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To realize the economical consumption of wind energy (WE), an optimal dispatch strategy for wind-thermal-energy storage
systems (WTESSs) is proposed.Te scheduling model is divided into two stages. In the frst stage, the strategy aims to shave peaks
and fll valleys in the load curve using a time-of-use (TOU) electricity price and to reduce the variance of the net load and use the
energy time-shift characteristics of energy storage systems (ESSs) to optimize their charging and discharging power. In the second
stage, the strategy minimizes the cost of WTESSs, obtaining the output power of the thermal power units (TPUs) in each period.
Considering the actual need for carbon reduction, a method for calculating the TPUs’ life loss cost under diferent variable load
amplitudes is introduced, and a thermal power peaking cost model considering the ladder-type carbon trading model is
constructed to calculate the cost accurately. In addition, to account for the fact that connecting all wind power outputs to the grid
will signifcantly increase the grid peak regulation pressure and operational risk, a mathematical model for WE utilization is
established to fnd the optimal power value for wind power grid connection in each period, which enables economical and
practical WE scheduling. According to the simulation results, the overall peak-shaving cost of the system can be reduced by up to
23.95%, and the thermal power deep peak regulation cost can be reduced by up to 90.06%.

1. Introduction

With the exacerbation of energy scarcity and the greenhouse
efect, action to reduce pollution and carbon emissions is
urgently needed [1]. A global consensus has been reached to
accelerate the transition to green energy and sustainable
development [2]. According to the Global Wind Energy
Report 2022 from the Global Wind Energy Council, a
557GW increase in global wind power is expected over the
period 2022–2026, with a compound annual growth rate of
6.6% [3]. With the rapid development of the sector, wind
energy (WE) has emerged as a key energy source on a global
scale [4]. Realizing the low-carbon economic potential of
WE is a current research focus [5, 6].

WE grid connection should be planned in view of
comprehensive social costs, such as the corresponding

peaking cost and carbon emission cost [7, 8]. Many countries
use WE wisely: generally, the United States and certain
European nations do not use all of their available WE [9].
For example, the rate of WE curtailment is approximately
5% in the United Kingdom and Ireland [10]. In some parts of
Germany, wind power generators and electricity distribution
companies accept reasonable levels ofWE curtailment under
transparent conditions, such as including wind curtailment
clauses in grid-connection agreements or power-purchase
contracts and allowing 1%–5% of wind power to be curtailed
[11, 12]. Tese countries support a green and low-carbon
transformation of the energy structure at the lowest possible
cost and do not see the full grid-integrated accommodation
of WE consumption as a development goal.

Numerous studies have shown that the outputs of WE
generators are random, erratic, and have evident antipeak-
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shaving characteristics [13, 14]. If WE is fully incorporated
into the power system indiscriminately, the safety, stability,
and economics of grid operation will encounter signifcant
obstacles [15]. According to statistics from the China State
Grid Energy Research Institute, a “low peak power ratio” is a
hallmark of many Chinese provinces’ WE power-generating
outputs. Not using a portion of the peak power can con-
siderably lower the system pressure without greatly
impairing the annual output of new energy sources [16].
Terefore, appropriately curtailing a certain amount of wind
power under certain conditions, that is, when WE is
abundant and the load demand is low, can improve the
fexibility of power grid dispatch, which is an important
measure of the economical consumption of WE [17, 18].

Bird et al. [19] made a review of international expe-
rience in the curtailment of wind and solar energy on bulk
power systems in recent years, in which it is shown that
curtailment can help mitigate excess generation and pro-
vide ancillary services. Xu et al. [20] adopted the safety-
constrained economic dispatch model, introduced a sec-
tional penalty factor for wind power curtailment, priori-
tized wind power consumption, and curtailed wind from
each wind farm in a rational manner according to a pre-
established wind power curtailment principle. Wang et al.
[21] conducted a large-scale analysis of the history of wind
power output and presented a theoretical research method
for the rational use of high-power wind output under low
loads. Y. B. Wang [22] explored the problem of the rational
curtailment of new energy and found a balance between the
cost and beneft of new energy consumption. Using the
GESP power planning software, the study took China’s
major regional power grids as an example and calculated a
rational energy curtailment rate of 3%–10% for 2020.
Golden and Paulos [23] provided a detailed explanation of
the potential positive and negative impacts of curtailment,
proposing a policy that can be used to blaze a trail to a low-
carbon future through greater use of renewable electricity
in California.

