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Recently, increasing attention has been paid to nuclear power control with the appeals of clean energy and demands of power
regulation to integrate into the power grid. However, a nuclear power system is a discrete-time (DT) nonlinear and complicated
system, where the parameters entangle with intrinsic states. Furthermore, the need for huge computational ability due to the high-
level order property in the nuclear reactor model causes many di�culties in the power control of nuclear industries. In this study, a
new scheme of optimal tracking control for DTnonlinear nuclear power systems is provided to accomplish the power control of a
2500-MW pressurized water reactor (PWR) nuclear power plant. �e proposed approach based on the value iteration method is a
novel algorithm in the human intelligence community, which has a basic actor-critic structure with neural networks (NNs). �e
new approach has some modi�cations, where the cost function is rede�ned by leveraging the higher-order polynomial to
substitute neural networks in the entire actor critic architecture. Simulation results of the 2500-MWPWR nuclear power plant are
given to demonstrate the e�ectiveness of the developed method.

1. Introduction

Considering the issues of environmental deterioration, e.g.,
air pollution due to excessive fossil fuel consumption, it is
signi�cant that humans develop clean energy technology to
ease this situation. Nuclear energy is almost the most rapidly
developing clean power to provide power to the power grid.
However, currently adopted control strategies have prob-
lems such as the intrinsic nonlinearity of nuclear reactor
systems and varying parameters following the power level. In
fact, over decades of development for nuclear power in-
dustry technology and control policy, many outstanding
researchers have made excellent progress in this �eld.

Since the last century, one mature control strategy called
PID control policy has deeply a�ected the power control in
the nuclear industry [1, 2]. With the advancement in control
technology, some model predictive control (MPC) and
multimodel adaptive control theories focused on local lin-
earization to approximate the nonlinearity of nuclear power
systems and have also been applied in this area [3–5]. �e
control algorithm extensively applied in nuclear power
control is fuzzy control or its combinations with other
control theories to address di�erent demands. Wu leveraged
the parallel distribution compensation (PDC) method-based
T-S fuzzy control to restrict the nonlinearity of a nuclear
power system [6], and Eliasi designed an appropriate
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controller for the UTSG water level in nuclear power plants
using a fuzzy control policy and MPC algorithm [7]. Many
researchers have used different methods to tackle various
problems. For example, Gang employed a radial basis function
neural network (RBFN) to guarantee the correctness in
identifying the nuclear steam generator process dynamics [8].
Wang applied the adaptive control method and guaranteed a
cost control method in nuclear power control problems [9].

*e aforementioned approaches mostly relate to the
linearization procedure, which largely omits the numerical
error toward a nonlinear model.*e intrinsic nonlinearity of
the high-order nuclear model is ignored. To better satisfy the
demands of tracking control problems, it is necessary to
propose a new control strategy in this area. With the de-
velopment in the intelligent control community, researchers
are pursuing reinforcement learning (RL) algorithms to
solve nonlinear problems in practice. Adaptive dynamic
programming (ADP), which was proposed byWerbos, plays
an important role in reinforcement learning-based control
policy [10–13], and it is well known as a self-learning optimal
control policy. *e well-studied iteration method is the
policy iteration (PI) algorithm and value iteration (VI) al-
gorithm. Among the iteration methods, the value iteration
algorithm is one type of the most crucial iterative ADP
algorithms. It has been studied in many types of research
[14–16]. To find the optimal control policy of discrete-time
affine nonlinear systems, Al-Tamimi and Lewis used heu-
ristic dynamic programming (HDP) to fulfill the design
purpose [17]. Wei. Q. [18] proposed a new value iteration
method, which mainly focuses on optimal control for DT
nonlinear systems.*is study also provided detailed proof of
the iterative control policy and illustrated that the value
function was monotonically nondecreasing, which implies
that it will converge to the extremum.

To satisfy the demands of industrial systems, optimal
tracking control ADPmethods have been deeply investigated.
*ere are also ADP techniques [19–21] to obtain solutions of
optimal tracking problems with various system dynamics,
such as partially unknown system models or completely
unknown system models. Related optimal tracking control
techniques have been applied in many industrial plants in
recent years [22–26].

