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In this study, we used the newly established optimal approach, namely, optimal auxilary function method (OAFM) along with the
Adams numerical solver technique in order to investigate the heat transfer between two permeable parallel plates of steady
nano�uids (HTBTP-SNFs) through Brownian and thermophoretic consequences. �e new scheme model (HTBTP-SNFs) in
terms of partial di�erential equations (PDEs) is changed to nonlinear ordinary di�erential equations (ODEs) by utilizing
similarity transformations. �e OAFM and Adams numerical methods are used to solve the resulting ODEs with boundary
conditions. �e OAFM along with convergence and Adams numerical method are studied in detail. �e in�uences of the physical
parameters of HTBTP-SNFsmodel for instance porosity parameter (m), parameter of magnetic (M), parameter of Brownian (Nb),
viscosity parameter (R), Schmidt number (Sc), thermophores parameter (Nt), and Prandlt number (Pr) are discussed with the help
of tabular data and graphs. �e reliability and e�ectiveness of the technique are achieved by equating the results available in
the literature.

1. Introduction

Energy is incredibly essential in today’s world. Nano�uids
show a signi
cant title part in the industrial sector by en-
hancing heat transfer processes. Despite their wide variety of
applications, heat transfers of nano�uids have become more
essential in engineering and industrial innovations. Nano-
�uids are made up of nanoparticle-sized specks in �uid-
termed nanoparticles. Nano�uids are particularly bene
cial
in managing cooling di�culties in many thermal structures.
Maximum thermal conductivity can be bene
cial in cool-
ants, lubricants, automatic �uid di�usion, and engine oils.
On the other hand, solid nanoparticles with minimal
thermal conductivity, can improve the thermal conductivity

of �uids [1]. Choi et al. [2, 3], the pioneers of nano�uid
research, computed thermal conductivity and demonstrated
thermal conductivity enhancement. In a base �uid, Choi and
Eastman scrutinized the suspension of nanoparticles for the

rst time [4]. Shehzad et al. [5] studied the in�uence of heat
transfer of nano�uid within a wavy channel by applying the
Buongiorno paradigm. Xuan and Li [6] detected the pro-

ciency of the heat transfer �ow in the nano�uid. A great
deal of study has on several �uid models [7–12]. Carbides,
metals, carbon nanotubes, and oxides are commonly used as
nanoparticles. �e signi
cance of nano�uids for convective
heat transfer usages in determining their appropriateness
has been discovered to be highly essential [13, 14]. Nano-
�uids are colloidal deferments of base �uid nanoparticles
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that have been manufactured [15, 16]. Oil, ethylene glycol,
and water are the most common base fluids. In most re-
search, nanofluid has assumed a normal pure fluid. In re-
newable energy system and in industrial thermal
management, they discovered that utilizing a revolving
magnetic disk improves the rate of heat transfer. +e in-
vestigators looked at several models and physical effects for
heat transfer and nanofluid flow improvement [17–27].
Nanofluids also have valuable audial characteristics, in ul-
trasonic environments demonstrating more shear wave
reconversion of an occurrence compression wave; the im-
pact gets further dramatic as concentration rises [28].
Nanofluids have a potential function in the manufacture of
airplanes, micromachineries, microdevices, vehicles, and
other items, according to the current technology.

In a variety of heat transfer applications, nanofluids have
numerous properties that make them potentially useful, such
as machining, pharmaceutical procedures, fuel cells, vehicle
cooling/thermal control, domestic refrigerators, hybrid-
powered engines, chillers, microelectronics, lowering boiler
flue gas temperature, and heat exchangers [29]. Zubaidi et al.
[30–31] has a great contribution regarding heat transfer
applications of nanofluids. Jou and Tzeng [32] quantitatively
investigated the vital convection enhancement of a two-
dimensional nanofluid. +e rise in the average coefficient of
heat transmission is evident when the parameter of buoy-
ancy and the nanofluid volume percentage are increased.
Rashidi and Pour [33] simulate the fluid moving above the
permeable rotating disc when using the second thermody-
namic law to an electrically behaving incompressible
nanofluid.