Termal power units (TPUs) still make up a large
percentage of the energy structure in northern China [24].
Although large-scale wind power integration can minimize
CO2 emissions, it can also push TPUs away from their ideal
economic operating point [25]. Demand response (DR)
dispatching enables a high level of fexibility according to
studies in several countries. DR dispatching can be used to
explore potential interactions between various user loads
[26], and it also diminishes the load peak-to-valley diference
[27], which efectively enhances load-side adaptability. A
review of the literature reveals the importance of DR dis-
patching in promoting the accommodation of new energy
[28]. DR dispatching can also be used as an incentive
mechanism on the user side to promote the rational allo-
cation of resources on the source and load sides [29].

Additionally, energy storage systems (ESSs) have an
essential regulatory impact on the source, grid, and load
sides [30] due to their efective charging and discharging
characteristics, which enable rapid power regulation [31].
Terefore, the combined use of DR dispatching and ESSs as
peak-shaving resources in power system scheduling is often

considered, as it can efectively enhance the economic
benefts of TP operation and stabilize the power system.

Te use of ESSs and DR dispatching for multisource joint
optimal scheduling is an efective measure to alleviate the
difculty of peak regulation for new energy-connected grids.
Hamidpour et al. [32] made disruptive changes to the
existing power system structures and procedures of wind
farms and ESSs and took into account demand-side fexi-
bility requirements. Hosseini Imani et al. [33] analyzed the
efect of running the TOU response program and used ESS
units to compensate for the stochastic nature of WE gen-
eration. MohammadGholiha et al. [34] used DR dispatching
and an ESS to alleviate the uncertainties in wind power and
electrical load and formulated a two-stage stochastic pro-
gramming model for optimal reserve determination. In
reference [35], novel DR applications were modeled to
quantify additional reductions in the curtailed WE, and
various combinations of ESS and DR dispatching were
considered to investigate their impacts on further reducing
wind curtailment. Jamali et al. [36] used ESSs and DR
dispatching and proposed a stochastic bidding strategy
based on virtual power plants to increase the proft of virtual
power plants in short-term electricity markets.

Building on the multiobjective optimization and com-
prehensive decision-making two-stage model proposed in
[37], combined with the day-ahead energy trading two-stage
model proposed in [38], this study establishes a two-stage
optimal scheduling model. Te model emphasizes the ef-
fective utilization of two peak-shaving resources: DR dis-
patching and ESSs. Te frst-stage model takes as input the
adjusted load curve after accounting for the time-of-use
(TOU) electricity price, and the optimal wind power-con-
nected grid is obtained on this foundation by combining it
with an ESS. Te main function of the ESS is minimizing
changes in the grid’s net load. Te optimal output power of
the TPU is obtained in the second stage of the decision, and
the wind-thermal-energy storage systems (WTESSs) cost is
minimized. By comparing the simulated operations under
various conditions, the viability and efcacy of this tech-
nique are proven, and the low-carbon economic regulation
of wind power is achieved.

Tis study makes two main contributions:

(1) Teoretical contribution: Tis study dispenses with
the traditional assumption of full grid connection of
wind power, focusing on the consumption of total
wind power rather than that of the grid-connected
WE at any single moment. A model of the WE
utilization rate at each time point is constructed, and
the impact of the rational dispatch of wind power on
the overall economic beneft of the power system is
explored. Tis enables the active deployment of
fexible resources in the power system, the design of a
two-stage optimum scheduling model for WTESSs
in the setting of a low-carbon economy, and the
defnition of a TPU deep peak regulation (DPR) cost
function.

(2) Practical contribution: A workable methodology for
dispatching WE is advanced that combines power
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grid safety, cost-efectiveness, and environmental
preservation. Tis methodology is benefcial for WE
scheduling by bringing the dispatching of power
system security into consideration, thus bolstering
the health and long-term growth of the WE market.