In this study, a value-iteration optimal tracking control
method is developed for DT nonlinear systems. *e main
contributions of this study are summarized as follows:

(1) Compared with the traditional control methods
dealing with DT nonlinear models of the 2500MW
pressurized water reactor (PWR) systems [1, 2, 4, 5],
a self-learning optimal tracking controller is
designed to satisfy complex nonlinear behaviors of
the 2500MW PWR nuclear system

(2) *e developed value-iteration method guarantees
the control law converges to a near-optimal control
solution and the admissibility of iterative control
laws is analyzed

In this study, our major work is to design an optimal
tracking controller for a 2500MWPWRnuclear power plant

by combining the properties of the value iteration and actor
critic algorithm. *e 2500-MW PWR nuclear power plant is
introduced in Section 2, and the discrete definition is given.
In Section 3, the details of this proposed algorithm are
thoroughly described. *e implementation of the proposed
method and simulation works are provided in Section 4.
Finally, the conclusions are drawn in Section 5.

2. Nonlinear 2500-MW PWR Nuclear
Power Plant

*e famous nuclear systemmodel is based onMann’s model
without xenon poisoning, which consists of a core full lump
and two coolant lumps. *e discrete version and its
transformation are also given in this section.

2.1. Nonlinear 2500-MW PWR Nuclear Power Plant. *is
fifth-order nonlinear PWRmodel includes the point kinetics
equations, six delayed neutron groups, two equations for the
lumped coolant outlet temperature and average fuel tem-
perature, and the reactive equation of the control rod
[27, 28]. Multiple sets of delayed neutron point reactor
dynamic equations are described as follows:
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To reduce the computational work caused by six
delayed neutron point reactor dynamic equations, the
simple method is to use single delayed neutron point ki-
netics equations to approximate multiple sets of delayed
neutron point reactor dynamic equations [29]. *us, the
entire PWR model is summarized as follows:
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where nr is the neutron density relative to the initial
equilibrium density, %, cr is the delay neutron density
relative to its initial equilibrium density, %, Tf is the average
fuel temperature, °C, Tl is the coolant temperature at the core
outlet, °C, ρr is reactivity contributed by the control rod
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movement, and Zr is the speed of the control rod. *e
remaining specifications are illustrated in Nomenclature
[30]. Te always approximates Te0 in the PWR model. *e
state nr can be described as a percentage factor of the full
power level, since the reactor power is expressed as
P(t) � P0anr.

In addition, five parameters vary with nr, which causes
severe instability of the nuclear reactor power model and
increases the control complexity. *e remaining parameters
and specific relation are shown in Tables 1 and 2. With the
lifting (lowering) load of the PWR model, the varying pa-
rameters will lead to a sharp difference in the solutions of the
dynamic model. *us, the model will be uncontrollable, and
the solutions of this dynamic model may become divergent.
Linearizing nuclear systems to realize various control goals
has been a commonmethod in traditional control policies in
the past few years. However, there should be a new approach
in nonlinear systems to solve these problems.

2.2. System Discretization and Transformation. *e optimal
tracking control problem can be considered minimizing the
real dynamic trajectory with the desired trajectory.
Depending on the model, we let x � [x1, x2, x3, x4, x5]

T;
thus, the control-oriented nuclear power system can be
defined as

_x � f(x) + g(x)u, (3)

where x1 � nr, x2 � cr, x3 � Tf, x4 � Tl, andx5 � ρr; thus,
f(x) and g(x) can be derived as
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As the above descriptions show, there is only one
controllable signal Zr, i.e., the speed of the control rod. We
let control variable u � Zr.

