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In this study, the fourth-order compact finite difference scheme combined with Richardson extrapolation for solving the 1D
Fisher’s equation is presented. First, the derivative involving the space variable is discretized by the fourth-order compact finite
difference method. (en, the nonlinear term is linearized by the lagging method, and the derivative involving the temporal
variable is discretized by the Crank–Nicolson scheme.(emethod is found to be unconditionally stable and fourth-order accurate
in the direction of the space variable and second-order accurate in the direction of the temporal variable.When combined with the
Richardson extrapolation, the order of the method is improved from fourth to sixth-order accurate in the direction of the space
variable. (e numerical results displayed in figures and tables show that the proposed method is efficient, accurate, and a good
candidate for solving the 1D Fisher’s equation.

1. Introduction

Mathematical modeling of most physical systems leads to
linear/nonlinear partial differential equations (PDEs) in
various fields of science. PDEs have enormous applications
compared to ordinary differential equations (ODEs) such as
in dynamics, electricity, heat transfer, electromagnetic
theory, quantum mechanics, and so on [1].

(e 1D Fisher’s equation is given by
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2 + αu(1 − u), x ∈ (a, b)⊆ (−∞,∞), t≥ 0. (1)

With the initial condition,

u(x, 0) � f(x), a≤x≤ b. (2)

(e boundary conditions are

u(a, t) � g1(t),

u(b, t) � g2(t), t≥ 0,
(3)

where β(> 0) is the diffusion coefficient, α(> 0) is the re-
active factor, x is the distance, t is the time, and u(x, t) is the
population density. f(x), g1(t), and g2(t) are the smooth
functions on the given domain.

(e 1D Fisher’s equation in equation (1) was first
proposed by Fisher [2] as a model for the spatial and
temporal propagation of a virile gene in an infinite medium
[3]. It can also be considered as a model equation for the
evolution of a neutron population in a nuclear reactor [4, 5].
Equation (1) also describes the rate of the advance of a new
advantageous gene within a population of a constant density
occupying a one-dimensional habitat [6]. In equation (1), the
effect of the linear diffusion is observed along uxx, whereas
the nonlinear local multiplication or reaction is observed
along u(1 − u) [5, 7, 8]. Some of the application areas of
equation (1) include gene propagation [3, 5], tissue engi-
neering [9], combustion [10], and neurophysiology [8].

Due to its wider applications in the real world problems,
many researchers have been developing both analytical and
numerical methods for solving Fisher’s equation. Gazdag
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and Canosa [6] applied accurate space derivatives (ASD)
which can be carried out efficiently by the use of the fast
Fourier transformation algorithm to the numerical solution
of equation (1). (e Petrov–Galerkin finite element method
[11], Sinc collocation method [12], and the wavelet Galerkin
method [13] have been applied for solving equation (1).
Bastani and Salkuyeh [14] studied the numerical solution of
equation (1) using the compact difference method (FDM).
Hasnain et al. in [5] also studied equation (1) numerically
using the Crank–Nicolson scheme combined with the
Richardson extrapolation technique.

A widely and frequently used numerical technique for
Fisher’s equation is the FDM. However, the usual FDM
shows shortcomings in computational accuracy. (e two
widely known methods used to improve such shortcomings
are the application of the compact finite difference method
and Richardson extrapolation technique [15].

Due to its high accuracy and stability property, the
compact finite differencemethod attracts much attention from
many scholars for finding approximate solutions of various
kinds of equations [16], and it is much more accurate than the
corresponding explicit scheme of the same order [17]. A high-
order compact finite difference method was applied for sys-
tems of reaction-diffusion equations in [18], and the Helm-
holtz equation was approximated by a sixth-order compact
finite difference (CFD6) method in [19]. Dennis et al. [20]
proposed the fourth-order CFDS for convection-diffusion
problems. Bastani and Salkuyeh [14] had combined a CFD6
scheme for second derivative in space and a third-order total
variation diminishing the Runge–Kutta (TVD-RK3) scheme
in time to approximate Fisher’s equation.

Another way for improving the accuracy and rate of
convergence of the FDM is through the application of
Richardson’s extrapolation (RE) provided that their error
term is expressible as a polynomial or power series in h
[21, 22]. Furthermore, RE does not require any knowledge of
the underlying methodology except the order of accuracy,
which guarantees the minimal intervention to the existing
computational tools [23]. Gordin [24] applied the RE
method to improve a fourth-order CFDS to sixth-order in
1D parabolic equations and Schrödinger-type equations.
Compared to low-order methods, high-order methods can
achieve satisfactory errors on much coarser grids and thus
greatly curtail the computational cost [25].