2. Methodology

2.1. DR Model Based on TOU

2.1.1. Load Change Rate considering Load Characteristic
Classifcation. User loads can vary depending on the price
signal and can be simply classifed as reduced loads and
transfer loads. Taking into account load characteristics, the
users’ peak period power consumption following the ap-
plication of the TOU electricity price can be stated by the
following two sets of equations:

Q
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f � Q

0
f −ΔQf � Q

0
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(1)

where Q1/f and Q0/f denote the loads during the peak
period before and after the TOU, respectively; ΔQf repre-
sents the load variation after the TOU; ΔQred/f and
ΔQtrans/f represent the load reduction and load trans-
formation during the peak period after TOU, respectively;
ϕred/f is the load reduction rate at the peak period;
ΔQtrans/fp and ϕtrans/fp are the load transfer quantity
and rate from the peak period to the fat period, respectively;
ΔQtrans/fg and ϕtrans/fg denote the load transfer quantity
and rate from the peak period to the valley period,
respectively.
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(2)

where Q0/t and Q1/t are the electricity quantities in period t
after the TOU, respectively; εtt and εtr are the self-elasticity
and cross-elasticity, respectively (a rise in electricity prices
will result in a drop in electricity during this period and an
increase during other periods, so usually εtt < 0 and εtr > 0);
ΔQt and ΔDt are the change in electricity quantity and price
in period t before and after the TOU, respectively; ΔDr is the
change in electricity price in period r before and after the
TOU; T is the scheduling period, which is 24 h; D0/t is the
electricity price in period t before the TOU; D0/r is the
electricity price in period r before the TOU.

Let ϕt denote the change in the load rate in period t after
the TOU; then,

ϕt � ϕredt + ϕtranst � εtt
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D
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+ 􏽘
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D
0
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, (3)

where ϕred/t and ϕtrans/t are the load reduction rate and
transfer rate in period t, respectively.

2.1.2. Load Response Model. Load reduction and load
transfer rates are employed to appropriately represent the
users’ reaction to the TOU and the load characteristics of the
peak, fat, and valley periods. Te price of power during the
fat period is denoted by Qt/0, and the peak-to-fat and valley-
to-fat electricity price foating ratios are written as follows:
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,
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(4)

where Kf represents the fuctuating ratio of the electricity
price from the peak period to the fat period; Kg represents
the fuctuating ratio of the electricity price from the valley
period to the fat period; Df, Dp, and Dg represent the
electricity prices during the peak, fat, and valley periods,
respectively.

Te load reduction rate and transfer rate of the users at
any time are represented as follows when the defnitions of
(2) and (3) are combined.

ϕff � Kfεtt ∀t ∈ Tf,

ϕpp � 0∀t ∈ Tp,

ϕgg � Kgεtt ∀t ∈ Tg,
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(5)

where ϕff, ϕpp, and ϕgg are the load decrease rates during
the peak, fat, and valley periods, respectively (because
Kf > 0, Kp � 0, Kg < 0, we usually have ϕff < 0,ϕpp < 0,

ϕgg < 0); ϕfp, ϕfg, and ϕpg are the load transfer rates during
the peak-to-fat, peak-to-valley, and fat-to-valley periods,
respectively.

Finally, the load response model that takes into account
the mechanism of action of the TOU is as follows:
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(6)

2.2. Peak-Shaving Model for TPU considering LCT

2.2.1. DPR Process of TPU. Pmax is the TPU’s maximum
output; Pmin is its minimum output under regular peak
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regulation (RPR); Pndo is its minimum output under DPR;
Pdo is its minimum output under deep peak regulation with
oil (DPRO), as shown in Figure 1.

2.2.2. LCT Model. To control carbon emissions, a carbon
trading scheme is established. Each carbon emission source
has a certain amount of carbon emission allowances,
according to which producers arrange their production. If
producers emit less carbon than the corresponding allow-
ances, the remaining allowances can be sold through the
carbon trading market, whereas if they exceed the corre-
sponding allowances, additional allowances must be

purchased. To solve the problems of the traditional carbon
trading pricing mechanism, which has only a weak efect on
carbon emissions, the LCTpricing mechanism is adopted, in
which the carbon emission price varies with the distribution
of additional carbon emission rights that producers need to
purchase.

(1) Initial Carbon Emission Quota

Efree � ψfree 􏽘

T

t�1
􏽘

NG

i�1
P
unit
i,t , (7)

where Efree is the TPUs’ total allowance for carbon emis-
sions; ψfree is the allowable amount of carbon emissions per
unit of energy used; NG is the total number of TPUs;
Punit/i, t is the output value of TPUs in period t.