According to the definition, xk

.
� xk+1 − xk/ΔT, and we

have the discretization version of the PWR power model:

xk+1 � f xk(  + g xk( uk. (6)

Basically, we define the optimal tracking control problem
as obtaining an optimal control strategy so that the system
can track the reference state, and the desired trajectory xd

can be expressed as

xd,k+1 � f xd,k  + g xd,k ud,k. (7)

*e tracking error of the state is defined as εk � xk − xd,k.
*us, the dynamic error system can be described as follows:

εk+1 � f xk(  + g xk( uk − xd,k. (8)

Additionally, we must confirm an initial steady-state
control policy ud, and the error of the controller can be
defined as uε,k � uk − ud,k, so the dynamic tracking error
system can also be written as

εk+1 � fε εk(  + gε εk( uε,k, (9)

where fε(εk) � f(εk + xd,k) − xd,k and gε(εk)

� g(εk + xd,k).
We define the utility function as follows:

U εk, uε,k  � εT
k Qεk + u

T
ε,kRuε,k. (10)

*us, the tracking error cost function is written as

I εk, uε,k  � 
∞

k

U εk, uε,k . (11)

From the principle of optimality, the DT Hamiltonian
function is derived as

H εk, uε,k,∇Iε,k  � U εk, uε,k  + Iε,k+1 − Iε,k. (12)

*us, the HJB equation can be written as

min
uε

H εk, uε,k,∇I∗ε,k   � 0. (13)

*en, the optimal tracking control law for the error
system is derived:

u
∗
ε,k �

1
2
R

− 1
g
T
ε εk( 

zIε εk+1( 

zεk+1
. (14)

Finally, we obtain the standard optimal control law as

u
∗
k � ud,k + u

∗
ε,k.. (15)

For linear systems, the HJB equation is reduced to the
Riccati equation. However, due to the nonlinearity of the
nuclear power system, it is extremely intractable to solve the
HJB equation (13) for the nonlinear system. *us, the value
iteration (VI)method based on the actor critic NN algorithm
will be adopted to find an approximate optimal solution of
the HJB equation (13), which implies that nothing is re-
quired about the knowledge of the model drifts or the
command generator.
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3. Algorithm Analysis

*e detailed convergence properties of this proposed value
iteration algorithm are illustrated in this section, and the
details of actor critic NN will also be discussed.

3.1. Analysis of the Value Iteration Algorithm for Tracking
Control of Nonlinear Systems. Considering the nonaffine
nonlinear system, for an infinite time optimal tracking
problem, the goal is to obtain an optimal controller such that
the state xk tracks the specified reference trajectory xd,k.

Remark 1. For many nonlinear systems, there is a feedback
control ud,k that makes (9) work. For example, with regard to
DTnonlinear systems (7) with invertible g(xd,k), the desired
control ud,k can be derived as

ud,k � g
− 1

xd,k  xd,k+1 − f xd,k  . (16)

From equation (11) of Section 2.2, the quadratic cost
function of tracking errors εk is defined as

I ε0, uε,0  � 

∞

k�0
εkQεk + u

T
ε,kRuε,k , (17)

where uε,0 � (uε,0, uε,1, . . .) and Q(·) and R(·) are positive
definite functions.

To obtain an optimum tracking control law that tracks
the reference state xd,k and minimizes the tracking error cost
function (18), we can redefine the optimal tracking error cost
function as follows:

I
∗ εk(  � inf

uε,k
I εk, uε,k  . (18)

Based on Bellman’s principle of optimality, I∗(εk)

satisfies Bellman equation:

I
∗ εk(  � min

εk

U εk, uε,k  + I
∗ εk+1(  . (19)

*en, the optimal tracking control law is obtained by

u
∗ εk(  � argmin

uε,k
U εk, uε,k  + I

∗ εk(  . (20)

Given the above formulation, we can derive the tracking
error performance index function as follows:

I
∗ εk(  � U εk, u

∗
ε,k  + I

∗ εk+1( . (21)

Let φ(εk) be a positive definite function for εk ∈ R5, and
the initial tracking value function is

I0 εk(  � φ εk( . (22)

*e optimal control law v0(εk) can be obtained by

v0 εk(  � argmin
uεk,k

U εk, uε,k  + I0 εk+1(  , (23)

where I0(εk+1) � φ(εk). For i � 1, 2, 3 . . ., in this iterative
value function algorithm, the value function is updated
through