+ere are numerous applications of the steady
nanofluids and many researchers perform their great
work in this regard. Rashidi et al. [34] discussed the
entropy generation in steady magneto hydro dynamics
flow owing to a rotating permeable disk in a nanofluid.
Veera Krishna [35] inspected the application of steady
nanofluid on steady magneto hydrodynamics flow of
copper and alumina nanofluids as heat transport past a
stretching permeable surface; similarly, Lin and Ghaffari
[36] discussed the heat and mass transfer above the
surface of a stretching wedge in a steady flow of sutter by
nanofluid. +e literature study reveals that a great deal of
significance has pursued in the case of flows in permeable
channel. In fluid-saturated permeable channels, the im-
portance of convective flow has been largely motivated by
its function in numerous natural and developed chal-
lenges in latest studies of concern. Fetecau et al. [37]
examined analytical solutions through a porous plate
channel relating to unsteady motions of Maxwell fluids
for two mixed initial boundary value problems. Zeeshan
et al. [38] scrutinized nanofluid of electroosmotic-
modulated bioflow induced by complex traveling wave
with zeta potential and heat source via a rectangular

peristaltic pump. Abel et al. [39] may see the 2nd grade
fluid heat transfer with a nonuniform heat sink/source
study through a permeable channel from a penetrable
stretched sheet in conjunction with the current research.
For the analytic approximated solution, Rashidi et al. [40]
employed the HAM in a permeable channel for the issue
of steady flow on a spinning disk, including two auxiliary
parameters. Khalili et al. [41] investigated mass- and
time-dependent convective heat transmission in pseu-
doplastic nanofluids, calculating the nonlinear mecha-
nism beyond a stretched wall using a fourth-order R-K
methodology paired with a conventional shooting tech-
nique. By making use of two auxiliary parameters,
Abolbashari et al. [42] used an analytic approximated
solution of the magneto hydrodynamics flow problem of
boundary coating continuously flowing through an
extending surface, which has been solved using HAM to
evaluate the improvement of the solution convergence
rate. Similarly, in a 2nd grade fluid to solve the problem of
heat transmission, Rashidi et al. [43] used a permeable
medium and a modified differential transform method
(DTM). Furthermore, to these deterministic techniques,
nanosubstances are utilized for the problems of fluid
dynamics managed by non-Newtonian fluidics systems
[44–47].

Concernwith the related investigationmany researchers did
a tremendous job in the computational analysis of nanofluids.
Beside a vertical wavy surface, Iqbal et al. [48] discussed a
computational investigation of dissipation influences on the
flow of hydro magnetic convective of hybrid nanofluids.
Similarly, Ghaffari et al. [49] analyzed entropy generation above
a stretchable rotatory permeable disk in a flow of power-law
nanofluid. +e analytical and numerical approaches investi-
gated have both merits and disadvantages. Numerical tech-
niques necessitated linearization and discretization, which may
have an impact on accuracy. Many researchers use analytical
methods to solve nonlinear equations, such as the DTM (dif-
ferential transform method) [50], HPM (homotopy perturba-
tion method) [51, 52], ADM (Adomian decomposition
method) [53], VIM (variational iteration method) [54], radial
basis function [55], HAM(homotopy analysismethod) [56] and
artificial parameters method [57, 58]. All of these methods
required the assumption of a tiny parameter, such as HPM, or a
first guess. Again, poor selection has an impact on accuracy.
Currently, Herisanu et al. [59, 60] have proposed an optimum
method (OAFM). +e small parameter and initial guess as-
sumptions are not necessary in OAFM.We propose the OAFM
for the HTBTP-SNF model in this work. +e methodology of
the Adams numerical technique and OAFM have been for-
mulated in Section 2. +e problem formulation and the results
assessments have been discussed in Sections 3 and 4, respec-
tively. While the comparison tables of OAFM and Adams
numerical method are given in Section 5 (Tables1–3), the
conclusion is provided in Section 6.

