+n+i

(b)

FiGure 1: Transformation from the rectangular element to the standard element for the Douglas rotation rectangular element.
(a) Rectangular element ;. (b) Standard element K.

(x;, ;). Assuming that the middle node of the
opposite side of each element is connected by a
straight line, there are 2n + 1 vertical lines and
2m + 1 horizontal lines in the Q region. So, when
i changes from 0 to nand j changes from 0 to 2m,
the coordinates (x;, y;) can be represented by
left-right curved margins XLONG and up-down
curved margins YLONG. When j is even,

<XLONG> (2i+1)
X: = E3 y
! n 2
(85)
B (YLONG) i
<k m 2
When j is odd,
(XLONG) )
xp=——) *1,
n
(86)

- (YLONG>* j
j_ — -

m 2

The element whose vertical i element band in-
tersects the horizontal j element band is

LE=jx«m+i. (87)

The number of previous nodes in the j element
band is

Nj:j*n+j*(n+1):(2n+l)*j. (88)

Thus, the overall code for the four nodes of el-
ement LE is

II(1,LE) :Nj+n+i+1

(89)

(ii) Automatic mesh generation of the finite element

method for pressure p:



12

Mathematical Problems in Engineering

()

(b)

FIGURE 2: Transformation from the rectangular element to the standard element for the piecewise constant rectangular element.

(a) Rectangular element Q;. (b) Standard element K.

36 37 38 39 2
31 32 33 35 3 1
27 28 29 30
0
22 23 24 26
18 19 20 21
13 14 15 17
9 10 11 12
4 5 6 8
0 1 2 3

()

()

FIGURE 3: Overall number and local number of velocity nodes. (a) Overall number of nodes. (b) Local number of nodes.

In this section, we focus on the automatic
generation of 1-node rectangular elements, as
well as the node’s actual coordinate array
XYC(2,NG2). If the region Q is a rectangle,
divided evenly by an n vertical line and an m
horizontal line, then the region Q) is divided into
nxm quadrilateral elements, as shown in
Figure 4.

Figure 4 represents the overall number and the
local number of pressure nodes on a small ele-
ment. The code of the element and the code of
the node are arranged from left to right and from
bottom to top, so there are n x m elements and
nodes in the whole region Q. Using i, j to denote
the number of vertical and horizontal lines, re-
spectively, then i changes from 0 to 7, j changes
from 0 to m, and each node (i, ) is marked with
the coordinates (x;,y;) which can be repre-
sented by the left-right curve space XLONG and
the up-down curve space YLONG.

>

(XLONG) (2i+1)
x; = *
! n 2

(90)

_(YLONG\ (2j+1)
i _( m ) T

We have given all the constructions of the matrix in the
specific form through the overall coding and local coding
and the relationship between the base function and the shape
function. We can convert all the integrals into standard
units, and then we can do all kinds of integrals on standard
units.

We need to deal with the integral. When we do nu-
merical integral, we usually do not use the formula to cal-
culate the integral, but use the higher algebraic precision
Gauss-type numerical integral formula. It is not only con-
venient to write the standard procedure of the integral but
also, according to the construction characteristic of the basis
function, it is mainly the integral of the polynomial. If the
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0
8 9 10 11
4 5 6 7
0 1 2 3
(a) (b)
FIGURE 4: Overall number and local number of pressure nodes. (a) Overall number of nodes. (b) Local number of nodes.
integral is calculated by the formula, it will cause too much ( £ ) = (HX (i), HX ()
rounding error because of the complicated calculation v
method. Gauss-type integral is to select some special integral 1<i, j<3H;
. : . (96)
point &; and weight H; so that the calculation formula — GH(i) * GH (j)
1 n 1<i,j<3,
| r@ae=ymse) (o1)
-1 i=1 where
is accurate for all 21 — 1th polynomials. HX (i) = (-0.774597,0, 0.774597)
We have the same formula for double integrals: 1<i,j<3 ©7)
7
1 (1 GH (i) = (0.555556, 0.888889, 0.555556)
I= , ) 92 .
J_lj_lf(frpdfdn 52 1<i,j<3.