(2) Actual Carbon Emissions
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where ECO2
are the total real carbon emissions from all

TPUs; β2i, β1i, and β0i are the variables used to calculate each
TPU’s carbon emissions.

(3) Carbon Trading Cost
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, (9)

where CCO2
denotes the carbon trading cost; b denotes the

carbon trading base price; δ denotes the price growth rate; l

denotes the carbon emission range.

2.3. DPR Cost Model for TPUs considering LCT

(1) Under usual circumstances, the TPU operates in the
RPR. During that time, Ccoal represents the peak-
shaving cost. TPUs generate signifcant carbon
emissions. Te peak-shaving cost of Cunit1, taking
LCT into account, is calculated as follows:

Cunit1 � Ccoal + CCO2
,

Ccoal � 􏽘
T

t�1
􏽘

NG

i�1
α2i P

unit
i,t􏼐 􏼑

2
+ α1iP

unit
i,t + α0i.

(10)

Here, α2i, α1i, and α0i are the coal consumption cost
coefcients associated with TPU i.

(2) Te TPUs must lower their output and transition into
the DPR stage when additional energy is incorporated
into the grid on a considerable scale, especially during
the low load time at night. When a TPU’s output is
between Pmin and the Pndo, the rotor metal experi-
ences alternating stress that causes low-cycle fatigue
loss, which raises the TPU loss cost Cunit2:

Cunit2 � δuniti Sunit−price. (11)

Here, δ(unit/i) is the life loss rate of the TPU.
(3) More fuel will be required to keep the boiler burning

steady if the grid-integrated capacity of new energy
sources grows while the TPU is running at a low

RPR

DPR

DPRO

Pmax

Pmin

Pndo

Pdo

0

Deep Peak Regulation

Figure 1: Schematic diagram of TPU operates in RPR, DPR, and
DPRO.
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load. As a result, the TPU incurs increased oil costs,
entering DPRO. Te following equation is derived.

Cunit3 � QoilSoil−price, (12)

where Soil−price is the oil price; Qoil is the oil consumption in
DPRO.

To summarize, the following is an expression for the
peak-shaving cost of TPUs:

Cunit �

Cunit1, Pmin <P≤Pmax,

Cunit1 + Cunit2, Pndo <P≤Pmin,

Cunit1 + Cunit2 + Cunit3, Pdo ≤P≤Pndo.

⎧⎪⎪⎨

⎪⎪⎩
(13)

Given that Cunit is a discontinuous function, (11) is
transformed into a continuous function in the form of linear
constraints using Boolean variables:

Cunit � Cunit1 + XbtyCunit2 + YtyCunit3,

Xbty �
0, Pmin <P≤Pmax,

1, Pndo <P≤Pmin,
􏼨

Yty �
0, Pndo <P≤Pmin,

1, Pdo ≤P≤Pndo,
􏼨

(14)

where Xbty and Yty are the Boolean variables corresponding
to the life loss cost and the oil cost, respectively.

2.4. Two-Stage Optimal Scheduling Model. Having estab-
lished the above basic model, a two-stage optimal scheduling
model of the WESS is constructed; its structure is shown in
Figure 2. Te open-source solver CPLEX [39], developed by
IBM, is used to represent complex economic problems as
mathematical programming models. It is based on a fusion of
the branch-cut plane method, interior point method, and
other methods such as preprocessing and heuristics to enable
rapid solutions to these problems. Te scheduling model in
this study is a mixed integer quadratic model designed to
transform the practical problem of economical wind power
dispatch into a mathematical model for solving the utilization
rate of each time period, for which CPLEX is highly suitable.

2.4.1. First-Stage Model

(1) Objective Function. In the frst stage, with consideration of
the TOUandESS, the grid-connectedwind power and the ESS’s
charge–discharge power is optimized with the aim of reducing
the variance in the net load, while satisfying the corresponding
restrictions.Te following objective function intends to enhance
the valley load and cut peak load, lessen the net load fuctuation,
and avoid frequent output adjustments for TPUs.

minA �
1
T
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2
,
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T
,

⎧⎪⎪⎪⎨
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(15)

where A is the variance in the grid’s net load; Lnet,t is the net
load value in period t; Lnet,ave is the average value of the net
load during the whole dispatch period; Q1/t is the load value
after the TOU; λuse/w, t is the rate at which WE is used in
period t(0≤ λuse/w, t≤ 1); Ptot/w, t represents the wind
farm’s output power value; Pcha/es, t and Pdis/es, t repre-
sent the charging and discharging power values, respectively;
ηcha/es and ηdis/es indicate the charge and discharge ef-
fciencies of the ESS, respectively.