2 Mathematical Problems in Engineering



+e innovative contributions of computing procedure
are as follows:

(i) +e numerical and analytical computation have
been designed through the technique of Adams
numerical solver and optimal auxilary function
method (OAFM) for the comparative study to in-
vestigate the heat transfer between two permeable
parallel plates of steady nanofluids (HTBTP-SNFs)
through Brownian and thermophoretic influences.

(ii) +e PDEs representing HTBTP-SNFs are converted
into a system of ODEs by utilizing appropriate
transformation.

(iii) +e Mathematica software command “NDSolve” is
used to compute the dataset for HTBTP-SNFs for the
alternative of parameter of porosity (m), magnetic
parameter (M), Brownian parameter (Nb), viscosity
parameter (R), Schmidt quantity (Sc), thermophores
parameter (Nt), and Prandlt number (Pr).

Table 1: Comparison of the OAFM and Adams numerical method for f(x).

x OAFM Numerical solution Absolute error (AE)
0 0 0 0
0.1 0.0805954451 0.080595445138914 8.9141 × 10− 12

0.2 0.1268821951 0.126882195101887 1.8873 × 10− 12

0.3 0.1453119717 0.145311971751876 1.8761 × 10− 12

0.4 0.1420660044 0.142066004420172 4.2017 × 10− 10

0.5 0.1231630169 0.123163016993000 9.3213 × 10− 11

0.6 0.0945265113 0.094526511335266 3.5266 × 10− 11

0.7 0.0620287942 0.062028794245478 4.5478 × 10− 11

0.8 0.0315236584 0.031523658481825 8.1825 × 10− 11

0.9 0.0088766024 0.008876602424646 2.4646 × 10− 11

1.0 − 3.049910 × 10− 9 − 3.0499100129 × 10− 9 − 6.9106 × 10− 15

Table 2: Comparison of the OAFM and Adams numerical method for g(x).

x OAFM Numerical solution Absolute error (AE)
0 1 1 0
0.1 0.890979091 0.89097909180232 8.0232 × 10− 10

0.2 0.783826564 0.78382656476964 7.6964 × 10− 11

0.3 0.678936228 0.67893622838875 3.8875 × 10− 11

0.4 0.5764164678 0.576416467884122 8.4122 × 10− 11

0.5 0.4761733918 0.476173391863718 6.3718 × 10− 11

0.6 0.3779836568 0.377983656802516 2.5161 × 10− 11

0.7 0.2815564324 0.281556432496159 9.6159 × 10− 11

0.8 0.1865863193 0.1865863193618622 1.8622 × 10− 11

0.9 0.0928000588 0.0928000588063435 6.3435 × 10− 11

1.0 − 1.025373 × 10− 9 − 1.025373530 × 10− 9 − 7.353 × 10− 14

Table 3: Comparison of the OAFM and Adams numerical method for h(x).

x OAFM Numerical solution Absolute error (AE)
0 1 1 0
0.1 0.9048468313 0.904846831361751 6.1751 × 10− 11

0.2 0.8084909694 0.808490969412694 1.2694 × 10− 11

0.3 0.7109459674 0.710945967436434 3.6434 × 10− 11

0.4 0.6122751974 0.612275197451976 5.1976 × 10− 11

0.5 0.5125576533 0.512557653304655 4.6550 × 10− 12

0.6 0.4118639265 0.411863926563999 6.3999 × 10− 11

0.7 0.3102436548 0.310243654829592 2.9592 × 10− 11

0.8 0.20772288512 0.2077228851230552 3.0552 × 10− 12

0.9 0.10430886568 0.1043088656840427 4.0427 × 10− 12

1.0 9.4218732 × 10− 10 9.4218732684 × 10− 10 4.4476 × 10− 16
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(iv) +e MATLAB software has been used to interpret
the solution and the AE analysis plots of HTBTP-
SNFs.