Ii εk(  � min
uε,k

U εk, uε,k + Ii−1 εk+1(  , (24)

and the control policy is improved by

πi εk(  � argmin
uε,k

U εk, uε,k  + Ii−1 εk+1(  . (25)

Theorem 1. For the tracking error cost function Ii(εk) and
control law πi(εk) obtained by (22)–(25), we have α, β, c, and
η satisfying 0< η≤ c<∞ and 0≤ α≤ β< 1, respectively. If
∀εk, we have

ηU εk, πk( ≤I∗ εk+1( ≤ cU εk, πk( , (26)

αI∗ εk( ≤I0 εk( ≤ βI∗ εk( , (27)

are satisfied uniformly; thus, the iterative value function
Ii(εk) satisfies

1+
α−1

1+c
−1

 
i

⎛⎜⎝ ⎞⎟⎠I
∗ εk( ≤Ii εk( ≤ 1+

β−1

1+η−1
 

i
⎛⎜⎝ ⎞⎟⎠I

∗ εk( .

(28)

Table 1: Nomenclature.

Nomenclature
Gr Reactivity worth of the control rod bank
P0a Nominal core power (MW)
Λ Mean neutron lifetime (s)
β *e total fraction of effective the ith group of delayed neutrons
O *e heat transfer coefficient between fuel and coolant (MW · s/°C)
M Heat capacity of mass flux of coolant (MW · s/ °C)
αc *e reactivity coefficient of coolant temperature
αf *e reactivity coefficient of fuel temperature.
μc Heat capacity of coolant (MW · s/°C)
μf Heat capacity of fuel (MW · s/°C)
λ Equivalent single-group delayed neutron precursor nuclear decay constant
ρ Core reactivity
Te Average inlet temperature of coolant (°C)
Te0 Initial equilibrium inlet temperature of coolant (°C)
Tl0 Initial equilibrium outlet temperature of coolant (°C).
Tf0 Initial equilibrium fuel temperature (°C).
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Theorem 2. For cost function Ii(εk) and control law πi(εk)

obtained by (22)–(25), we have α, β, c, and η satisfying
1≤ α≤ β<∞. If ∀εk, indexes (26) and (27) hold uniformly;
then, the value function Ji(εk) satisfies equation (28)

3e proof is thoroughly provided in [17].

Corollary 1. For i � 0, 1, . . ., πi(εk) and Vi(εk) are obtained
by (22)–(25). Let α, β, c, and η be constants that satisfy
0< η≤ c<∞ and 0≤ α≤ β<∞, respectively. If ∀εk, in-
equalities (26) and (27) hold uniformly. 3en, the iterative
value function Ii(εk) converges to the optimal cost function
I∗(εk), i.e.,

lim
i⟶∞

Ii εk(  � I
∗ εk( . (29)

Based on the aforementioned analysis, we can conclude
that the iterative tracking error performance index function
will converge to the optimum as i⟶∞, which is inde-
pendent of the initial value function φ(εk).

According to Lyapunov stability principle, Ii(εk) is a
Lyapunov function. Since the utility function U(εk, πk) is a
positive definite function andIi(0) � 0, it should be noticed
that Ii(εk) is a positive definite function as well. We let

Ii εk+1(  − Ii εk( ≤Ii εk+1(  − Ii+1 εk( ,

� −U εk, πk( ≤ 0,
(30)

where the error tracking control law πk is admissible.

3.2. Actor Critic NN Implementation of the Value Iteration
Algorithm forDTNonlinear Systems. *e actor critic NN has
been employed in various fields to approximate the cost
function and optimal controller. For example, the optimal
tracking applied on partially unknownDTnonlinear systems
[31] and rigorous proof for this method are provided. *e
actor critic structure also has good performance in the
tracking control problem for continuous-time nonlinear
systems [32, 33].

With regard to optimal tracking control algorithms of
DT nonlinear systems, it is quite difficult to directly obtain
solutions by solving (13). *us, the actor critic network
structure with the flowchart of the nuclear power system is
given in Figure 1, which describes the inner procedures of
the method.