(2) Constraints

(1) Wind power output constraints
Te grid-connected wind power in each period is less
than the actual output power of the wind farm

0≤P
tot
w,t ≤P

max
w,t . (16)

Here, Pmax/w, t indicates the greatest output of the
wind farm during period t.

(2) WE utilization constraints
To avoid a large amount of wind curtailment due to
the minimization of the net load variance under the
optimized solution, a minimum utilization rate of
WE is stipulated

􏽐
T
t�1 λ

use
w,tP

tot
w,t

􏽐
T
t�1 P

tot
w,t

≥Rw,min. (17)

Here, Rw,min is the minimal total WE utilization.
(3) Charge and discharge power constraints

0≤P
cha
es,t ≤P

cha
es,max,

0≤P
dis
es,t ≤P

dis
es,max.

(18)

Here, Pcha
es,t and Pdis

es,max denote the maximum charge
and discharge powers of the ESS, respectively.

(4) Charge and discharge logic state constraints

I
cha
es,t + I

dis
es,t ≤ 1,

Wes,t + Wes,t−1􏼐 􏼑 − I
cha
es,t + I

dis
es,t � 0.

(19)

Here, Icha/es, t and Idis/es, t are binary variables
used to transition between the charging state and the
discharging state of the ESS, respectively (the ESS
enters the charging state in period t when
Icha/es, t � 1, signaling that it is going to be charged;
the ESS switches from the charging state to the
discharging state in period t when Idis/es, t � 1,
indicating that it is going to be discharged). Wes,t and
Wes,t−1 represent the charging and discharging states
of the ESS in period t and period t−1, respectively.
(When the value is 1, the ESS is charging, and when
the value is 0, the ESS is discharging.)

(5) State-of-charge (SOC) constraints

To ensure the sustainability of the ESS participating in
the scheduling operation, SOC constraints need to be added.
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Soc,min ≤ Soc,t ≤ Soc,max,

Soc � Soc,t−1 +
Wes,tΔTη

cha
es P

cha
es,t

C
cap
es

−
1 − Wes,t􏼐 􏼑ΔTP

dis
es,t

ηdis
es C

cap
es

,

(20)

where Soc,t is the SOC for the ESS in period t; Soc,max is the
maximum SOC; Soc,min is the minimum SOC; Ccap/es is the
ESS’s capacity.

2.4.2. Second-Stage Model

(1) Objective Function.Te second stage determines the optimal
outputs of the TPUs by satisfying various operation constraints,
together with the net load curve that is inherited from the frst
stage. Minimizing the peak cost of the WESS is the objective of
the second-stage model, and the solution indicates how eco-
nomical the power system is. Te objective solution accounts for
the costs of wind power operation andmaintenance, wind power
curtailment, peak-shaving of thermal power plants, and peak-
shaving of the ESS. Te following is the formula:

minB � Cwyw + Cwqf + Cunit + Ces1 + Ces2 + Ces3. (21)

(1) Wind power operation and maintenance costs

Cwyw � αwywPw,t. (22)

Here, αwyw is the wind power operation coefcient.
(2) Wind curtailment penalty

Cwqf � αwqf P
tot
w,t − Pw,t􏼐 􏼑. (23)

Here, αwqf is the wind curtailment penalty coefcient.
(3) Charging and discharging cost of the ESS

Ces1 � 􏽘

T

t�1
P
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es,t + P

dis
es,t􏼐 􏼑Spower−price. (24)

Here, Spower−price represents the charge and discharge
cost per unit power of the ESS.

(4) Life loss cost of the ESS

Ces2 �
Sbuild−price

Ocir
􏽘

T

t�1

I
cha
es,t + I

dis
es,t

2
⎛⎝ ⎞⎠. (25)

Here, Sbuild−price is the ESS’s construction cost; Ocir is
the ESS’s cycle life.
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Figure 2: Te schematic diagram of the two-stage optimal scheduling model.
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(5) Additional environmental costs of the ESS

Ces3 � 􏽘
T

t�1
ηdis

es P
dis
es,tμpollSpoll−price, (26)

where μpoll is the emission density of ESS-emitted pollutants;
Spoll−price is the unit emission cost of pollutants (the pol-
lutants referred to in this paper are SO2 and NOx).