(v) +e correctness and the validation of the HTBTP-
SNFs are examined by both analytical and nu-
merical techniques.

2. Methodology

+e methodology in this section includes two parts. Firstly,
the formation of data set by the Adams numerical method
and secondly, the explanation of fundamental idea of OAFM
is illuminated.

2.1. Adams Numerical Method. For the first-order system,
the Adams numerical approach is written as

dζ
dx

� f(x, ζ),

χl+1 � ζ l + 

tl+1

tl

dζ
dx

dt � ζ l + 

tl+1

tl

f(ζ , t)dt,

(1)

where ζ specifies the first-order output of linear ordinary
differential equations (ODEs), x indicates the input value,
χl+1represent the 1st order interpolation iterative structure,
and t represents the time interval.

Within the interval (tl, tl+1), Adams techniques are
grounded on the basis of estimating the integral with a
polynomial. Adams approaches are of two kinds, the explicit
and the implicit classes. +e explicit sort techniques are
known as Adams–Bashforth techniques (ABT) while the
implicit kinds are called the Adams–Moulton techniques
(AMT). +e ABT and AMT techniques of the 1st order are
the approaches of forward and backward Euler. By applying
a linear interpolant, the second-order procedures of these
approaches are attained which are very informal. +e sec-
ond-order Adams–Bashforth technique (ABT2) is specified
as follows:

χl+1 � ζ l +
h

2
3f ζ l, tl − f ζ l− 1, tl− 1( ( ( , (2)

where the step interval signify by h. +e Adams–Moulton
technique of second order (AMT2) is an implicit technique,
also inspected to as the principle of trapezoidal specified
under

χl+1 � ζ l +
h

2
f ζ l+1, tl+1 + f ζ l, tl( ( ( . (3)

2.2. Fundamental Idea ofOAFM. For the nonlinear ordinary
differential equation of the OAFM,

L(g(ξ)) + S(ξ) + N(g(ξ)) � 0, (4)

where the operators of linear and nonlinear equations are
L  an d N, S is a source function, and at this phase, the
unknown function is g(ξ).

+e initial and boundary conditions are

B g(ξ),
dg(ξ)

dξ
  � 0. (5)

It is extremely hard to locate out the exact solution of
strongly nonlinear equations. +e suggested estimated so-
lution is as follows:

g
⌢ ξ, Fi(  � g0(ξ) + g1 ξ, Fi( , i � 1, 2, . . . , s. (6)

Utilizing equation (6) into equation (4), we obtain

L g0(ξ)(  + L g1 ξ, Fi( (  + S(ξ) + N g0(ξ) + g1 ξ, Fi( (  � 0,

(7)

where Fi, i � 1, 2, . . . , s are parameters of control conver-
gence, which are to be concluded.

+e initial guess is found out as

L g0(ξ)(  + S(ξ) � 0,

B g0(ξ),
g0(ξ)

dξ
  � 0.

(8)

+e first approximation is attained as

L g1 ξ, Fi( (  + N g0(ξ) + g1 ξ, Fi( (  � 0,

B g1(ξ),
g1(ξ)

dξ
  � 0.

(9)

+e nonlinear term is given as

N g0(ξ) + g1 ξ, Fi( (  � N g0(ξ)(  + 
∞

l�1
u

l
1 t, Fi( N

l
g0(ξ)( .