and then jil fE&mde=3" Hif (&n) = ¢

1 n n n
I= J ($ndn =) H(n;) = ZH1<ZHif(£i)’7j)>.
- j=1 =1 i1
(93)
So,
=] r@natan= Y mpEn) o0

ij=1

With the above analysis, we convert the integrals into
double integrals on the standard element and use the 9-node
Gauss integral formula; then,

4[11 jil (& mdidy = i HiHJ'f(Ei’ ’7j) = Zn: Hijf(EP ’1j)-

ij=1 i,j=1

(95)

The coordinates of Gauss point §;, 77; and corresponding
weights are

4. A Nonconforming Rotated Finite Element
Method for the Navier-Stokes Equations

In the first section of this section, the existence, uniqueness,
and stability of the solution of the NRFE approximation
problem are discussed. The convergence rate of the NRFE
method is given in the second section; there are two steps in
solving the Navier-Stokes equations with the NRFE method:
dealing with the linear part and dealing with the nonlinear
part. The first step has been solved in the last section. Here,
we mainly discuss how to solve the nonlinear term by the
Newton iteration method.

Let (-,-)j = (-,-)Qj, 1< j<]J, define the discrete bilinear
form

]
a, (u,v) = vz (Vu,Vv)j,Vu,v e XUX,
i=1
' (98)

J
dh(v,q) = Z (V-V,q)j,VV € Xh’q € Mh'
j=1
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and norm

1/2
J
1
||v||1,h=<z||wu§,j> LA e X, (99)
=1

For Yu,v,w € XU X, define the discrete trilinear form

]
by (u,v,w) = Z ((u- V), w)]-

= (100)
1
by, (u,v,w) = 3 (bl,h (w, v, w) = by, (u, w, V)),
which satisfies the following properties:

@

]
by (uv,w) + by (u,w,v) = Z ((u . nj)v, w>j

j=1

, (101)
- (V- wv,w);.
j=1
(ii)
by, (u,v,w) = bh(u,v,w)+ Z((u n])v,w)
1
T (102)
12
-5 Zl (V- wv,w);.
=
(iii)
by (u, v, w) <cpllully vl pllwlly g, by (v, w) (103)

<cpllullyplvily plwly s

Mathematical Problems in Engineering

(iv)
by, (u, v,w) = by, (u, w, v). (104)

Here and later nj, 1<j<]J, represents the unit outer
normal vector of E)Qj. See [7, 17] for its proofs.
In addition, we introduce a closed subset of X,:

V, ={v € X,;d, (v,q) = 0,Vq € M, }. (105)

Then, the nonconforming rotated finite element ap-
proximation problem of problem (6) is

ﬁnd(uh,ph) € Xh X Mh’ SO

ay (upv) = dy, (v, py) + by (s v) = (f,v), Vv € Xy,

dy, (uy,q) =0, Vg € My,
(106)

Theorem 7 (see [7]). Under the condition that Proposition 1
is established, if

%Ilfll* <LIfI, = sup LY

veX, "V"Lh

(107)

then there is, to problem (50), a unique solution
(up> p) € X, x My, and uy, € V,, satisfies

1
lets I S; £ (108)

Proposition 4 (see [7]). Let (u, p) and (uy, p,,) be the so-
lutions of problems (11) and (106), respectively; then, under
the condition of formula (51), there exists a positive number ¢
such that

llee — Ml Sc( inf lu - vl + sup
VeV,

| h(u,v)—dh(v,p)+bh(u,u,v)—(f,v)|

|ah(u, v) + by, (u,u,v) = (f, v)|
vl

(109)

veX,

lp = pallo SC( inf [[p—glly + sup

+ 1nf lee = vy + sup

(1 FW

vevV,

Proposition 5 (see [7]). Let (f, g) = faQ fgds, for
V¢, w € XU X, satisfy the following propertzes

|ay, (u, v) + by, (1, v) = (f, V)]
IVl 5 '
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L ow
2. (oo ®)j| <chlwly gl Yw € D(A)
Jj=1 J

)i
Y (w-ny)v ¢y | <chllwll Vil Vv € H? (Q)°
j=1

]
Y <a,¢-ny ;| <chlql gl Vg € H' ().
j=1

(110)

Theorem 8 (see [7]). Let (u, p) € H*(Q)* x H' (Q) and
(uy, pp) € X, x M, be the solutions of problems (11) and
(106), respectively; then,

find (v, y) € X x M,

avy)—dx) +((u- Vv, p) +(v- VI, v) = (u—uy,v), VveX,

d(I//’ ‘1) =0,

If u is the nonsingular solution of problem (1), then
problem (113) has a unique solution (see [16]).

