
Research Article
Underwater Internet of Things-Based Solutions for Intelligent
Marine Target Recognition

Ping Hu ,1 Kaina Jiang ,1 Peng Chen ,2 Yingchun Huan ,3 and Ruiyong Yue 1

1Dalian Institute of Measurement Ang Control Technology, Dalian, China
2No. 722 Research Institute, China State Shipbuilding Corporation Limited, Wuhan, China
3�e PLA Unit, Beijing 91977, China

Correspondence should be addressed to Ping Hu; 15942616861@163.com

Received 10 June 2022; Accepted 13 July 2022; Published 23 August 2022

Academic Editor: Hongyuan Gao

Copyright © 2022 PingHu et al.is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to solve the problems of poor data processing ability of underwater hardware equipment and low accuracy of clas-
si�cation algorithms in the existing marine target recognition and detection methods based on sensors and transducers, by
combining perception technology, underwater Internet of ings technology, and arti�cial intelligence, multiple devices could
communicate with each other to achieve automatic and intelligent high-precision marine target recognition. Compared with
existing methods, not only the accuracy rate is improved but also the hardware requirements are lower, and it is easier to deploy
in engineering.

1. Introduction

Due to the limited computing power of embedded under-
water devices and special signal transmission environment,
underwater target recognition has always been a di�cult
engineering problem [1].

First, the sensor nodes need to be deployed in the
monitoring sea area. e sensor array deployed in the ocean
is di�cult to maintain and upgrade, and due to the di�culty
of energy supply, the energy consumption cannot be too
large, resulting in limited computing power supplied for
signal processing [2]. Second, underwater cables or un-
derwater acoustic communication is generally used to send
information to ground base stations. While the length of
underwater cables is limited, the underwater acoustic signals
have the characteristics of fast energy attenuation and
narrow bandwidth, making it di�cult to transmit or process
large amounts of data in real time.

With the development of arti�cial intelligence and un-
derwater communication technology, the emerge of Un-
derwater Internet of ings (UIoT) technology provides a
new way to solve this problem. UIoT can be regarded as an
extension of the Internet of ings (IoT) to the marine and

ocean environment, constitutes powerful way for solving
complex tasks such as signal processing and transmission in
the ocean intelligently. A UIoT system with �ve-layer ar-
chitecture is presented in [3], with sensing, communicating,
networking, fusion, and application layer included. It is also
suggested that the UIoT can be combined with cloud
computing, edge computing, and other arti�cial intelligence
technologies in the future. In [4], an underwater data ac-
quisition system assisted with unmanned aerial vehicles is
proposed to link between vehicles and underwater sensors;
multiple receiver nodes are placed on the surface of sea to act
as intermediate relays.

ere are many ways to manufacture and build UIoT
system; for example, it can be constructed by �xed under-
water nodes, AUVs, base stations, or satellites. e auto-
matic high-precision target recognition by multiple devices
that can communicating with each other could be realized.
But there are still many di�culties in establishing under-
water Internet of ings for marine target recognition. For
example, a mobile task assignment method is designed in [5]
to lead the AUVs to the speci�ed positions under rough
ocean environment and propose a formation control scheme
to escort the target to the destination safely. To extend the
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life of UIoT and overcome challenges of ocean network
building project, such as high path loss, limited battery
power, and available bandwidth, a new balanced energy
adaptive routing protocol is designed in [6].

In addition to research on structures, there are trans-
mission and communication technologies, and unmanned
task assignment methods. *e research of UIoT is carried
out from all directions, making underwater intelligent target
recognition and identification feasible. For target recogni-
tion problems, a wide variety of methods have been de-
veloped, such as clustering algorithm-based methods such as
partition, hierarchical and network-based classifiers, deep
learning methods such as computer vision-based methods.

Among various methods, neural network-based
methods are the most attractive due to their excellent
performance and generalization ability and have been widely
studied and deployed in ground-based and airborne
equipment. However, due to the complexity and compu-
tational difficulty of existing models, many models with
excellent performance are difficult to deploy on low-power
underwater processors. On the contrary, using the existing
simple classifier directly for underwater target recognition
cannot obtain ideal classification results. *erefore, it is
necessary to select the classifier in a pertinent manner and to
optimize its structure and parameters for a more reliable
decision mechanism, so as to obtain a more robust and fast
target recognition method.