While the tracking error system is fed with a specific
initial state and desired trajectory, the error will be calculated
by a utility function. Simultaneously, the critic network will

be trained in a way that minimizes the utility function.
Under the training process, the actor network will behave
like an optimal controller. To avoid overfitting, a specified
threshold is given at the beginning of the training procedure
so that it can be stopped in time.

Inspired by Abu-Khalaf [34], an optimal control algo-
rithm with a high-order polynomial was proposed to sub-
stitute the neural unit. *is technique is introduced in this
actor critic NN structure to obtain a better approximate
effect.

To solve (24) and (25), we let the tracking error cost
function Vi be approximated by a critic NN:

Vi(ε) � 

L

j�1
w

j
cΘ

j
(ε) � WViΘ(ε), (31)

where we have the approximate activation function
Θ(ε)≜ [Θ1(εk),Θ2(εk), . . . ,ΘL(εk)]T, the weight vector
WVi

� [w1
c , w2

c , . . . , wL
c ], and L is the number of neural units

in the hidden structure of the critic NN.
*en, the iterative formulation can be obtained as

follows:

WVi+1
Θ(ε)i+1

� U εk, uε,k  + WViΘ
i
(ε). (32)

For each sample εk related to xk, we formulate the
definition as follows:

WVi+1
� Z

T
Z 

− 1
Z

Tζ i
, (33)

where Z � Θ(ε)i and ζ i
� U(εk, uε,k) + WViΘi(ε). *en, the

weights of critic network are obtained. We let ui(ε) be
approximated by an actor NN:

ui(ε) � 
M

j�1
w

j
aδ

j
(ε) � Wuiδ(ε), (34)

where we have the approximate activation function
δ(ε) ≜ [δ1(εk), δ2(εk), . . . , δM(εk)]T and weight vector
Wui � [w1

a, w2
a, . . . , wM

a ]. M is the number of neural units in
actor NN.

According to (24) and (30), we will tune the weights of
the critic NN at each iteration of this VI algorithm. Our goal
is to minimize the residual error between each Vi(ε) to
obtain a new target function as follows:

Critic
Cost function

Advanced Pressurized
Water Reactor

Actor

Controller

Utility function
U (ε, u) = εTQε + uTRu

T

uε

u x xd
ε

ud

+ –

Figure 1: Actor-critic structure of the optimal tracking error
system.

Table 2: Parameters of the PWR nuclear reactor.

Parameters Value Parameters Value
β 0.0065 μf 26.3
λ 0.15 (s− 1) ff 0.98
Λ 0.00002(s) Te0 290°C
Gr 0.0145 Tf0 673.8°C
P0 2500(MW) Tl0 302.2°C
μc 160nr/9 + 54.022 O 5nr/3 + 4.933
αf (nr − 4.24) × 10− 5 M 28.0nr + 74.0
αc (−4.0nr − 17.3) × 10− 5
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d εk, εk+1, Wui, WVi(  � εTk Qεk + u
T
i εk( Rui εk(  + Vi εk+1( ,

� εTk Qεk + u
T
i εk( Rui εk( ,

+ Vi εk+1( .

(35)

Similarly, the actor NN is applied to evaluate and ap-
proximate the optimal tracking control policy. We will tune
the weights of action NN to solve (20) at each iteration of this
VI algorithm. According to ui(εk, Wui), from (33), we can
rewrite (14) as

Wui � argmin
ui

εTk Qεk + u
T
i εk, δ( Rui εk, δ(  + Vi εk+1( ,

(36)
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Figure 2: Performance index function of the tracking error.
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Figure 4: Weights of the actor network.
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Figure 5: Power-level load-varying curve of this PWR power plant.
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Figure 6: Delay neutron density relative curve of this PWR power
plant.
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where εk+1 � fε(εk) + gε(εk)ui(εk, δ) and δ are updated by
the same method as the weights of the critic NN. For getting
the approximation of the weights of actor critic NNs, the
least square (LS) method is utilized to solve the weights of
NNs.

4. Numerical Simulations

In this section, numerical results are given to demonstrate the
validity of this value iteration optimal tracking method. Ex-
perimental simulations of the performance index and weights
of actor critic NNs are provided. *is developed method is an
offline policy with an initial random control policy.