In order to establish an estimate of the L? error of ve-
locity, the Aubin-Nitsche argumentation method is used
here. Let problem (112) be H? regular, i.e.,

Iyl + lIxlly < cllu = wy,lo. (114)

Let (y,y) be the solution of problem (113), and
(Vi xn) € X, x M, satisfies

Iy = will + Iy = xullo < ch (lylly + lixll,)- (115)

Theorem 9 (see [7]). Let (u, p) € H>(Q)* x H' (Q) and
(up> p) € X, x My, be the solutions of problems (11) and
(50), respectively; if problem (112) is H* regular, then

15

e = wally, + 0 = pll < ch ((lull, + lpl,). (111)

Using the dual argument method, we estimate the error
of L%
Consider the linear duality problem:

—-VAY +Vy+(u-Vy+Vu-y=u-u, VxeQ,
V-y=0 Vx € Q,
(112)
Its variational form is
o)
(113)
Vg e M.
e = wyllg < b (lull, + 1 plly). (116)

There are two steps in solving the Navier-Stokes
equations using the NRFE method: dealing with the linear
part and dealing with the nonlinear part. The method of
dealing with the linear term is the same as that in Section 3.
When dealing with the nonlinear term, the most common
method is the Newton iterative method, and the Newton
iterative method requires higher initial value, so we choose
the solution of the Stokes problem as the initial value. Let the
initial value of the iteration be [u}, p?] and [u], p}!] be the
nth computing solution; then, the iteration format is as
follows:

ah<u2‘”, v) - dh(v, pZH) + bh(uzﬂ, U v) + by, (udy, v) = (f,v) + by, (u, up, v),

Vv e X,

dy(uy'".q) =0,
Vq € M,

In this part, we only need to find the matrix obtained
from the nonlinear part and then add it to the matrix ob-
tained from the linear part (i.e., the coefficient matrix of the
Stokes equations Al and the right-hand term B1). Then, the
solution of the Navier-Stokes equations can be obtained by

(117)

the iterative method. In the following, we come to explain
the concrete process of discretization.

(1) Using v = ‘/(5)1 ,I1=1,...,NGI to discrete equation

(117), the iterative partial result is
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z
Q
z
Q

N —

+1
bh(uz U, V ):

(o) ) [[ (05220 0529, Yoo+ (st () [ (052

I
—_
-

I
—

z
Q
z
Q

n+1

bh(uh, u, v)

l\)\r—l
§ I
z <.
§ I

N —

by (v o v) =

I
—
.

I
—

(2) Using v = [ (2 ],l =1,...,NGI to discrete equation
1

(117), the iterative partial result is

o NV 0¢; ) )
() =3 3 3| ) [ (5= 0550 oo o ) [] (o5~ 050 oo
I 1RGN ¢, 0 2 09 0
b (141417, v) T2 [(ui) (y ” (¢Ja§f ¢ - ¢]aj:l¢ )dQ“L(”J) (t4e1) ” <¢]a;b ¢ - ¢Jaj:l¢,>

o) =5 3. 2[00 ([ (8o g, Jao (ot () [] (20~ 652k, Jao)

After discretization, the resulting iteration is as follows: ~ where
All A12 0 Fl
A21 A22 0 F2
0O 0 O 0
0 0 O 0

AT = (ali)NGlxNGI’FT = (bl)Ncl

(1 NGL 0 b 1 NG1 2, 5
2 & (u2) HQ(%x 1= ¢la¢z¢]) ]Zl( 1) H <¢, S - </>]a¢l</>,)er:w
a; =
1°3& ¢, 3 | NGI ¢ 5
2 4 (u ) JJ <¢Jaf ¢ - (/)]a_gbl‘pz) 2 Z (u ) JJ <¢zax1¢l ‘/’za_(pl(ﬁ])dﬂ‘r;éw
[ © =1 =

0
- 9gle, Jao |
[ 1 0¢; 0 1 0¢; 0
() ) I] (03201 0,900 Jaor o) () ] (8,520~ 0,520, Jaa |

) ) [ (oot Joo ey ) [ (0520 - 0529, Jo]

(118)

(119)

(121)

1 NGI NG o 3, 3 ' 26, 5
bi=3 ) . [(ui) W) | (sb,affsb e, Jao+(u)) () [ (sb]ajfsbl ¢Jaff’¢l) ]

In the formula above, 7, 0,0,y = 1,2, and 0 #7.
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In this way, we can construct a finite element system of
equations, (Al + A2)a™! = B1 + B2, and solve it iteratively.
Until [|o™*! — a™|| is less than given &, we can get the solution
uy,, py of equation (64).