Recurrent neural networks can analyse time series, the
most representative of which is the long short-term memory
(LSTM) neural networks with the ability of analysing and
learning the temporal dependencies among the data. By
storing and retrieving information from the input data, LSTMs
can learn between time steps of arbitrary length to accomplish
complex tasks such as classifying and predicting time series. It
is widely used in various applications, such as handwriting
generation, image captioning, question answering, video to
text conversion, machine translation, and so on. In [7], an
LSTM network-based processing method is designed for
forecasting multivariate time sequence data, and an autoen-
coder method is combined with an SVM (Support Vector
Machine) algorithm for detecting the anomalies in trades.

Due to the above capabilities, LSTM networks are widely
used for classification and identification for time series data.
Although the LSTM network has achieved great success on
many kinds of classification problems, its performance is
limited by parameter selection. It is difficult to manually
adjust and select the hyperparameters of the LSTM neural
network, and inappropriate parameter settings may lead to
overfitting or slow convergence and even seriously reduce
the classification accuracy.

*erefore, many scholars try to improve the LSTM
network and apply it to different engineering problems. *e
utilization of LSTM networks in [8] enables the detection of
complex anomaly and error types while considering both
contextual and temporal characteristics. In [9], LSTM neural
networks are combined with attention mechanism senti-
ment representation learning and detection of words and
texts, where the attention mechanisms of LSTM architec-
tures are based on diverse abstraction levels.

However, designing the optimal LSTM network archi-
tecture with suitable parameters is still a daunting task, not
only requiring human supervision but also the searching and
regulating process may lead to overly complex models,
which may weaken the generalization ability of the network.
*e use of intelligent optimization technologies such as
evolutionary computing to assist deep learning is an
emerging technical means, which enables the system to
adaptively adjust parameters according to the actual cir-
cumstances, and trade-off between accuracy and calculation
volume, thereby improving the recognition accuracy and
antiresistance ability of the LSTM networks.

*is article combines the UIoT with the evolutionary
LSTM networks and designs an improved intelligent opti-
mization algorithm called EEC-DE (Exploration and Ex-
ploitation Control-Differential Evolution) to improve the
network classification accuracy, while reducing its com-
plexity. By implementing fast and low-burden edge com-
puting on underwater sensor arrays and surface nodes,
complex and time-consuming training and optimization
processes can be moved to land or ships, the computing
process is done using cloud computing or fog computing,
and the entire system can be easily deployed on the existing
hardware platform, the accuracy and reliability are higher,
and it is more practical.

*e rest of this article is organized as follows: first, close
works that are related to evolutionary algorithm-based
classification and intelligent recognition methods are
reviewed.*en, the novel EEC-DE algorithm is elucidated in
detail. After that, the extensive experiments are conducted to
verify the effectiveness of the proposed method. Finally,
conclusion of this article and some future directions are
presented in the last section.

2. Related Work

Comparing with the traditional target recognition method
that combines artificial feature selection and pattern rec-
ognition, the neural network, the automatic feature ex-
traction inherent in convolutional neural networks, makes it
the most promising method, and the evolutionary com-
puting is a prospective approach to improve the perfor-
mance of neural networks on difficult and complicated tasks.
Since this article mainly focuses on designing networks for
marine target recognition, this section only reviews closely
related works on evolutionary algorithm-based evolving
neural networks.

Since the LSTM networks can be used for time-series
classification and regression, the marine target identification
and recognition problem studied in this paper belong to the
sequence-to-label classification. An LSTM layer could acquire
the long-term dependencies between time steps in time series
or sequence data, but it is sensitive to the details and char-
acteristics of the input data. To alleviate this problem, many
studies on methods of evolutionary classes were born. In [10],
a two-stage algorithm is designed, where the first stage is
designed to get the best performing LSTM structure auto-
matically. During the evolution process, the connection
weight inheritance method is used to improve the efficiency,
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and the second stage designs the ensemble system by choosing
a suitable LSTM. An ensemble evolutionary deep network
model is proposed in [11], including a convolutional neural
network (CNN) and a bidirectional long short-term memory
(BLSTM) network for human action recognition. A guided
general search process is incorporated into the algorithm to
overcome stagnation caused by insufficient search capacity.