(10)

In equation (10), the last term looks tough to solve, thus
to depart of this complexity and to the convergence of the
solution rapidly, equation (10) can be composed as

L g1 ξ, Fi( (  + D1 g0(ξ), Fn( E N g0(ξ)( ( (  + D2 g0(ξ), Fm(  � 0,

B g1 ξ, Fi( ,
dg1 ξ, Fi( 

dξ
  � 0, m � 1, 2, . . . , q, n � q + 1, q + 2, . . . s,

(11)
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where the optimal auxiliary functions that depend on g0(ξ)

are D1 an dD2. While Fm, Fn and E(N(g0(ξ)))are the
functions which depend on the expression emerging inside
in the nonlinear term of N(g0(ξ)). If g0(ξ) is polynomial,
trigonometric, and exponential, then the optimal auxiliary
functions D1 an dD2 would be the sum of polynomial,
trigonometric, and exponential correspondingly. Also, if
N(g0(ξ)) � 0, then g0(ξ) would be the accurate solution of
the innovative problem. From the “Galerkin method,”
“method of least square,” “Ritz method,” and “collocation
method,” the optimal auxiliary function method (OAFM)
can be achieved.

2.3. Convergence of the Technique. In order to get the con-
vergent solution, we evaluated the optimum constants,
which are also recognized as control convergence constants
by the “least square method.” So, to obtain the series so-
lution, these optimal constants are resubmitted into the
original equation:

J F1, F2, ..Fs(  � 
I
R
2 ξ, F1, F2, .., Fs( dξ, (12)

where I denotes the domain of the equation.
+e constants which are unknown can be obtained as

zF1
J � 0, zF2

J � 0, . . . zFs
J � 0. (13)

3. Problem Formulation

An incompressible laminar steady nanofluid flow has been
considered between two horizontal equivalent plates. A
coordinate structure in which the both axes x and y are
preferred along and normal to the plate. Both fluid and plate
are revolving with angular velocity along the y-axis, whereas
the bottom plate has stretched by two equal and contrary
forces along the x-axis, leaving the location (0, 0) unaltered.
As displayed in Figure 1, a uniform and constant magnetic
pitch (field) B0 has provided to the flow in a normal manner.
+e medium is maintained to be permeable.

+e lower plate is permeable and the system is rotating,
whereas the flow is subjected to homogeneous magnetic field
of density B0. +e governing equations for the suggested
fluidic systems are specified as

zu
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+
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zy
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(14)

where the velocities of the fluid along axes are u and v,
correspondingly. Also, ρ indicates the base fluid density,
modified pressure is expressed by p∗, σ denotes the electrical
conductivity, μ symbolizes dynamic viscosity, temperature is
denoted by T, (μ/η) is porosity parameter, C is concentra-
tion, the specific heat of nanofluid is denoted by ci, and DB

represents the diffusing coefficient of diffusing classes.

u � ax, v � 0, T � Th, C � Ch, at y � 0,

u � 0, v � 0, C � C0, T � T0, at y � h.
(15)

Applying the correspondence transformation,

η �
y

h
, u � axf′(η), v � − ahf′(η),

ϕ(η) �
C − Ch

C0 − Ch

, θ(η) �
T − Th

T0 − Th

.

(16)

For the dimensionless scheme, together with boundary
conditions, the governing equations are stated as
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fiv − R f′f″ − ff″( ) − (M +m)f″ � 0, (17)

ϕ″ + R∙Scfϕ′ +
Nt

Nb
θ″ � 0, (18)

R Prfθ′ + θ″ +Ntθ′
2 + ϕ′θ′Nb � 0. (19)

f(0) � 0, f′(0) � 1, θ(0) � 1,φ(0) � 1,
f′(1) � 0, f(1) � 0, θ(1) � 0,φ(1) � 0.

(20)

�e dimensionless quantities are explained as

R �
ah2

v
,

M �
σB20h

2

ρv
,

Pr �
μ
ρα
,

Sc �
μ
ρD
,

m �
μh2

ρηk
,

Nb �
DBCh (ρc)p
(ρc)fα

,

Nt �
DTTh (ρc)p
(ρc)fαTc

,

(21)

where the viscosity parameter is R, the magnetic parameter is
M, the Prandlt quantity is denoted by Pr, the Schmidt
quantity is speci
ed by Sc, m is the porosity parameter, and
the Brownian and thermophoretic parameters are speci
ed
by Nb and Nt, respectively. Nu represents the Nusselt

number and Cf indicates the coe�cient of skin friction
beside the stretching wall and are speci
ed by

Cf �
Rx

h
( ),

Cf � f″(0),

Nu � − θ.