5. A Two-Level Nonconforming Rotated Finite
Element Method for the
Navier-Stokes Equations

Because of the nonlinear and incompressible conditions of
the Navier-Stokes equations, it is very difficult to solve them
numerically, and they consume a lot of CPU time. To
overcome these difficulties, many methods have been pro-
posed, including the two-level method. The aim of the two-
level method is to obtain the approximate solution of the
nonlinear equation in less time and to maintain the optimal
convergence speed. The concrete calculation is to solve a
nonlinear problem on the coarse grid and a linear problem

{ﬁnd(uH,pH) € Xy XMy,
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on the fine grid. The theoretical and numerical experiments
in this paper show that, compared with the NRFE method,
the TNRFE method can save a lot of time when the con-
vergence rate reaches the same order, which shows that it is
an effective algorithm. In this section, we prove the stability
and convergence rate of the TNRFE method.

We choose a coarse grid H and a fine grid h with
H >0, H, h to represent the coarse and fine grid scales of the
velocity and pressure spaces and then establish a non-
conforming finite element space Xy X My, X;, x M, and
Xy X My € X, x M, Similarly, they satisty all the prop-
erties mentioned in the previous section.

The Newton two-level nonconforming finite element
method is divided into two steps:

Step 1: solving a nonlinear Navier-Stokes problem on a
coarse grid:

)
(122)

ay (g, v) = dy (v, prr) + Ay (g @) + by, (U g, v) = (f,9), V(n,q) € Xy x My

Step 2: solving a linearized Navier-Stokes problem on a
fine grid:

{ find(u", p") € X, x M,,,

)
(123)

ah(uh, v) - dh(v, ph) + dh(uh,q) + bh(uh,uH,v) + bh(uH,uh, v) =(f,v) + by (U up,v), V(v,q) € X, x My,

Define a generalized bilinear form on

(X x M) x (X x M):
B ((u, p); (v,q) = a(u,v) —d(v, p) +d(u,q).

So, the variational form of problem (1) is as follows: find
(u, p) € X x M such that

B ((u, p); v, q) +b(u,u,v) = (f,v),V(v,q) € X x M.
(125)

(124)

For given (u, p) € X x M, we define its Stokes projection
(w,m) € X}, x M, as

|B ((u, p); (v, @) <c(IVully + lIpllo) (IVVIG + liglly ), ¥ (w4, p), (v, q) € X x M.

(ii) There exists a constant « >0 that depends on h:

B (> Pw); (Vi n))

%h ((w) T[)a (VJI)) = ‘@((u’ p)7 (V’ Q)),V(Va CI) € Xh X Mh-
(126)

Then, nonconforming rotated finite element approxi-
mation problem (124) is as follows: find (u,, p),) € X, x M,
so that

By ((ups p1); (v, @) + by, (o wy v) = (f,9),V (v, 9) € Xy X M.
(127)

Proposition 6. (i) There is a constant ¢ >0 such that

(128)

(gl + 124lo) < SUP (1, 4, Yex,

Ivallyp + llanllo

LV (U, pr) € Xj, X M, (129)
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Proof . ((70) proof (see [4, 16-18])). The following is to
prove (129). Let (uy,, p,) be a nonzero element in X, x M,.