Due to the significant impact of hyperparameters in
LSTMs on classification performance and the complexity of
the interactions between parameters, manual selection of
these parameters requires specific prior knowledge, and
traditional trial and error tuning procedures often only find
suboptimal solutions. *e search for optimal parameters is
an NP-hard problem, which can be solved by evolutionary
computation [12]. In order to make the LSTM network
achieve better performance when dealing with difficult
classification problems, more innovative and efficient evo-
lutionary computing methods need to be devised [13]. *is
paper designs a novel differential evolution-class algorithm,
which can balance between the explorations and exploita-
tions. *e correlation learned by LSTM networks will be
enhanced; thus, the usability of the proposed marine target
recognition method could be improved.

3. Proposed Algorithm

To improve network performance and reduce reliance on
expert experience in parameter setting, this article proposed
the framework in the case where the network depth is
specified as a fixed value; hyperparameters within a preset
search range will be optimized automatically and simulta-
neously according to the objective function.

3.1.EvolutionaryProcessing. *ewhole evolutionary process
includes four main steps, namely initialization of pop-
ulation, fitness evaluation on the LSTM networks, offspring
generation, and exploration and exploitation control.

First, the population is initialized with the given pop-
ulation parameters as following: population size Np, the
dimension size L, which is related to the number of
hyperparameters to be optimized. *e individual in the
population can be described as a vector x

g
p �

[x
g
p1, x

g
p2, . . . x

g
pL], where the subscript g indicates the iter-

ation at the present. In the initialization process, every di-
mension of each individual is uniformly sampled from zero
to one. Every individual map a candidate choice of the value
of hyperparameters, and it is a candidate solution of the
optimization problem at the meanwhile.

During the evolutionary process, every individual will
update itself under the guidance of evolutionary formula.
*e main steps in the offspring generation of DE algorithm
are mutation and crossover. *e researchers have developed
a variety of mutation operators to achieve the mutation
process such as [14, 15]. Among all of them, the mutation
operators shown in Table 1 are used most commonly.

Here, the indicator r1 to r5 are all exclusive integers
randomly sampled from the range [1, Np], x

g

b indicates the
best individual in the present generation g, and parameter F

is the scale factor that has a huge impact on the mutation
process, which influence the solution of the algorithm
eventually. However, setting the scale factor as a constant
cannot balance between exploration and exploitation. Many
researchers believe that the scale factor should change
during the iteration process or adjust adaptively.

Since the kernel density estimation method can be used
to reckon the probability density function of any random
variables in a nonparametric manner, it motivates us to
design a new scheme called EEC to balance the exploration
and exploitation by estimating the state of individuals in-
stead of change the scale factor or the mutation operator.

Except for the first generation after initialization, the
newly generated offspring x

g
p needs to perform fitness cal-

culation f(x
g
p) in each iteration. *e fitness calculation could

be obtained according to the optimized objective function,
which will be introduced in the next subsection specifically.

3.2. Objective Function Design. When calculating the fitness
value of each offspring during the optimization, the network
embedded in the algorithm needs to be trained and verified
every time, and the recognition accuracy could be obtained
after the pair of training and testing operations are done. In
order to complete the classification task, the network is
required not only to correctly cluster the data but also to
ensure that the data match its corresponding labels.

During training, testing, and validating, the data first
enter a bidirectional LSTM layer with n hidden nodes, and
the last element of the sequence will be taken, in which the
activation function uses the hyperbolic tangent function to
realize automatic mining and learning of data internal de-
pendencies through forgetting, input, and output gates.
Additive interactions are applied at each layer, which helps
improve gradient flow over long sequences during training
and testing process [16]. *is prompts the bidirectional
LSTM layer to map the input sequences to n different
features and then generate the output for the fully connected
layer. Finally, recognition is accomplished by a fully con-
nected layer, a softmax layer, and a classification layer.

On the premise of obtaining the highest possible rec-
ognition accuracy, obtaining a sensible and feasible pa-
rameter setting method is a multiobjective problem, where
the Lagrange multiplier method is used to design the ob-
jective function, which is designed as a sum of three terms as
follows:

f x
g
p  � A x

g
p  − x

g
p1 × c1 + x

g
p2 × c2, (1)

where x
g
p1 is the number of hidden nodes in the bidirectional

LSTM layer, x
g
p2 is the batch size, which represents the

number of signals that the network learn each time, and

Table 1: Some commonly used mutation operators.

