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A color fundus image is a photograph obtained using a fundus camera of the inner wall of the eyeball. In the image, doctors may
see changes in the retinal vessels, which can be used to diagnose various dangerous disorders such as arteriosclerosis, some
macular degeneration related to age, and glaucoma. To diagnose certain disorders as early as possible, automatic segmentation of
retinal arteries is used to help the doctors. Also, it is a challenge for the medical community to analyze the image with the right
procedure to diagnose the disorders with high accuracy. Furthermore, this will help the doctor to make the right decision on
effective treatment. Hence, the authors have implemented an enhanced architecture called U-Net to segment retinal vessels in this
paper.1e proposed conventional U-Net permits using all the accessible spatial setting information by adding the multiscale input
layer and a thick square to the conventional U-Net in terms of improving the accuracy level of image segmentation. It achieved
95.6% accuracy with a comparatively traditional U-Net model. Moreover, the segmentation results have proved that the proposed
approach outperformed in detecting most complex low-contrast blood vessels even when they are very thin. 1e task of seg-
menting vessels in retinal images is known as retinal vessel segmentation. Blood vessel density can be assessed using dense pixel
values. Data augmentation and analytics play a major role in building the true value of eye blood vessels for medical diagnosis.1e
proposed method is very promising in the automatic segmentation of retinal arteries.

1. Introduction

A special fundus camera is used to photograph the color
fundus image, which is the inside and back surface of the
eyeball.1e picture is obtained in a painless and noninvasive
manner. In fundus images, retinal vascular alterations that
can be used to diagnose various significant disorders such as
macular degeneration, arteriosclerosis, and glaucoma [1] can
be identified. Manually analyzing blood vessels in fundus
photographs, on the contrary, is time-consuming and labor-
intensive for clinicians [2, 3]. 1ey can reduce time and
effort by automating the segmentation of retinal layers.

Some of the retinal nerve fibers present in the oculus dexter
(OD) transfer the images taken from the eyeball first converted
into visual signals and transferred immediately to the head of
the body called the brain. 1e cells in the retina called

photoreceptors are found in the OD of the retina, which aid
vision. 1e “blind spot,” as the OD dubbed it, was created as a
result of this.1e brightest area of the retina is oculentum (OC)
[4], which is located at the innermost part of the OD [5]. In
healthy people, an OC covers about 30% of the disc.

To identify the effect of glaucoma in the eye, different
models of eye images are captured such as the fundus image by
using various methods such as magnetic resonance imaging
(MRI) and optical coherence tomography (OCT); however, in
glaucoma detection, fundus pictures are one of the most
suggested methodologies.1ese are the eye images taken using
a camera known as a fundus camera. Other elements such as
the veins, optic cup and disc, fovea, macula, artery, and other
retinas will be easily portrayed in fundus images [6]. It has also
been demonstrated that using the fundus images, ocular ill-
nesses can be anticipated quickly.
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In fundus imaging, the brightest portion is the neuro-
retinal rim and OC present in the OD. One of the inner parts
of the OD is OC, where OC’s outer limit is the neuroretinal
rim. Optic cupping occurs as the size of the OC grows larger.
Glaucoma can be easily recognized by locating the optic
nerve cupping. Many metrics will be used to diagnose
glaucoma, but the value of cup-disc ratio (CDR) is the best
diagnostic, calculated by measuring the distance between the
OD and OC. At some time, there is a chance of OC size
which may be higher than the actual size; at this place,
glaucoma is diagnosed by experts [7]. We need to segment
both OD and OC to calculate the CDR value, but con-
ventional manual procedures take longer to segment and
produce inaccurate results. From the result, OC and OD
autosegmentation is not accurate also; it is a critical process
in the detection of glaucoma [8]. Figure 1 depicts both
normal healthy and glaucoma-affected eyes with the OD and
OC highlighted in dotted lines.

Figure 1(a) depicts a healthy eye, and Figure 1(b) depicts
a suspect eye for glaucoma. 1e optic disc is represented by
the outside dotted lines, while the optic cup is represented by
the inner dotted line.

1.1. Motivation. Glaucoma is a most referred disease in the
ophthalmology division of the medical sector. 1is disease
will be more dangerous when it is untreated, and it leads to
permanent blindness. At this situation, the unwanted fluid at
the place of the anterior portion of the retina will make a
high pressure in the eye and will become a cause of optic
nerve damage [9].1e survey indicates that the total number
of cases related to glaucoma will rise to nearly 80%
worldwide by 2022. Also, the studies depict that people from
the age of 60 will have high risk on this disease. Hence, it is
necessary to detect and diagnosis this disease at the earliest
to avoid the worst circumstances.