By, (> p1); (1)) = VI, -

Since there exists the constant § > 0 for all p, € M;, ¢ M,
there exists v € X satisfying V - v = —p,, and ||V, < |l pyllo-
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Let g, €M, be determined by the problem
dy, (Wi Pi) = A1, (W10 41), Y, € X5 50
dy, (wy> py) + by, (o @) = Vi[5 - (130)

Hence, derived from upper equations (39) and (40) and the
Young inequality,

By, (g pp); (1,9, 0)) = = Vgl T V1 L, = d, (T, py)
> — cvlluylly W1Vl = dy, (T = v, p,) + P4l
> — oWl W IVVlg + P4l (131)
131
C 7/
> - ||uh||1h ||Vv||é +1pall;
2 2
v 2 1 2
> _ﬁlluhlll,h +5"ph”o

Let wy, = u;, + (8/c*v)I1,v and r, = g;; from the above
two formulas, we can get

By (4 ) (wps 1)) (132)

g 2
t ”Ph"o'
V

v 2
>—|u
2I| nllin

Obtained from (50) and (40), the triangle inequality, and
the Holder inequality,

lwlly + Il

= e+ TVl + Nl
d b
<"uh”1h+ ”HhV||1h+ sup M
ﬁO YneXy "1/’]1"1,}, (133)
1 dy, (¥ P1)
< llul + ||VV|| +— sup ———1 10
" N A A
V2

<lupln +— ”Ph"o 12 lo-
Bo
From the above two formulas, it is easy to get (129). O
Theorem 10. Under the conditions of Proposition 6 and
Theorem 7, the solution (u”, p") € X, x M), satisfies

h h
ey, + N7l < cll £1.. (134)

Here, c is a constant that depends on v, f, and Q.

Proof. According to Theorem 7 and (122), there exists a
unique solution (uy, py) € Xy X My, and it satisfies

1
IIuHIh,hS;IIfII*- (135)

In equation (123), we make v = 1 and q = p”; then, from
(104), we can derive

V13, + by (g ) = (f,u") + b, (upp o). (136)

Using (103), we can get

hy2 h 2 h
< cpllu Iyl Ml + W F LMl + epllply plle e
(137)

hy2
Yty

From (135), we can derive

h
Yl

2 G ) h Cp 20, h
s;llfll*llu I + I Ny + 5 A e
v

(138)
After sorting through the equations, we can get
¢ h
V(l - ;g 11, )IIu I, < (1 + 5111 >||f||*- (139)
From Theorem 7, we can get
I, <<l f L. (140)

From Proposition 6 and (123), we can get
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h h
oIl + 1",

Z,((v" p"); () (141)

vl + gl

<sup (v@)eX,xM,,

h
<cyllugly + 11, + 2c, el e
From (135), (140), and (141), we can derive

Il + 10"l < el 1. (14ZD>

J
0
@), (u,v) =y (v, p) + by (w1, v) = 3 (==
=1

Suppose (w, ) is the projection of (u, p) on X, x M,
and here, w € V; then, by (125) and (144), we can get
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Theorem 11. Under the conditions of Proposition 6 and
Theorem 7, there exists a constant ¢ which has nothing to do
with h such that the solution (u", p") of problems (122) and
(123) satisfies

I — "l +p = pllg < c(h + H). (143)

Proof . Multiply the two ends of the first formula of (1) by
v € X, and (102), and we can get

] J
:.’V>f+ Z (p,v-nj)j+% Z ((u-nj)u,v>j =(f,v). (144)
=i =i

ah(uh -w, v) - dh(v, ph - n) + dh(uh - w,q) = %h((uh -w, ph - n); (v, q))

ou
on

] i ]
=b), (1, v) = Y () + Z<p,v-nj>j+% > (un)u, vy, (145)
i = =

J

+by, (ug,uy,v) - bh(uh, Uy, v) - bh(uH,uh, v).

In (145), we take v = u" — wand g = p/ — 7. By using (3),
(103), and Proposition 5, we can get

h 2 h
vu' - wly, = bh(u, u,u - w)

1 ]
+ Ej;((u . nj)u, u' - w>]-

ou 4 ! h
_VZ<$,M —w>]-+z;<p,(u —w)-nj>j
i

+ bh(uH,uH,uh - w) - bh(uh,uH,uh - w) - bh(uH,uh,uh - w)

= bh(u —w, u, u - w) + bh(w,u - w, u - w) - bh(uh —-w, uH,uh - w) (146)

]