(2) Constraints

(1) Constraints on the system’s power balance
When excluding the system network loss, the real-time
load is equal to the total output power of TPUs and
WE and the charge and discharge power of the ESS

􏽘

NG

i�1
P
unit
i,t + λusew,tP

tot
w,t + Pes,t � Q

1
t . (27)

(2) TPU output constraints
P
unit
i,min ≤P

unit
i,t ≤P

unit
i,max. (28)

Here, Punit/i, max is the maximum output of TPU i;
Punit/i, min is the minimum output of TPU i.

(3) TPU climbing constraints

P
unit
i,t − P

unit
i,t−1 ≤ΔP

unit
i,up,

P
unit
i,t−1 − P

unit
i,t ≤ΔP

unit
i,down.

⎧⎪⎨

⎪⎩
(29)

Here, ΔPunit/i, up denotes the TPU’s capacity to
ascend to its upper limit, and ΔPunit/i, down de-
notes its ability to drop to its lower limit.

(4) Line transmission capacity constraints

0≤Pline,t ≤P
max
line,t, (30)

Where Pline,t is the line’s transmission power in period t;
Pmax/line, t is the line’s maximum transmission capacity in
period t.

3. Results and Discussion

3.1. Simulation Parameters. Specifc parameters for the
TPUs are shown in Table 1. Te load characteristic data are
referenced from Ref. [45]; the wind power forecast data are
referenced from Ref. [46], and Figure 3 depicts the cate-
gorized user load curve and wind power output curve.

Other relevant parameters are as follows:

(1) Because there are signifcant diferences in the degree
to which various users participate in the TOU, the
elasticity coefcient, and the division of peak, fat,
and valley periods, this study classifes users into
industrial, commercial, and residential users. Table 2
itemizes the peak, fat, Table 3 and valley periods for
the three diferent user groups as well as the peak-to-
valley price variations in relation to the initial price
of power and the corresponding price elasticity
coefcients. (Te electricity price is expressed in

CNY/kWh and remains constant during the fat
period, rises during the peak period, and falls during
the valley period.) Additionally, it is assumed that
20% of commercial and residential users and 50% of
industrial users engage in the TOU.

(2) Te minimum output values of coal-fred power
units in RPR, DPR, and DPRO are 50%, 40%, and
30% of the unit capacity, respectively. Te rotor
boiler is a typical material of 30Cr2MoV steel and
displays the life loss rate of a coal-fred power unit
under various load fuctuations.

(3) Te cost of the unit capacity of a coal-fred power unit
is 3,464,000 CNY/MW; the unit price of coal is 500
CNY/t; the carbon emission allowance per unit power
consumption of TPUs is 759.8 kg/(MWh); the base
price of carbon trading is 250 CNY/t; the price growth
rate is 25%; the fuel consumption of TPUs in DPRO is
4.8 t/h; and the unit price of oil is 6,130 CNY/t.

(4) ESS parameters: the capacity is 400MW, the initial
state of charge is 0.1, the upper limit of the SOC is 0.9,
and the lower limit of the SOC is 0.1; the charge and
discharge efciency are both 0.9.

(5) Parameters of the additional environmental cost of
the ESS: the emission densities of SO2 and NOx are
1.8 kg/(MWh) and 1.6 kg/(MWh), respectively, and
their unit emission costs are 14.842 CNY/kg and
62.964 CNY/kg, respectively. Trough conversion,
the pollutant emission price corresponding to each
MWh of electricity is 127.5 CNY.

3.2. Results

3.2.1. TOUOptimization Results. Te load curves before and
after the TOU for industrial, commercial, and residential
users can be seen in Figure 4. Industrial customers have
more fexibility and adaptability in power consumption, so
the peak-shaving and valley-flling impacts are more visible
for these customers. Commercial and residential customers
have more fxed power consumption times and a lower
proportion of users that respond to the changes. Terefore,
the infuence of TOU on peak-shaving and valley-flling is
not as large as that of industrial users.