(22)

4. Results Assessment

�eAdams numerical solver technique has been used for the
variants of HTBTP-SNFs model. Numerical and analytical
investigation showed the HTBTP-SNFs model has accom-
panied steady nano�uids between two permeable parallel
plates with heat impact, displayed in equations (17)–(20).

Figure 2 shows the mathematical model together with
relevant geometry, methodology, and results.

�e variation of M,m, R,Pr , Sc,Nb, and Nt individu-
ally, apiece with three cases of the HTBTP-SNFs model, is
tabulated in Table 4.

For velocity pro
lef′(η), temperature distribution θ(η),
and concentration distribution φ(η), the comparative var-
iation of physical parameters of the HTBTP-SNFs model
such as magnetic parameter M, parameters of porosity,
Brownian motion, viscosity, and thermophoretic are m, Nb,
Nt, R, Schmidt number Sc, and Prandlt number Pr through
OAFM and Adams numerical method are shown in
Figures 3–12, respectively, along with error plots. �e
consequences of velocity distribution f′(η) are given in
sub
gures 3(a), 4(a), and 5(a) for the deviation of magnetic
parameter (M), viscosity parameter (R), and porosity pa-
rameter (m) of the HTBTP-SNFs model whereas the cor-
responding values of AE are plotted in sub
gures 3(b), 4(b),
and 5(b) in order to obtain the execution of the HTBTP-
SNFs approach. �e reliable overlapping of analytic and
numerical solutions can be detected.�e impact of magnetic
turf (M) on f′(η) is presented in sub
gure 3(a), which
shows that when the magnetic 
eld increase the velocity
decreases. �is is due to the reality that the increasing M
develops the friction force of the movement and is identi
ed
as the Lorentz force. In the boundary sheet, Lorentz force has
the correspondence to reduce the �ow velocity. �e in�u-
ence of porosity parameter m on f′(η) has been exposed in
sub
gure 4(a). �e graph shows that when the porosity
increases and the magnetic 
eld is kept constant, the velocity
pro
le increase in interval 0 to 0.5 and decrease in interval
0.5 to 1. Similarly, the impact of viscosity parameter R on
f′(η) has displayed in sub
gure 5(a). It is obvious that when
viscosity parameter (R) escalates with constant porous
medium andmagnetic 
eld, the velocity of the �uid escalates
in interval 0 to 0.5 and decrease in interval 0.5 to 1.

Accordingly, the outcomes of temperature pro
le θ(η)
are given in sub
gures 6(a), 7(a), 8(a), and 9(a) of the
HTBTP-SNFs model. �e relevant values of AE are plotted
in sub
gures 6(b), 7(b), 8(b), and 9(b) for the HTBTP-SNFs
model. It is observed from sub
gure 6(a) that escalating Nb
reduces the temperature 
eld. Actually, escalating Nb kinetic

S

N
D

v x

T0,C0

Th,Ch

hNanofluid

Figure 1: Flow problem geometry.
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energy increases due to which the nanoparticles within the
�uid raise the heat transfer rate and boundary thickness
coating, which decrease the temperature 
eld. Sub
gure 7(a)
shows the e�ect of the thermophoretic parameter on θ(η). It
is clear from sub
gure 7(a) that when value of Nt escalates,
the temperature 
eld is decreased. �is is because of the
reality that the thermophoresis parameter (Nt) depend on

the gradient of temperature in the nearby nano�uid mol-
ecules. Escalating Nt decreases the kinetic energy of the
nano�uid molecule, which results in the decrement in the
temperature distribution. �e in�uence of Pr on tempera-
ture distributions is presented in sub
gure 8(a), temperature
pro
le vary directly with Pr. �e greater value of Pr causes
decrement in the temperature pro
le. Sub
gure 9(a) displays