_bh(uH—w,uh—w,uH—w)—vZ(aaTu,uh—w>j

=

J

J J
+ 2 (" - w) mp, +% > (un)uwud ~w);
= =

h 2 h 2
<yl = wilf gl + el = wlly gy (Il = wl IVl + lwlly gl = wlly g, + g = wli7 )

h
+chllu” = wlly, (lully + Ipl + [1Vullgllul,).
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From Theorems 2, 3, 7, and 8 and (135), we can get

I - wlly, <c(h+ H?). (147)

h h -1
lu” —wly, +lp" —7lp<a sup
(v,q)eX,xM,

h h
<c(IVully + 1" = wly, + lwlly ) (e = why y + " = wll, )
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From Proposition 6 and (145), we can get

By((u" - w, p" - 7); (v.)
vl + gl

(148)

h h 2
+c(llu" = wlly, + lw = gl )" = wlly, + cllw = ugl ),

+ ch(lull, + 1pl, + 19ulohul,) < c(h + H?).

So,

h h
lu—u'll,, +llp—pllo
h h
<lu-wlyy, +llw=u'lly, +lp=7ly + = p'lly,  (149)

<c(h+ 1)

From the above results, when the appropriate scaling
relation is chosen, i.e., h = O (H?), we can see that the NRFE
method and the Newton TNRFE method have the same
convergence rate. O

6. Computational Example

Here, examples are given to verify the correctness of the
theory and to show that the two-level nonconforming finite
element method for solving the Navier-Stokes equations is
superior to the nonconforming finite element method.

Example 1. Let us take a true solution which satisfies the
conditions and set the two-dimensional rectangular region
Q = [0,1] x [0, 1]; the true solutions are as follows:

u(x, y) = (uy (%, y), u, (x, ),

u (%) =x*(x -1’y (y-1)2y - 1),
Uy (%, y) = —x(x - 1) 2x - 1)y* (y - 1)°,
p(x,y) =x-0.5.

(150)

It is proved that the velocity term of this vector function
belongs to the nondivergence space, i.e., V-u =0, and the
pressure term satisfies _[ oP(x)dx =0. By substituting
u(x,y), p(x,y) into Stokes (12), the right-hand term
f(x9)=(f1(x ), f,(x,¥)) is obtained. Since the vis-
cosity coefficient has little effect on the accuracy of the
equation, we only consider the case when the viscosity
coefficient is v = 1. The numerical results of the non-
conforming finite element method with different values of h
are given in Table 1.

From Table 1, for solving the Stokes equations, we can
see that the NRFE method converges with / decreasing, and
it keeps the convergence rate. When the grid scale is
h = 1/25, the true solution and the calculation solution of the
velocity component u,; are shown in Figure 5.

The contour of the true solution and the calculation
solution of the velocity component u, is shown in Figure 6.

The true solution and the calculation solution of the
velocity component u, are shown in Figure 7.

The contour of the true solution and the calculation
solution of the velocity component u, is shown in Figure 8.

The vector of the true solution and the calculation so-
lution of the velocity is shown in Figure 9.

The images of the true solution and the calculation
solution of the pressure are shown in Figure 10.

The contours of the true solution and the calculated
solution of the pressure are shown in Figure 11.

Here, examples are given to verify the correctness of the
theory and to show that the TNRFE method for solving the
Navier-Stokes equations is superior to the NRFE method.

Example 2. Let us take a true solution which satisfies the
conditions, and let the two-dimensional rectangular region
Q = [0,1] x |0, 1]; the true solution is as follows:

u(x, y) = (uy (x, ), uy (x, ),

u, (x,y) = 10x% (x - 1)2y(y— (2y-1),
U, (x,¥) =—-10x(x - 1) (2x — l)yz(y -1
plx,y) =10(2x-1)(2y - 1).

It is proved that the velocity term of this vector function
belongs to the nondivergence space, ie, V-u =0, and the
pressure term satisfies J oP(x)dx =0. By substituting
u(x,y), p(x,y) into Navier-Stokes equation (1), the right-
hand term of the equation can be obtained:
f(xy) = (f1(x,9), f,(x, ). Since the viscosity coefficient
has little effect on the accuracy of the equation, we only consider
the case when the viscosity coefficient is ¥ = 1. In this paper, we
present the numerical results of the TNRFE method and the
NRFE method when the value of & is different.

When the grid scale is & = 1/25, the true solution and the
calculation solution of the velocity component u, are shown in
Figure 12.