Although mathematical properties of Fisher’s equation
and plenty of discussion are available in the literature,
majority of them do not address the import properties such
as stability analysis, order of convergence, and consistence of
the underlying numerical method.(e aim of this study is to
develop a higher-order numerical method for solving the 1D
Fisher’s equation. We also establish the stability condition
and order of convergence of the proposed method.

2. Mathematical Formulation and Analysis of
the Proposed Method

Let the spatial solution domain [a, b] in equation (1) be
divided into N equal subintervals with uniform mesh size h

which can be represented as h � (b − a)/N, such that

xi � a + ih for i � 0, 1, 2, . . . , N. Similarly, the temporal
solution domain [0, T] can also be divided into M equal
subintervals with uniform width k � T/M, such that tj � jk

for j � 0, 1, 2, . . . , M.
To linearize the nonlinear term in equation (1), the

method of lagging [26] is used in such a way one of the
nonlinear term is approximated at (j + 1)th time level and
the other is approximated at jth time level.

2.1. Fourth-Order Compact Scheme. From Taylor’s series
expansion, the first and second derivatives of u can be
approximated as follows:
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Substituting equation (5) into (1) yields
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i􏼠 􏼡 + αui 1 − ui( 􏼁. (7)

Differentiating equation (1) twice with respect to the
space variable and rearranging, we obtain
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Replacing the first and second derivatives of u in
equation (8) by equations (4) and (5), respectively, we get
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Now, substituting equation (9) into (7) and rearranging
yields
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Using the method of lagging to linearize the nonlinear
terms, the Crank–Nicolson discretization of equation (10)
becomes
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Using the expressions in equation (6) into (11) and
simplifying, we get the following tridiagonal system of linear
equations:

Aiu
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j+1
i−1 � Di, (12)
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Equation (12) is called the fourth-order compact
Crank–Nicolson scheme for solving the 1D Fisher’s
equation.

2.2. Stability Analysis. One of the requirements of stability
analysis by Von Neumann’s method is the linearity of the
difference equations [27]. (e linear form of equation (10) is
given by
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Replacing (ih, jk) by (mh, nk) in equation (13) to avoid
the use of i and j in complex number and simplifying, we
arrive at
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Replacing un
m by ξn

eimθ and solving for ξ, we get
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Since 0≤ |cos θ|≤ 1, |ξ|< 1 for every value of r> 0.
Hence, the proposed method is unconditionally stable.

2.3. Order of the Proposed Method. To discretize the gov-
erning equation in equation (1), the first fourth-order
compact finite difference method is applied in the space
direction, and then, Crank–Nicolson is applied to discretize
the derivative involving the temporal variable. (us, the

proposedmethod in equation (12) has fourth-order accuracy
in the space direction and second-order accuracy in the
temporal direction. In another word, the order of accuracy of
the proposed method is O(h4) + O(k2).

2.4. Application of Richardson Extrapolation. One of the
advantages of the RE technique is that it increases the ac-
curacy of the approximate solutions of the given differential
equation [15, 28]. It can also be used to accelerate the
convergence of the underlying method [22]. (e aim is to
apply the difference scheme on two consecutive grids and
then combine the resulting solutions to obtain higher-order
approximate solutions [21].

Consider two consecutive gridsΩk
h coarser andΩ

k
h/2 finer

and also assume that the following difference equations for
solving equation (1) are valid.
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where r(h, k) and r(h/2, k) are the remainders of order
O(h6, k2) and C is a constant independent of h and k. To
eliminate Ch4 between the two difference equations, multiply
equation (16) by −1/15 and equation (17) by 16/15 and then
combine the resulting difference equations on the coarser gird
Ωk

h to get better approximate solution using the following:
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3. Results, Discussion, and Conclusion

3.1.NumericalTestExamples. To validate the performance of
the proposed method, we considered two numerical ex-
amples whose exact solution is available. (e pointwise
absolute error ε at t � T is approximated by

ε � u
exact
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(e L∞ and L 2 error norms at t � T can also be ap-
proximated by

L∞ � max
1≤i≤N−1

u
exact

xi, T( 􏼁 − u
approx

xi, T( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

L2 �

�����������������������������

1
N

􏽘

N

i�1
u
exact

xi, T( 􏼁 − u
approx

xi, T( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽶
􏽴

.