Problem Description

Fluid
Problem

System of PDEs
Representing the flow

problem

Non Linear system of
ODEs

Solution of ODEs with Adams
Numerical Solver for generation of

reference data sets

Generation of various cases
for velocity, temperature and

concentration profiles as per physical
parameters variation

Scenario 1 = Variation in M

Scenario 2 = Variation in m 

Scenario 3 = Variation in R 

Scenario 4 = Variation in Pr

Scenario 5 = Variation in Sc

Scenario 6 = Variation in Nb

Scenario 7 = Variation in Nt

Data
Collection

Mathematical
Equations

With boundary conditions

v x

f iv –R (f ′f″–f″)–(M+m) f″=0,

R Pr fθ′+θ″+Ntθ′2+ϕ′θ′Nb=0.

f  (0)=0, f ′(0)=1, θ(0)=1, φ(0)=1,
f ′(1)=0, f  (1)=0, θ(1)=0, φ(1)=0.

The heat transfer between two
porous parallel plates of
steady nanofluids (HTBTP-SNF)
through Brownian and
Thermophoretic consequences.

HTBTP-SNF Model

S

N
D

T0,C0

Th,Ch

hNanofluid

ϕ″+R.Scfϕ ′+Nb
Nt θ″=0,

Use of Suitable
Transformation

Figure 2: Overall working �owchart.
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the impact of viscosity parameter (R) on temperature dis-
tribution, which shows the direct relation when R increases
and the temperature distribution is deaccelerated. �is
decrement caused by the increase of inertial force, which
increase with incensement in R. Because when the values of
viscosity parameter (R) increase, the inertial forces get strong
and the temperature 
eld has a tendency to decrease.
Furthermore, between numerical and analytical e�ects, these
results also show the uniform overlapping.

Similarly, the outcomes of concentration distribution
φ(η) are given in sub
gures 10(a), 11(a), and 12(a) of the

HTBTP-SNFs model. �e appropriate values of AE are
mapped in sub
gures 10(b), 11(b), and 12(b). Sub
gure
10(a) indicates the e�ect of Schmidt quantity (Sc) on con-
centration pro
le φ(η), where Sc represent momentum and
mass di�usivity ratio. Sub
gure 11(a) explains the in�uence
of thermophoresis parameter (Nt) on φ(η). It is clear from
sub
gure 11(a) that when value of Nt increase the con-
centration 
eld decreases. Escalating Nt decreases the ki-
netic energy of the nano�uid molecule, which causes the
decrement in the concentration pro
le. It is observed from
sub
gure 12(a) that increasingNb reduces the concentration

Table 4: Scenarios interpretation beside with cases for the HTBTP-SNFs model.