The contour of the true solution and the calculation
solution of the velocity component u, is shown in Figure 13.

The true solution and the calculation solution of the
velocity component u, are shown in Figure 14.

(151)
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TaBLE 1: Convergence study of the NRFE method for the Stokes equations in Example 1.

h CPU (s) llee = vy lly o/ Nl llee =y llo/Nuall 2 = pullo/llplo

1/9 1 0.05276735294 0.00683378123 0.00721657884

1/16 14 0.04930544340 0.00595934426 0.00672908995

1/25 249 0.04626780379 0.00524238897 0.00630336367

(a)

00
(b)

FI1GURE 5: True solution and calculation solution of velocity component u; by the NRFE method for the Stokes equations. (a) True solution of
velocity component u,. (b) Calculation solution of velocity component u;.
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FIGURE 6: True solution contour and calculation solution contour of velocity component u; by the NRFE method for the Stokes equations.
(a) True solution contour of velocity component u,. (b) Calculation solution contour of velocity component u;.

The contour of the true solution and the calculation
solution of the velocity component u, is shown in Figure 15.

The vector of the true solution and the calculation so-
lution of the velocity is shown in Figure 16.

The images of the true solution and the calculation
solution of the pressure are shown in Figure 17.

The contours of the true solution and the calculation
solution of the pressure are shown in Figure 18.

From Tables 2 and 3, we can see that the NRFE method
and the TNRFE method have the same order convergence
speed when h=O(H?) for solving the Navier-Stokes
equations. The TNRFE method we proposed is less time-
consuming than the NRFE method; actually, it nearly
saves half the CPU time. We plot the velocity by tracing

diagonal  points. When the grid scale s
H =1/5and h = 1/25, the true solution and the compu-
tational solution of velocity component u, are represented
in Figure 19.

The contour of the true solution and the calculation
solution of the velocity component u, is shown in Figure 20.

The true solution and the calculation solution of the
velocity component u, are shown in Figure 21.

The contour of the true solution and the calculated
solution of the velocity component u, is shown in Figure 22.

The vector of the true solution and the calculated so-
lution of the velocity is shown in Figure 23.

The images of the true solution and the calculated so-
lution of the pressure are shown in Figure 24.
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(a)

by the NRFE method for the Stokes equations. (a) True solution of

FIGURE 7: True solution and calculation solution of velocity component u,

velocity component u,.

(b) Calculation solution of velocity component u,.
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F1GURE 8: True solution contour and calculation solution contour of velocity component u, by the NRFE method for the Stokes equations.

(a) True solution contour of velocity component u,. (b) Calculation solution contour of velocity component u,.
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FIGURE 9: True solution vector and calculation solution vector of velocity by the NRFE method for the Stokes equations. (a) True solution
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Mathematical Problems in Engineering 23

0.5 0.5
04 0 4
I:"';l" 72 907520075
0020520 { 05200525, 07
s 20y ey e, 0y 20 by e e,
s G
20 000 225 05 22 s t0p ey ey 0y 0,
GG ST o5 o2ttt 0 0 0 e
0.5 M 0.5 ST
1 24, 2000204 0 g gty 0y 1 e 20y 05 20 205
7RO AL PALIHALIAL AT LA THL LTI A7
0052205020420 0y ot ts g0 Kbyl s s,
gt tr st o s 55555
e S5 555
e e ey Y, s 4e 200 %,
o5t 0.5 55055557
. II""
: &5
0.2
00 00

(a) (b)

F1GURre 10: True solution and calculation solution of pressure by the NRFE method for the Stokes equations. (a) True solution of pressure.
(b) Calculation solution of pressure.
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FIGURE 11: True solution contour and calculation solution contour of pressure by the NRFE method for the Stokes equations. (a) True
solution contour of pressure. (b) Calculation solution contour of pressure.
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FIGURE 12: True solution and calculation solution of velocity component u; by the NRFE method for the Navier-Stokes equations. (a) True
solution of velocity component u,. (b) Calculation solution of velocity component u;.
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FI1GURE 13: True solution contour and calculation solution contour of velocity component u, by the NRFE method for the Navier-Stokes
equations. (a) True solution contour of velocity component u,. (b) Calculation solution contour of velocity component u;.
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FIGURE 14: True solution and calculation solution of velocity component u, by the NRFE method for the Navier-Stokes equations. (a) True
solution of velocity component u,. (b) Calculation solution of velocity component u,.
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FiGure 15: True solution contour and calculation solution contour of velocity component u, by the NRFE method for the Navier-Stokes
equations. (a) True solution contour of velocity component u,. (b) Calculation solution contour of velocity component u,.
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F1GURE 16: True solution vector and calculation solution vector of velocity by the NRFE method for the Navier

solution vector of velocity. (b) Calculation solution vector of velocity.