1e segmentation of retinal vessels has obtained a lot of
attention, but there are still a lot of challenges. For starters,
blood vessels come in a variety of forms, diameters, and grey
degrees. Second, the dissimilarity between some vessels and
their surrounding is relatively low [10]. At last, there are
some changes which manifest themselves with bright
patches among dark and thin spaces, resembling blood
vessels in appearance.

1e context fundus has arrived from the Latin word, and
it means that a portion of the eyeball is positioned opposite
the eye pupil [11–14]. Hence, an image taken by using a
high-density camera on the interior part of the eye will be
referred for identifying the fundus. A popular technique,
namely, funduscopy, is used to capture the fundus image.
However, the medical industry has developed many ap-
proaches such as laser scanning polarimetry and optical
coherence tomography in recent years, but the cost of the
medical equipment is very high, and many hospitals and
medical centers may not be affordable. 1e reachability of
these facilities in rural areas would be challenging for them
[15–20].

By considering these challenges, this paper aims to
propose alternative and cost-effective methods for the

detection of glaucoma using fundus images with the help
of an optic disc. An optic disc (OC) is a bright part at the
center of the retina of the eye, and it is resided in the optic
disk. In the situation of glaucoma case, there will be a
change in the structure of the optic cup. 1is situation is
commonly known as cupping. Hence, the ratio called cup-
to-disc ratio (CDR) which will be arrived from the
structural changes of the optic cup is used as meaning
information and used as an indicator to identify and
diagnose the glaucoma condition.

1.2. Major Contribution of the Optimized Pretrained Model.
1ere are supervised and unsupervised segmentation al-
gorithms available (elaborated in Section 2). Neural net-
work-based algorithms are supervised methods that can
considerably enhance vessel segmentation accuracy [21]. On
the contrary, segmentation of thin vessels is harder because
their nearby pixels are very low in quality. 1e proposed
enhanced U-Net model for segmenting retinal vessels
produces good accuracy and superior segmentation results
for thin vessels in retinal images. 1e following are the
primary contributions of this work:

(1) Different scale picture patches are supplied into the
network as inputs, allowing it to learn more mul-
tiscale data. More spatial context data are obtained in
the U-Net model using dense blocks. As a result of
these tactics, the proposed method can detect more
vessel pixels, allowing for better segmentation of thin
vessels.

(2) When compared to the standard or “vanilla” U-Net
design, the proposed method improves the sensi-
tivity and accuracy of vessel segmentation. When it
comes to segmenting narrow vessels, the proposed
method offers evident advantages in both qualitative
and quantitative assessments.

(3) By calculating different measuring attributes such as
sensitivity and specificity, the suggested model
achieves excellent accuracy. 1e sensitivity of the
geometric mean was also assessed in order to arrive
at the closest result. In comparison to previous
retinal vascular segmentation methods, the output is
quite good. Our method outperforms the state-of-
the-art method in terms of the receiver operating
characteristic curve (OCR).

1is paper is coordinated as follows: Section 2 talks
about some refined vascular division procedures. Section 3
dives into the subtleties of the proposed procedure, while
Section 4 examines the datasets utilized in the investigations
just as the trial boundaries. 1e outcomes from tests are
examined in Section 5. Finally, Section 6 ends up with a
conclusion.

2. Related Work

1e segmentation of retinal vessels has received a lot of
attention. Unsupervised techniques and supervised methods
are the two types of methods.
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Prior information of the vascular structure or grey
characteristics is used in the unsupervised algorithms.
However, due to their diverse presentations, it is difficult to
include all vascular structures. Model-based approaches,
matching filters, and morphological methods are among the
unsupervised methods. Adaptive thresholding was used [22]
to identify pixels of vessels by the iterative process. From the
retinal picture, regional data are extracted by using the
contour model [22]. To segment retinal vessels, combine
both region growth algorithms with the level set [23]. A new
3-D-oriented filter method is proposed to enhance the
translation of color to grey with basics of principle com-
ponent analysis [24, 25]. A double-sided thresholding ap-
proach was newly created, and a Gabor filter was employed
to enhance photos. 1e Hessian matrix and binary pictures
are combined together to make an entropy-maximizing
threshold for improved vessels. Guo et al. and Khan et al.
[26, 27] used a multiscale line detector to segment retinal
arteries. A matching filter with signed integers is used to
improve the difference among both vascular and nonvas-
cular pixels. A number of contrast-sensitive approaches for
improving the sensitivity of existing retinal vascular seg-
mentation algorithms are implemented [28, 29].