Scenarios Cases
Physical measures of concern

M m R Pr Sc Nb Nt

1
1 1 1 1 1 0.7 0.1 0.1
2 2 1 1 1 0.7 0.1 0.1
3 3 1 1 1 0.7 0.1 0.1

2
1 1 1 1 1 0.7 0.1 0.1
2 1 3 1 1 0.7 0.1 0.1
3 1 5 1 1 0.7 0.1 0.1

3
1 1 1 1 1 0.7 0.1 0.1
2 1 1 3 1 0.7 0.1 0.1
3 1 1 5 1 0.7 0.1 0.1

4
1 1 1 1 1 0.7 0.1 0.1
2 1 1 1 2 0.7 0.1 0.1
3 1 1 1 3 0.7 0.1 0.1

5
1 1 1 1 1 1 0.1 0.1
2 1 1 1 1 2 0.1 0.1
3 1 1 1 1 3 0.1 0.1

6
1 1 1 1 1 0.7 0.1 0.1
2 1 1 1 1 0.7 0.2 0.1
3 1 1 1 1 0.7 0.3 0.1

7
1 1 1 1 1 0.7 0.1 0.1
2 1 1 1 1 0.7 0.1 0.2
3 1 1 1 1 0.7 0.1 0.3
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Figure 3: (a) In�uence of M. (b) Analysis on AE.
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eld. �e concentration pro
le reduces by increasing the
Brownian motion parameter (Nb). �e boundary coating
thicknesses decreases because of rise of Brownian motion,

which cause to reduce concentrations. �ese results also
show the consistent overlapping between analytical and
numerical solution.
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5. Comparison Tables of the OAFM and Adams
Numerical Method

6. Conclusion

In this analysis, a novel analytical technique for solving the
boundary layer �ow model was proposed (HTBTP-SNFs).
�e governing equations of the HTBTP-SNFs model are
explained in 
rst-order series, and the 
rst-order solution is
reached with excellent accuracy. We associated the OAFM

ndings with the numerical results produced using the
Adams numerical technique to ensure the perfection and
strength of our method. �e comparison shows that the
recommended approach is perfect, and the decent agreement
of our consequences with the numerical data demonstrates
the method’s validity. �ough the nonlinear beginning/
boundary value issue does not comprise the tiny parameter,
OAFM is extremely straightforward to apply to large non-
linear primary and boundary value problems. In compared to
other analytical methods, OAFM is relatively simple to use
and produces excellent results for more complicated non-
linear initial/boundary value issues. Since the OAFM contains
the control convergence constansts, which are also known as
optimal constants, we can control the convergence of the
method. When compared to other approaches, OAFM re-
quires less computing labor, and even a low-spec machine
may readily complete the task. �ere are currently no limi-
tations to this approach, allowing us to apply this e�ective and
quick convergent method to increasingly complicated models
originating from real-world situations in the future. �e
Adams numerical technique is a reliable numerical method
for obtaining precise results. �e Adams numerical method is
an iterative technique that requires the most space and time,
whereas OAFM is a short method that converges quickly. For
addressing any nonlinear system of equations, both the
Adams numerical technique and OAFM are good
approaches.

�e aim of the present research work is to present a novel
application of comparative analysis of the new scheme
paradigm (HTBTP-SNFs) of the heat transfer between two
permeable parallel plates of steady nano�uids through
Brownian and thermophoretic consequences. �is com-
parative analysis of the HTBTP-SNFs model is based on the
newly established optimal approach, namely, optimal aux-
ilary function method (OAFM) and the Adams numerical
technique to 
nd the analytical and numerical solutions of
the HTBTP-SNFs model. Both results give a close resem-
blance of their approaches which indicates that both tech-
niques converge quickly and both are strongly accurate and
e�cient methods.

Nomenclature

u, v: Components of velocity
x, y: Coordinates system
p∗: Modi
ed pressure
μ: Fluid dynamic viscosity
C: Nanoparticles concentration
Ci: Speci
c heat of nano�uid
Nb: Parameter of Brownian motion
θ: Dimensionless temperature
T: Fluid temperature
R: Viscosity parameter
D T: Coe�cient of thermophoresis di�usion
Sc: Schmidt number
OAFM: Optimal auxilary function method
t: Time for steady �ow
ϕ: Dimensionless concentration
Cf: Skin friction coe�cient
B0: Uniform magnetic 
eld
M: Magnetic parameter
DB: Brownian di�usion coe�cient
m: Parameter of porosity
Pr: Prandlt quantity
Nu: Nusselt number
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Figure 12: (a) In�uence of Nb. (b) Analysis on AE.
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ρ: Fluid density
ρ: Efficient heat capacity of nanoparticle
σ: Electrical conductivity heat transfer between two

porous parallel plates of steady nanofluids.
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