Type Mutation formula
DE-rand-1 v

g
p � x

g
r1 + F(x

g
r2 − x

g
r3)

DE-rand-2 v
g
p � x

g
r1 + F(x

g
r2 − x

g
r3 + x

g
r4 − x

g
r5)

DE-best-1 v
g
p � x

g

b + F(x
g
r1 − x

g
r2)

DE-current to rand-1 v
g
p � x

g
p + F(x

g
p − x

g
r1)
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A(x
g
p) represents the percentage accuracy of the LSTM

neural network trained with the hyperparameters corre-
sponding to the current individual on the validation set,
where c1 and c2 are constants, which represent the im-
portance of the corresponding quantity in the objective
function. *is Lagrange multiplier style objective function
engages the algorithm to find the stationary point auto-
matically in an iterative way.

In the offline training stage, the algorithm can adjust and
optimize the hyperparameters of the network adaptively by
solving this constrained optimization problem, and it can
obtain a higher recognition rate with less computational
effort in practical applications.

3.3. Exploration and Exploitation Control. In order to de-
termine whether to explore or exploit, a variation of kernel
density estimation is designed to check the state of the
population. Since the individual distribution in DE algo-
rithms tends to fit the Gaussian mixture model when the
number of individuals is large enough, the Gaussian kernel
function is used to design the decision condition. *e dis-
crimination flags are as follows:

ρg
�

1
Np



Np

p�1
f x

g
p κ x

g

b − x
g
p . (2)

It can be interpreted as the sum of the objective function
values weighted by the corresponding standard Gaussian
kernel [17]:

κ(x) �
1
���
2π

√ e
− ‖x‖2/2( ). (3)

*en, compare it with the optimal fitness value weighted
by a constant value. If ρg ≥ ηf(x

g

b ), it means that the al-
gorithm has not fully converged and needs to continue to
evolve according to the exploration mode. *e multiplier
parameter η is called the adjustment factor that can adjust
the threshold on the right side of the inequality sign. On the
contrary, if the value of ρg is smaller, it means that the
individuals in the algorithm are close enough to the global
optimal point; then it will switch to the exploitation mode,
search for the optimization near the optimal value, and get a
higher precision solution. Simultaneously, a pool of alter-
native strategies will be created, which contains two alter-
native evolution operators; the evolution formula of
exploration mode is as follows:

v
g
p � x

g
p + F x

g
r1 − x

g
r2 + x

g
r3 − x

g
r4( . (4)

*is means that four individuals are randomly selected
from the population, and the difference operation is per-
formed with each other. As for the exploitation mode, the
mutation formula is as follows:

v
g
p � x

g
p + F x

g
r1 − x

g
r2(  + μ(− g/G)

, (5)

where μ is the zoom factor with the same dimension as the
individual, the last term in the formula will be exponentially
decayed with the number of iterations grows.

When the mutation is completed, the algorithm enters
the crossover step. Calculate the fitness of the mutated in-
dividuals, and then apply the greedy selection strategy to
crossover the individuals in the population with the mutated
offspring:

x
g+1
p �

v
g
p, f v

g
p >f x

g
p ,

x
g
p, f v

g
p ≤f x

g
p .

⎧⎪⎨

⎪⎩
(6)

*en all the populations are merged to generate the next
generation population. As the number of iterations in-
creases, the population in exploration mode will implement
global search constantly, while in exploitation mode, the
algorithm improves the accuracy of the algorithm around
the optimal solution. Until the maximum number of iter-
ations is reached, the optimal individual is linearly mapped
to the parameter space, so the output will be the hyper-
parameter optimization result.

Since there is no fixed or closed form functional rela-
tionship between neural network recognition accuracy and
hyperparameters, but rather a complex and random cor-
respondence, and the objective function is both multidi-
mensional and multimodal. *e proposed EEC-DE
algorithm is especially suitable for evolutionary neural
networks.

3.4. Overall Framework. *e overall architecture of the
underwater Internet of *ings can be categorized by geo-
graphic location and application layer. To identify under-
water targets, during the offline training phase, the
simulated signals evolve the LSTM networks on the server
located in the seashore computing centre or complicated by
cloud computing, and the output optimal hyperparameters
are transferred to the edge devices. When the system is
powered on and working, underwater magnetic signals are
collected by magnetic sensors deployed on the seabed or
AUVs and then transmitted to the sink nodes or surface
platforms by underwater cables or underwater acoustic
communication [18], where the recognition by the evolved
network is accomplished and finally sent to the ground
control centre via satellite or other RF links for subsequent
decisions.