Recent research has primarily focused on deep feature-
based approaches. Without any prior experience, they can
learn hierarchical features automatically. Postprocessing is
usually not required for segmentation results. 1ese papers
suggest several neural network topologies.

1e following are some of the earlier studies on the pre-
diction of various eye diseases by using different techniques.

1e authors in [30–32] looked on difficulties in de-
scribing the location of the retinal structure in terms of
image. 1e image pixel distance has been forecasted based
on a specific location from the set of picture feature using the
KNN model. An ideal K-value is not determined perfectly
because of the regression model [33–36]. Also, to improve
the recognition performance, the type of metric used is
unfair with the pixel-based distance method.

A well fined and tuned optic disc (OD) and its locators are
grouped into a complicated system. Both quality of prediction
and performance ratio are improved in terms of accuracy rate.
Later on, it was assumed to be a self-contained object-location
difficulty. A single candidate for OD focal point fixation isolated
by soe measurement and classified as self-contained dominant
element using by a higher precision value.

Some of the measurements isolate a single candidate for
OD focal point fixation, which is limited by a higher pre-
cision value and is classified as the voting standard’s self-
contained dominant element [37–40]. 1ey employed
likelihood maps in the recognition procedure. However,
throughout the test period, the difficulty with this strategy is
that it is both highly one-sided and computationally
expensive.

In other circumstances, the visual judgment is based on
some basic high priority knowledge and restricted potential
when it comes to detecting tiny distinctions and charac-
terizing novel image makers [41–44]. Some of the novel data
analytic and imaging techniques are used to improve the
quantitative information and also reduce the reader varia-
tions by applying any of the following [45, 46]: machine
learning (ML), deep learning (DL), and radionics. It also
improves prognostic and diagnostic accuracy ratios while
minimizing preconception.

Glaucoma and retinal fundus screening and diagnosis
system is fully automated [1]. A three-step procedure is
followed to achieve the above system. Initially, similar
template and condition techniques are combined together to
detect the OD. Second, texture-based segmentation is used
with the model to extract both retinal OD and OC. At last,
third, they used the CDR to distinguish between healthy and
glaucomatous individuals. 1e expert’s trained simulation
results show 98% accuracy on classifying the glaucomatous
or designated healthy eye [47]. 1e demonstrated results of
the proposed model have higher accuracy than those of the
existing model. All they intend to use is a cutting-edge
system to investigate the use of deep learning to improve the
performance of early glaucoma screening and diagnosis.

In addition, numerous computational techniques in arti-
ficial intelligence are used to diagnose diseased locations. A deep
learning method is used with some other fully automated
techniques [48]. 1e array-based technique is used in con-
junction by combining both VGG representation and fully
connected layers. An improved technique suggested for
detecting impacted regions using medical imaging is proposed
[49], transformation is performed to denoise the image, and an
optimizing approach is utilized to take out needed data from the
image. 1ese characteristics finally come up from an image
from its texture, size, and shape. Following feature extraction,
the priority technique picks 70%of the features. Finally, an SVM
classifier is used to classify the image [50, 51].

(a) (b)

Figure 1: (a) Healthy eye image. (b) Glaucomatous eye image.
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2.1. Segmentation of the Optic Disc. In the retina, a circular
region which is in dark yellow is the optic disk.1e OD has a
slightly circular form, although it is unique to everyone [52].
1e head of the optic nerve examines a huge number of
neurons. Since it lacks in color-detecting photoreceptors like
rods and cones, it is called as “blind spot.” For segmenting
the optic disk, various methods were discussed.

In order to segment the optical disc, a new template-
based approach is used [53]. 1e modified variance picture
was used to pinpoint the disc and retina rim part. 1e optic
nerve head is outlined in shape utilizing the watershed
technique and is able to obtain 90% accuracy by employing
this strategy [54]. A reliable mechanism for optical disc
location is also used in this mechanism. 1e following four
processes can be used for optic disc circular boundary
measurement: OD localization, filtering by the nonlinear
method, Canny edge detector for edge extraction, and cir-
cular boundary identification using the Hough transform
[55–57]. 1is results in the OD localization accuracy of 97%
and OD boundary extraction accuracy of 82%. 99.1% ac-
curacy is reached by using principle component analysis
(PCA) for optical disc localization; also, border identifica-
tion obtained an accuracy of 94% using the active shape
model (ASM).