3.2.2. Analysis of Optimization Results. Te total load curve
prior to and following TOU, the net load curve prior to and
following the frst stage of model optimization, the wind
power integrated into the power grid curve, and the WE
utilization rate throughout all periods can be seen in Fig-
ure 5.Te peak-to-valley diference of the entire load curve is
965.1MW, which is 251.65MW less than that before the
TOU. Tis diference permits additional space for wind
power grid connection. Te graph illustrates that wind
curtailment does not occur except at 1 : 00, 2 : 00, 4 : 00, and
24 : 00, and the wind energy consumption rate is 100% at all
other times. By combining the wind power output curve and
the load characteristic curve, it can be observed that wind
curtailment is maximized at times of low load and large wind
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power output, and the lowest WE utilization rate is 27.44%.
Te outcome is closely related to the frst-stage model’s
target function and the antipeaking properties of wind
power itself. Furthermore, the largest peak-to-valley dif-
ference of the net load curve before optimization is only
720.67MW, but after optimization, it is 1370.46MW
(without including the TOU, ESS, and WE use). Tis

demonstrates that the proposed scheduling method signif-
icantly reduces load variance and peak control costs.

Te charging power, discharging power, and SOC of the
ESS for each period are illustrated in Figure 6, showing that
the SOC of the ESS always remains within the limiting range.
Te ESS has a peak-shaving power of 467.95MW. As wind
power outputs are low at the six load peak hours of 10 : 00,
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Figure 3: Prediction curves of classifed user loads and wind power outputs.

Table 1: Parameters of the thermal power unit.

Capacity of thermal power unit
Fuel cost factor Climb slope

rate (MW/h)
Carbon cost factor

α2i (CNY) α1i (CNY/MW) α0i (CNY/MW2) β2i (t) β1i (t/MW) β0i (t/MW2)
600MW 0.006 98.607 4093.557 300 29.04 0.68 0.00016
300MW 0.047 82.936 5716.897 150 15.8 0.788 0.0000937
300MW 0.047 82.936 5716.897 150 15.8 0.788 0.0000937
200MW 0.401 102.607 1454.864 100 10.81 0.863 0.000121
100MW 1.156 115.640 2327.998 50 3.82 0.9 0.000246
50MW 4.130 66.080 2091.432 25 0.75 0.9121 0.0002814

Table 2: TOU correlation coefcients of classifed users.

Type of users
Time period Before

TOU Fluctuation in price
After TOU Self-

elasticity
Cross-elasticity

Peak Flat Valley Peak Flat Valley P-F P-V F-V

Industrial users 7–14 5–6, 15–21 1–4,
22–24 0.64 Up 53%, down 41% 0.98 0.64 0.30 −0.38 0.03 0.03 0.03

Commercial
users

10–14,
18–20

7–9, 15–17,
21-22

1–6,
23–24 0.8 Up 53%, down 41% 1.22 0.8 0.38 −0.12 0.02 0.02 0.02

Residential
users

13–14,
19–23

7–12, 15-16,
18

1–6, 17,
24 0.55 Up 50%, down 50% 0.84 0.55 0.26 −0.2 0.02 0.04 0.02

Table 3: Life loss rate of a coal-fred power unit under diferent variable load amplitudes.

Variable load amplitude 5% 15% 20% 30% 45% 50% 55% 60% 65% 70% 75% 80%
Life loss rate (10−4) 0.02 0.04 0.05 0.06 0.08 0.1 0.13 0.16 0.17 0.19 0.2 0.24
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11 : 00, 12 : 00, 13 : 00, 21 : 00, and 22 : 00, the ESS is dis-
charged to share peak-shaving pressure with the coal-fred
power units at these times. Te power of the ESS at valley-
flling is 577.71MW. During the seven load peak hours of 1 :
00, 2 : 00, 3 : 00, 5 : 00, 17 : 00, 18 : 00, and 24 : 00, the ESS is
charged to absorb the excess energy generated by the coal-
fred power units, reducing the frequency with which coal-
fred power units enter DPR and DPRO.