According to the above content, the overall framework
of intelligent marine target recognition and specific pro-
cess of evolving the LSTM network with EEC-DE algo-
rithm is as follows, and the schematic diagram is shown in
Figure 1:

Step 1: preprocess the data, including feature extrac-
tion, shuffling and normalization, to obtain training set,
validation set, and test set.
Step 2: randomly generate an initial population, each
individual representing a candidate hyperparameter
setting method of LSTM.
Step 3: decode the individuals and train the corre-
sponding LSTM network on the training set and then
use the validation set to evaluate the trained network to
obtain the fitness value for each offspring individual.
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Step 4: apply the judgment procedure by the EEC
mechanism and decide whether to explore or exploit
according to the current state of the algorithm.
Step 5: select the corresponding operator for mutation
and crossover. Complete the update for each individual
in the population.
Step 6: if the maximum number of iterations is reached,
terminate the iteration loop and output the optimal
solution in the last generation, otherwise, go to Step 3.
Step 7: train the LSTM network using the training set
and validation set and finally evaluate the evolved
LSTM network on the test set or measured data and
output the recognition results.

4. Experiments

In order to fully verify the performance of the design
scheme, this section will expand from the following aspects.
First, the performance analysis of the EEC-DE algorithmwill
be reflected in the standard benchmark function. *en, the
results of the UIoT-based evolutionary LSTM network and
several comparison methods will be given based on the
simulated data.

*e widely used CEC′2013 standard set of benchmark
functions is adopted to evaluate the performance of the EEC-
DE algorithm. Four of them are chosen to evaluate the
search ability of the algorithm, namely Ackley’s function,
Beale’s function, Rastrigin’s function, and Levi’s function.
All of these benchmark functions are transferred into
maximization optimization problems. *e differential evo-
lution (DE), the Genetic algorithm (GA), the particle swarm
optimization (PSO), and the Imperialist Competitive Al-
gorithm (ICA) are deployed as competitors. In order to
compete fairly, the overall population size Np of all algo-
rithms is set to 60, and the iteration termination criteria G is
60 [19]. For EEC-DE, F is a random number in [0.5, 1],
η � 0.95, μ � 100. As for other comparison algorithms,
parameter setting refer to [20–22]. All the experiments were
run independently for 1000 times.*e best score obtained so
far is defined as the difference between the objective function

value of the best individual in the current iteration and the
global optimal value. *e average convergence curve is
shown in Figures 2–5, and the average running time (s) is
shown in Table 2.

It can be concluded from the results that the proposed
EEC-DE algorithm outperforms all the other algorithms,
especially when dealing with multimodal problems such as
Rastrigin’s function and Ackley’s function; it has achieved
superior results, and other algorithms may get stacked into
the local optima. *is superiority comes from the EEC
schema, which enables the algorithm to switch between
exploration and exploitation modes flexibly. By combining
the advantages of several mutation operators, the algorithm
is universally applicable to complex problems.

By comparing the average computing time, the proposed
EEC-DE algorithm does not show the advantage in speed
when dealing with benchmark functions. However, for the
evolving networks problem we focus on, the searching
ability of the algorithm is the most important because most
of the computation is generated by the training and vali-
dation process of the networks in the evolution process.

After testing on several classical benchmark functions,
the powerful and efficient searchability of the EEC-DE al-
gorithm is proved. Now it will be applied to evolving LSTM
networks to realize the identification based on the UIoT.

We compare the performance of the EEC-DE-based
evolving LSTM networks with other methods. *e recog-
nition methods used in the experiments are as follows:
Evolutionary LSTM network based on DE, PSO, GA, and
ICA. Each experiment employs the following settings to
ensure fair comparisons: c1 � 0.01, c2 � 0.001; these mul-
tiplier parameters are given small values, so that the rec-
ognition accuracy is established as the main component of
the objective function value, and the number of hidden
nodes is limited, and the batch size is prevented from being
too small. Population size is 60, maximum number of it-
erations is 100, a total of 20 epochs are used in the training
phase to allow the network to make 20 passes through the
data [23], and an ADAM solver is applied to the training,
validating and testing process, *e search range of each
hyperparameter is shown in Table 3.

EEC-DE algorithm

Simulation data

Train set

Validation set

Data-preprocessing LSTM
networks

Measured data Data-preprocessing Evolved LSTM
networks

Optimized hyperparamters

Classification and
recognition results

Figure 1: *e overall framework of intelligent marine target recognition.
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*e box plot of the recognition accuracy is shown in
Figure 6. On each box, the result comes from 10 independent
runs, and the central red mark indicates the median of the
accuracy, and the top and bottom edges of the box represent
the 75th and 25th percentiles of the accuracy respectively.