A template matching technique is applied to identify the
figure of a picture using an active contour model. For
classifying images, a Bayesian classifier is used, which ef-
fectively categorizes images based on pixel-based classifi-
cation [58].

Conventional autoencoder (CAE) is used to extract
unlabeled picture features in this case. 1e autoencoder
(AE) assists in the development of a pretrained model by
learning features from the unlabeled input. After that,
transfer learning was used to train the constructed model,
which resulted in a 96% dice metric accuracy [59–61].
However, training both models took longer. Image seg-
mentation is a challenging task in medical imaging.
1erefore, deep learning is being used extensively in
picture segmentation. A full network channel for seg-
mentation can be implemented for obtaining good results
[29]. 1e implemented model aids in the retention of a
greater number of picture features as well as the resto-
ration of the image for a longer period of time. As a result,
this approach aids in the correct segmentation of the
optic disc. However, when it comes to segmenting the
optic cup, the same procedure fails.

3. Methodology

3.1. Overview of the Methodology. 1e color retinal images
are first preprocessed to create enhanced grey images. 1e
image patches around the vessel pixels are then retrieved
and reutilized for U-Net architecture improvement. 1e
picture prospect map is created by combining the patch
probability maps generated by the enhanced U-Net. Bi-
nary segmentation is used to produce the result of the last
segmentation process. Figure 2 shows the workflow of the
proposed method which identifies the segmentation re-
sults from the color retinal image.

1e network architecture is patch-based, as depicted in
Figure 3. 1e encoder path is on the left, while the decoder
path is on the right, as in the original U-Net architecture. In
all encoder layers, the convolution process is conducted with
a rectified linear unit (ReLU) and batch normalization to
build multichannel encoder feature maps. After that, the
downsampling procedure is performed. Next, the feature
maps are upsampled using the deconvolution layer in the
decoder pipeline. By using skip connections, the feature map
of the encoder path is interconnected with the appropriate
feature map’s upsample decoder [32, 62]. Finally, a softmax
function is used to activate the feature maps generated by the
final decoder layer. One channel probability is obtained for
vessels, while the other is determined for nonvessels.

1e existing architecture for segmentation can be im-
proved on the basis of the following two aspects:

(1) Input layer among many scales: the use of multiscale
input has been shown to improve segmentation
quality. For downsampling, the image average
pooling layer is used and obtains the output as
pictures with different scales which are fed into each
layer’s encoder path. Dissimilar to past endeavors,
which put multiscale pictures in multistream net-
works and intertwined the result guide of each or-
ganization as the last result, this work utilizes a
solitary result map for all organizations [63].

(2) Block with a lot of density: we employ a three-layer
dense block, as illustrated in Figure 4. For selecting
inputs of every layer, the earlier layer’s feature maps
are used; also, for subsequent layers, their own
feature maps are used. First two layers perform batch
normalization, ReLU activation, and convolution as
part of a transformation. Only ReLU activation is
implemented in the last layer [64–68].

3.2. Loss Function for the Optimizer. For optimizing the
network, Adam’s law is used. 1is law needs gradients of the
first order with minimal memory. To determine the indi-
vidual adaptive learning rates of different parameters, the
estimations of 1st and 2nd instants of slopes were used.

1e discrepancy between the expected and true distri-
butions of the picture pixel is measured using binary cross-
entropy. 1e following is the definition of the loss function:

loss � −
1
N



N

i�1
[Mi log(Qi) +(1 − Mi)log(1 − Qi)]. (1)

Here, N indicates no samples taken, Mi defines the
accurate label at the ith sample, and the expected probability
of the sample at the ith position is defined by Qi.