FIGURE 17: True solution and calculation solution of pressure by the NRFE method for the Navier-Stokes equations. (a) True solution of

pressure. (b) Calculation solution of pressure.
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FIGURE 18: True solution contour and calculation solution contour of pressure by the NRFE method for the Navier-Stokes equations.

(a) True solution contour of pressure. (b) Calculation solution contour of pressure.
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TaBLE 2: Convergence study of the NRFE method for the Navier-Stokes equations in Example 2.

h CPU (s) llee = w1y /Ml llee = vy, llo/ N1l 2 = pallo/Iplo
1/9 1 0.05285264668 0.00512070990 0.00660637377
1/16 29 0.05062843052 0.00469204715 0.00630851030
1/25 391 0.04858196977 0.00431486884 0.00603642962

TaBLE 3: Convergence study of the TNRFE method for the Navier-Stokes equations in Example 2.

H h CPU (s) Nt = a1y /el et — " g/ lluell llp = p"llo/lplly
1/3 1/9 1 0.04494406371 0.00682618493 0.00769732820
1/4 1/16 16 0.04332036000 0.00617399737 0.00729562730
1/5 1/25 196 0.04180897072 0.00561062878 0.00693386430
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FIGURE 19: True solution and calculation solution of velocity component u, by the TNRFE method for the Navier-Stokes equations. (a) True
solution of velocity component u,. (b) Calculation solution of velocity component u;.
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F1GuRre 20: True solution contour and calculation solution contour of velocity component 1, by the TNRFE method for the Navier-Stokes
equations. (a) True solution contour of velocity component u,. (b) Calculation solution contour of velocity component ;.
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F1GURE 21: True solution and calculation solution of velocity component u, by the TNRFE method for the Navier-Stokes equations. (a) True
solution of velocity component u,. (b) Calculation solution of velocity component u,.
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FIGURE 22: True solution contour and calculation solution contour of velocity component u, by the TNRFE method for the Navier-Stokes
equations. (a) True solution contour of velocity component u,. (b) Calculation solution contour of velocity component u,.
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F1GURE 23: True solution vector and calculation solution vector of velocity by the TNRFE method for the Navier-Stokes equations. (a) True
solution vector of velocity. (b) Calculation solution vector of velocity.
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FIGURE 24: True solution and calculation solution of pressure by the TNRFE method for the Navier-Stokes equations. (a) True solution of

pressure. (b) Calculation solution of pressure.
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FI1GURE 25: True solution contour and calculation solution contour of pressure by the TNRFE method for the Navier-Stokes equations. (a)
True solution contour of pressure. (b) Calculation solution contour of pressure.

The contours of the true solution and the calculated
solution of the pressure are shown in Figure 25.

7. Conclusion

The main work of this paper is as follows:

(1) The inequalities on the elements used to prove the
standard polynomial approximation results are
given.

(2) The existence, uniqueness, and convergence rate of
the NRFE method for the steady Stokes equations
and the Navier-Stokes equations are presented. The
program design and numerical experiment results
are given to verify the theory that the method has the
same order of convergence speed as the conforming
finite element (CFE) method.

(3) The stability and convergence rate of the Newton
TNRFE method for the steady Navier-Stokes
equations are proved, and the numerical results of
the method are given.

Further work is as follows:

(1) The NRFE method and the TNRFE method are
extended to the unsteady Navier-Stokes equations,
and corresponding numerical results are obtained.

(2) The rapid development of engineering and materials
science in recent years has put forward new and
higher requirements for the reliability of numerical
models (i.e., the existence and uniqueness of solu-
tions, convergence, and adaptability to the change of
computational background) and nonlinear behavior.
The problem of overall optimization of the numerical
performance of the element is presented.
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