4.1. Actor Critic NN’s Implementation of the Value Iteration
Algorithm. It is generally known that NNs can be leveraged

to approximate any functions on prescribed compact sets.
We choose an error compact set to train this actor critic NN
to obtain an offline tracking policy. As predefined in Section
3, the critic NN is approximated as I(ε) � WcLϕ(e) with 15
neurons (L � 1, 2, . . . , 15), and the weights are WcL

� [Wc1, Wc2, . . . , Wc15]. *e actor NN is chosen with 5
neurons, and the weights are WaL

� [Wa1, Wa2, Wa3, Wa4, Wa5].
At the beginning of this algorithm execution, generally,

the matrices are Q � 10I5×5 and R � 0.1I1×1, where I is the
identity matrix. *e tracking error compact sets are ran-
domly set as the difference between the initial state and the
desired trajectory. We chose the control period as 1s
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Figure 7: Average temperature of the reactor core of this PWR
power plant.
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Figure 8: Average temperature of the coolant outlet of this PWR
power plant.
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Figure 9: Reactor coefficient of the control rod of this PWR power
plant.
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Figure 10: Five tracking errors of this PWR power system.
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per iteration, and the total iteration epoch was 50.
Simultaneously, we chose the %60 initial working point
with x60 � [0.6, 0.6, 530.8572, 306.5198, −0.0047]T as state
inputs and the %80 power working point with
x80 � [0.8, 0.8, 594.0060, 310.7468, −0.0018]T as the desired
tracking trajectory. Under the proposed value iteration al-
gorithm, the tracking error performance index value, as
shown in Figure 2, is monotonically nondecreasing and
converges to I∗ε , which is identical to our analysis results
above.

Additionally, when the tracking error performance index
function converges, the training process of the actor-critic
NN will stop. As shown in Figure 3 and 4, the weights of the
actor-critic NN converge to a steady solution, which implies
that a perfect approximator of the optimal tracking con-
troller is obtained.

4.2. Application on the PWR Nuclear Power System. In this
section, we apply the calculated control law on this DT
nonlinear PWR power model, and the implementation re-
sults are shown in Figure 5–10.

Generally, the optimal tracking control of PWR power
plants focuses on power-level adjustment, but there is high
interference among different states in this nuclear power
model. *us, it is necessary to track all states in the PWR
power model, and the tracking objects should guarantee the
stability of each state and safety of nuclear plants.

As shown in Figures 5–9, we give a %20 step increase
signal to this PWR power system. *ese 5 figures demon-
strate that the 5 states catch the desired trajectory in less than
50 s. We use a 5th-order DTnonlinear PWR power system in
this study, which implies that Xenon poison is without
consideration. Although the PWR power model is quite
simplified, all states of this model are difficult to track.

As shown in Figure 5, the power level tracks the desired
states without overshoot and oscillation. *e average tem-
perature of the reactor core and coolant outlet approximate
the desired temperature; compared with the reference
temperature, themaximum deviation is 0.031°C and 0.002°C,
respectively. In addition, the reactor coefficient of the
control rod tracks the desired curve in less than 40 s. Based
the aforementioned results, we also can see that our tracking
method applied this nuclear system has no steady-state error
and less regulation time. As shown in Figure 10, the tracking
errors progressively converge to 0 with the proposal of this
value iteration optimal tracking method.

5. Conclusion

It is well known that optimal tracking power-level control
for DT nonlinear nuclear power systems is crucial for both
regular operation and safety problems, and manual control
is inefficient. However, the intrinsic nonlinearity and pa-
rameters that vary with the states cause difficulties in power-
level control, and there are tracking issues.

In this study, a value iteration-based actor critic NN
algorithm is designed to obtain an optimal tracking control
policy for the DT nonlinear nuclear power plant. *e

proposed algorithm performs well in tracking states, as
shown in the simulation results, and can also swiftly cal-
culate the optimal control law. *us, we formulate the
tracking control problem as HJB equations to solve it.
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