*e specific statistics of the results are shown in Table 4.
We can draw the conclusion that the proposed EEC-DE-
based evolutionary LSTM outperforms other competitors by
comparing the accuracy, especially based on the comparison
of the average accuracy, which indicates that a more suitable
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Figure 2: Comparison of convergence curves obtained in Ackley’s function.
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hyperparameter setting is obtained by the optimization
process, which also shows that the searchability of the al-
gorithm has been enhanced by the EEC scheme from an-
other perspective. Furthermore, it can be concluded from
the variance that the proposed method is more reliable.

*e average hyperparameters obtained from 10 inde-
pendent runs are shown in Table 5. It is worth mentioning
that while ensuring high classification accuracy, the pro-
posed evolutionary LSTM network based on EEC-DE
choose a more suitable way that enables the LSTM networks
to analyse time-series data more efficiently and avoid
overfitting [24], while other methods are more prone to
falling into local optima and leading to poor results.

5. Conclusions

In recent times, the inefficiency and the long response time
of current UIoT systems, as well as the limited computing
power of the underwater embedded device, still represent
key issues that prevents UIoTdevices and architectures from
being an appreciable and effective solution of the underwater
marine target recognition and intrusion detection. *is
article proposes an UIoT-based intelligent marine target
recognition method, in order to take advantage of the
combination of edge computing and cloud computing. An
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Figure 5: Comparison of convergence curves obtained in Levi’s function.

Table 2: Average running time (s).

Function EEC-DE DE GA PSO ICA
Ackley’s function 1.036E-01 1.011E-01 4.532E-02 1.835E-02 1.047E-01
Beale’s function 9.954E-02 9.876E-02 4.347E-02 1.969E-02 4.465E-02
Rastrigin’s function 1.027E-01 9.965E-02 4.177E-02 2.029E-02 6.348E-02
Levi’s function 1.032E-01 1.001E-01 4.189E-02 1.922E-02 6.200E-02

Table 3: *e search range of the hyperparameters.

Optimized hyperparameters Range
Number of hidden nodes [10, 100]
Batch size [10, 1000]
Learning rate [0.01, 0.5]

Table 4: *e statistics of the recognition result.

Statistics EEC-DE DE GA PSO ICA
Average 97.4 95.8 95.8 94.6 96.4
Maximum 98.6 96.9 97.6 95.8 98.5
Minimum 96.7 94.2 93.5 92.5 94.3
Median 97.3 95.9 95.8 94.7 96.5
Variance 0.36 0.65 1.53 0.94 1.18

Table 5: *e mean configurations of the optimized LSTM
networks.

Configurations EEC-DE DE GA PSO ICA
Hidden nodes 35 42 28 29 16
Batch size 115 129 342 155 255
Learn rate 0.195 0.016 0.083 0.177 0.109
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Figure 6: Box plot of the recognition accuracy.
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UIoT system consisting of underwater nodes, surface ships,
and seashore-based control centre is designed, and all of
these components are connected through the network to
perform identification and recognition tasks more effi-
ciently. And an EEC-DE algorithm is proposed for evolving
the hyperparameters automatically in LSTM networks.

*e recognition accuracy of the low-power classifiers
around the signal acquisition devices is improved, and the
complex optimization process which consisting of alter-
nating training and validating will be transferred to the high-
performance computing device located on the land, so the
advantages of cloud computing and the instantaneity of edge
computing are combined. *e improvement of recognition
ability benefits from the effective searching algorithm. In
contrast to the existing differential class algorithms or
evolutionary methods, the proposed EEC-DE algorithm
could switch between the exploration and exploitation
search in an adaptive and flexible manner, and the algorithm
can converge to the global optimum and escape from local
optimum.

*e experimental results show that the method proposed
in this article can adjust the hyperparameters of the LSTM
networks dynamically, avoid underfitting, or overfitting
problems, so as to obtain better performance than the default
LSTM networks or other baseline methods, and improve the
recognition accuracy while reducing the computational
burden of the devices.

For future research, we will attempt to design more
efficient UIoT schemes to achieve better performance and
enable them to widely applied in ocean activities. We will
also design novel control and search mechanisms to better
achieve the balance between the local search and global
convergence for evolving neural networks, which have been
demonstrated to be powerful tools for solving a large
amount of time series analysis problems such as pattern
recognition, time-series forecasting and sequence
regression.
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