Te outputs of the TPUs after optimization at each time
period are depicted in Figure 7. Te outputs of the three
smaller TPUs, units 4, 5, and 6, remain relatively stable
during the scheduling period. Units 4 and 6 work in RPR and
simply produce the associated coal consumption costs.
Consequently, unit 5 runs most often in DPR. Due to their
enormous capacities, units 1, 2, and 3 handle the majority of

the peak-shaving work. As the net load curve’s fuctuation
range has been greatly reduced and the units’ peak-shaving
efciency has been strengthened, it is notable that none of
the thermal units need to enter DPRO.

3.2.3. Comparative Analysis of Diferent Scenarios. Four
scenarios are established to verify the validity of the pro-
posed model.

Scenario 1: Considering TOU, ESS, and WE utilization.
(Te model proposed in this study.)

Scenario 2: Considering ESS and WE utilization.
Scenario 3: Considering TOU and ESS, while the wind

power is fully integrated into the grid for consumption.
Scenario 4: Considering TOU and WE utilization.
Te load characteristic curves and wind power output

forecast curves applied in this research serve as the basis for
all four scenarios, and the frst and second stages of model
optimization have the same purposes as before. Figure 8
displays the net load curve optimization outcomes for each
scenario. Figure 9 displays the precise output of each TPU
per time period in scenarios 2, 3, and 4. All three peak-
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shaving measures (WE utilization rate, TOU, and ESSs) have
demonstrable smoothing impacts on the volatility of the net
load curve, which can facilitate the consistent adjustment of
TPUs’ output. Te peak-to-valley diference of the net load
can be reduced from 1 073.55MW to 720.67MW in the
TOU environment combined with the ESS if the WE uti-
lization rate is factored into the equation (scenario 1). Tis
markedly lowers the burden of peak regulation and assures
the electricity grid’s reliable and safe functioning.

With a unit of cost of 10,000 CNY, the calculated system
costs under various scenarios are displayed in Table 4.
Scenario 1 has the lowest peak-shaving cost (4.0253 million
CNY). Scenarios 2, 3, and 4 have peak-shaving costs that are
0.629 million, 1.2679 million, and 0.6594 million CNY
higher than that of scenario 1, respectively. Tese fndings
demonstrate that coordinated ESS usage and accounting for
the rate of WE usage in the TOU environment can signif-
icantly improve the economics of peak-shaving in the power
system. Te prices of coal consumption are similar in all
scenarios, and the large calculated decrease of the peak-to-
valley diference in the grid’s net load caused by optimizing
the grid-connected power of WE at all times is the main
contributor to the lower costs of the power system. Tis
reduces the net load peak-to-valley diference as well as the
frequency with which TPUs enter DPRO, signifcantly
cutting the cost of oil investment and the cost of TPU life
loss.Tis implies that, in contrast to the operational efects of
scenarios 1 and 3, the peak output of wind power should be
rationalized to ensure the secure and reliable operation of
the power system. Specifcally, WE utilization should be
planned on the basis of the need for low-carbon, economical
wind power consumption.

4. Conclusion

Te main contributions of this study include the following:

(1) It is verifed that rational wind power curtailment
can efectively improve the overall economy of the
power system, and new evidence for the economical
uptake of WE is presented.

(2) A mathematical model for solving the optimal grid-
connected wind power throughout the day is con-
structed. Compared with previous models, it has
greater signifcance for practical guidance on real-
izing the economical consumption of WE. Simulated
data vividly illustrate the favorable efect of rational
energy curtailment on the thermal power peaking
cost and grid net load fuctuation.

(3) Te results of the operational simulations show that
the peak-shaving cost of the strategy devised in this
study is 4,025,300 CNY. Compared with the
scheduling model in which wind power is completely
integrated into the grid, the overall costs are de-
creased by 1,267,900 CNY, the costs of carbon are
decreased by 207,200 CNY, and the costs of DPR for
TPUs are decreased by 1,100,800 CNY. Te overall
peak-shaving cost of the system can be reduced by up
to 23.95%, and the TPDPR cost can be reduced by up
to 90.06%.

To further explore the economical consumption of WE
and improve the safety and economy of the operation of new
power systems, future research could focus on the following:

(1) Incorporation of the wind power output forecast
error, which is not studied in this study. Tis would
enhance the practical signifcance of the proposed
method.

(2) Consideration of the infuence of the capacity con-
fguration of the ESS or other attributes on the
participation of wind power in optimal dispatch, as
the capacity of the ESS in this study is a fxed value
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