(20)

Example 1. Consider the equation (1) [28, 30] with β � 1,
α � 6 in [0, 1]. For this equation, the initial condition and the
boundary condition are, respectively, given by
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(e exact solution for this equation is given by

u(x, t) � 1 + exp x− 5t
􏼐 􏼑􏼐 􏼑

−2
; 0≤x≤ 1, t≥ 0. (22)

Example 2. Consider the equation (1) [29] for x ∈
[−0.2, 0.8] with boundary conditions

lim
x⟶−∞

u(x, t) � 1,

lim
x⟶−∞

u(x, t) � 0.
(23)

For this problem, the initial condition is
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(e exact solution is
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3.2. Discussion. In Table 1, pointwise absolute errors of
Example 1 for different values of the spatial step-size with
time step-size Δt � 0.001 and T � 0.01 are tabulated. (e
displayed results and the comparison of the pointwise
absolute errors obtained by the present method and the
Keller Box method in [26], show that the present method
approximates the exact solution very well. In Table 2, L2
and L∞ errors and the computational running time are
displayed for two values of time step-size
(Δt � 0.0001 and 0.00005) for different values of T when
h � 0.025. As we increase the value of T from 0.5 to 5, the
errors obtained by L2 and L∞ decrease rapidly; however,
the computational time increases. (e numerical results
given in Table 3 clearly show that the present method is a
good candidate for solving the 1D Fisher’s equation.
Furthermore, it can be clearly seen from Tables 2 and 3 that
the L2 error norm better approximates the exact solution

Table 1: Comparison between pointwise errors of Example 1 for Δt � 0.001 and T � 0.01 by the modified Keller Box method [26] and the
present method.

Method x N � 10 N � 20 N � 40 N � 80

Present method

0.1 2.7048e− 05 7.8826e− 06 4.6663e− 06 4.7429e− 06
0.2 1.9913e− 06 2.2025e− 06 4.5380e− 06 6.2687e− 06
0.3 6.5613e− 06 6.7781e− 07 4.8015e− 06 6.9826e− 06
0.4 7.8298e− 06 8.4649e− 07 5.1902e− 06 7.3619e− 06
0.5 7.2517e− 06 1.3141e− 06 5.4721e− 06 7.5199e− 06
0.6 6.5162e− 06 1.6795e− 06 5.5846e− 06 7.4891e− 06
0.7 6.1483e− 06 1.8155e− 06 5.4960e− 06 7.2603e− 06
0.8 6.9525e− 06 1.4235e− 06 4.9992e− 06 6.6302e− 06
0.9 9.8358e− 06 1.3214e− 07 3.3749e− 06 4.7781e− 06

Method in [26]

0.1 3.7e− 05 2.9e− 05 2.7e− 05 2.6e− 05
0.2 4.6e− 05 3.5e− 05 3.3e− 05 3.2e− 05
0.3 4.4e− 05 3.5e− 05 2.6e− 05 2.6e− 05
0.4 3.6e− 05 2.8e− 05 2.6e− 05 2.6e− 05
0.5 3.7e− 05 3.1e− 05 2.9e− 05 2.8e− 05
0.6 3.4e− 05 2.8e− 05 2.6e− 05 2.5e− 05
0.7 3.1e− 05 2.5e− 05 2.4e− 05 2.3e− 05
0.8 2.6e− 05 2.1e− 05 2.0e− 05 1.9e− 05
0.9 1.8e− 05 1.5e− 05 1.4e− 05 1.3e− 05

Table 2: Comparison between L2 and L∞ errors norms of Example 1 for Δt � 0.0001 and 0.00005 when h � 0.025 for different values of T.

T
Δt � 0.0001 Δt � 0.00005

L 2 L∞ CPU time (s) L 2 L∞ CPU time (s)

0.5 1.9230e− 05 2.7178e− 05 1.225613 3.1680e− 05 4.4632e− 05 2.422009
1 1.8592e− 06 2.4774e− 06 2.652287 7.8558e− 07 1.3290e− 06 4.824446
2 1.7754e− 08 2.4029e− 08 4.732449 9.1469e− 09 1.2185e− 08 9.554945
3 1.1986e− 10 1.6225e− 10 7.147198 6.1787e− 11 8.2297e− 11 14.691121
4 8.2862e− 13 1.1298e− 12 9.560027 3.4944e− 13 4.6230e− 13 19.793493
5 8.8105e− 15 1.6431e− 14 12.056541 1.7150e− 13 2.4192e− 13 24.023544
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than the L∞ error norm. In Table 4, the numerical results of
the present method are compared against the results
generated by Agbavon et al. in [30] in terms of L1 and L∞
errors, and the results show that our method better ap-
proximates the 1D Fisher’s equation in equation (1).

In Figures 1 and 2, the numerical solution is sketched
against the exact solution for different values of T with Δt �

0.0001 and h � 0.025. From Figures 1 and 2, one can clearly
see that the graphs of the approximate and the exact so-
lutions overlap, showing that there is a good agreement

Table 4: L1, L2, and L∞ errors and computational time for Example 2 at time T � 0.0025 with the space step-length h � 0.01.

Present method
Time step (k) L1 error L2 error L∞ error CPU time (s)

T/52 3.5497e− 02 3.5232e− 03 1.5153e− 02 0.340
T/100 2.5420e− 02 1.7665e− 03 7.7685e− 03 0.443
T/200 1.7940e− 02 8.4546e− 04 3.8557e− 03 0.705
T/300 1.4662e− 02 5.4901e− 04 2.5648e− 03 0.958
T/400 1.2720e− 02 4.0708e− 04 1.9218e− 03 1.182
T/500 1.1400e− 02 3.2679e− 04 1.5368e− 03 1.516
T/1000 8.5497e− 03 1.9788e− 04 7.6855e− 04 2.816
T/1200 8.3671e− 03 1.8535e− 04 6.4073e− 04 3.435
T/1400 8.2355e− 03 1.7903e− 04 5.4948e− 04 3.848
T/1600 8.1384e− 03 1.7590e− 04 4.8106e− 04 4.425

Method in [29]
T/52 2.8968e− 01 — 1.5200 0.648
T/100 6.5144e− 01 — 6.9877e− 01 0.719
T/200 3.2980e− 02 — 3.9927e− 01 0.672
T/300 2.0727e− 02 — 2.5613e− 01 0.693
T/400 1.4262e− 02 — 1.7830e− 01 0.708
T/500 1.0268e− 02 — 1.2943e− 01 0.730
T/1000 2.0059e− 03 — 2.6389e− 02 0.904
T/1200 6.2983e− 03 — 9.0013e− 03 1.233
T/1400 4.2509e− 04 — 4.3458e− 03 1.141
T/1600 1.1913e− 03 — 1.3138e− 02 1.366

Table 3: Comparison between L2 and L∞ errors norms for Example 2 with Δt � 0.0001 and 0.00005 when h � 0.025 for different values of T.

T
Δt � 0.0001 Δt � 0.00005

L 2 L∞ CPU time (s) L 2 L∞ CPU time (s)

0.1 3.8809e− 16 6.6613e− 16 0.597 6.5015e− 16 1.1102e− 15 1.010
0.2 3.1924e− 16 6.6613e− 16 0.987 6.4294e− 16 1.1102e− 15 1.816
0.3 3.2715e− 16 6.6613e− 16 1.418 6.5659e− 16 1.1102e− 15 2.849
0.4 3.2715e− 16 6.6613e− 16 1.459 6.5015e− 16 1.1102e− 15 3.664
0.5 3.1113e− 16 6.6613e− 16 1.808 6.4294e− 16 1.1102e− 15 4.513

0
0

0.1
0.2
0.3
0.4
0.5

So
lu

tio
n 

u 
(x

,t)

0.6
0.7
0.8
0.9

1
Sketch of Numerical and Exact solutions at different times

0.1 0.2 0.3 0.4 0.5
x-values

0.6 0.7 0.8 0.9 1

numerical solution
numerical solution

numerical solution

exact solution

exact solution
exact solution

Figure 1: Numerical and exact solutions for Example 1 when h � 0.025 and Δt � 0.0001 for different values of T.

Mathematical Problems in Engineering 5



between the approximate and exact solutions. Furthermore,
the profiles of the approximate and numerical solutions
shown in Figures 3 and 4 also reveal that the present method
approximates the exact solution very well.

3.3. Conclusion. In this study, the fourth-order compact
Crank–Nicolson scheme combined with Richardson ex-
trapolation for solving the 1D Fisher’s equation presented.
First, the derivative envolving the space variable is dis-
cretized by the fourth-order compact finite difference

method.(en, the nonlinear term in the governing equation
is linearized by the lagging method and the derivative in-
volving the temporal variable is discretized by the modified
Crank–Nicolson scheme. (e method is found to be un-
conditionally stable and fourth-order accurate in the di-
rection of the space variable and second-order accurate in
the direction of the temporal variable. When combined with
the Richardson extrapolation, the order of the method is
improved from fourth to sixth-order accurate in the di-
rection of the space variable. To validate the applicability and
efficiency of the proposed method, two numerical examples
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Figure 2: Numerical and exact solutions for Example 2 when h � 0.01 and Δt � 5e − 06 for some different values of time.
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Figure 3: Solution profiles of numerical and exact solutions for Example 1 when h � 0.025 and Δt � 0.0001 for different values of T.
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Figure 4: Numerical and exact solution profiles for Example 2 when h� 0.01 and Δt � 5e − 06 for some different values of time.
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are solved, and the results are presented in tables and figures.
From the results displayed in tables and figures, we can
conclude that the the presnt method is efficient, accurate,
and better approximates the 1D Fisher’s equation than some
of the methods presented in the literature.
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