4. Experimental Setup

4.1. Data Taken for the Experiment. 1e suggested U-Net
architecture approach is tested with the DRIVE [69] dataset,
which is freely available. DRIVE is made up of 40 retinal
images, each of which was taken at 768584 pixels, with eight
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bits for each color plane taken. 1irty-three photos show no
symptoms of diabetic retinopathy, whereas seven exhibit
mild signs of premature diabetic retinopathy. In the ex-
periment, datasets are separated among 2 clusters. Among
40 images, 20-20 are taken for training and testing, re-
spectively. As ground truth, each training image contains

one manual segmented image, where two images are
manually segmented in each test data. Most prior techniques
employ the first one as the ground truth for evaluation
[25, 42]. We use the same approach as other methods to
ensure a fair comparison.

4.2. Parameter Setting. 1e deep learning implementation
API Keras id is used to execute the proposed method, and
the Adam optimizer uses 0.0001 learning rate for network
optimization. All the training images are doubled at the
whole training level [70]. In addition, 40 retinal color pic-
tures are improved and turned to grayscale. From the image,
96-bit patches are extracted as 20,484 and used as network
inputs.

In network training, the cluster size is set as 25 and
executed as three epochs. 1e images are converted as
grayscale images and follow the remaining as like the
training phase. From the grey image, 9696 patches were
extracted using a stride with 5.1 in both sides [71]. Next,
fixed forecast maps are acquired and covered to frame an
expectation picture. At last, with a limit of 0.5, binary
segmentation has been implemented.

4.3. Evaluation Metrics. Segmentation results are registered
by a picture veil characterized by the field perspective on the
pictures. Precision can be estimated by every one of the
measurements such as sensitivity (SE), specificity (SP), and
accuracy (ACC) and mean of affectability and explicitness.
We employ to assess the strategy (G-mean). 1e following is
a list of their definitions:

sensitivity(SE) �
true positive (TP)

true positive (TP) + false negative (FP)
, (2)

specificity(SP) �
true negative (TN)

true negative (TN) + false positive(FP)
, (3)

accuracy �
true positive (TP) + true negative(TN)

true positive (TP) + false negative (FN) + true negative (TN) + false positive(FN)
, (4)

G − mean �

��������������������������

sensitivity(SE) + specificity(SP)



. (5)

True positives (TPs) characterize vessels that are
perceived accurately as vessels, and true negatives are
nonvessel pixels recognized as nonvessels, whereas the
false positives are pixels of nonvessels which are recog-
nized as vessels, and the false negatives are pixels wrongly
delegated nonvessels.

Sensitivity (SE) is utilized here to ascertain how ac-
curately pixels are characterized and mentioned in (2).
Meanwhile, in (3), the number of accurately

characterized nonvessel pixels is represented by speci-
ficity (SP). All around, the accurately ordered picture
pixels are characterized in accuracy by using (4), which
determines the performance of the classifier model [72].
A geometric mean is calculated between the sensitivity
and specificity which lies between 0 and 1. Furthermore,
the suggested method’s performance is assessed using a
ROC curve; also, the area under the ROC (ARC) is cal-
culated to define implementation of the classifier. When a

Color Retinal Image 

Enhanced Gray Image 

Image Patches 

Patch Probability Map 

Image Probability Map 

Segmentation Result 

Preprocessing 

Patch Extraction 

Improved U-net 

Overlap Combination 

Binary Segmentation 

Figure 2: Proposed method’s workflow.
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high AUC value performance of the classifier is identified,
if it is 1, then the classifier is faultless.

5. Results and Discussion

5.1. Performance of U-Net. Table 1 shows the strategy’s
presentation on the DRIVE dataset, with the second human
spectator results filling in as a benchmark. Our strategy’s
normal sensitivity (SE), specificity (SP), accuracy (ACC), and
geometricmean (G-mean) by using equation (5), individually,
are 0.82, 0.98, 0.9661, and 0.8992. 1e four estimations are
generally better than the subsequent spectators.

Segmentation of two images is defined in Figure 5.
Figures 5(a) and 5(e) are the original retinal images. After
applying mask, resulting images are shown in Figures 5(b)
and 5(f ). Human observer result images are shown in
Figures 5(c) and 5(g). Finally, the proposed U-Net archi-
tecture result is shown in Figures 5(d) and 5(h). From
Figure 5, one can conclude that the proposed method
provides higher accuracy in classification than others.

5.2. Performance Comparison of the Proposed Method. To
present the proposed architecture performance, results are
compared from other researchers’ work from the net source
with the proposed method and plotted in Table 2. As a result,
the values of all sensitivity (SE), specificity (SP), accuracy
(ACC), and geometric mean (G-mean) are improved in the
proposed method U-Net model.

1e result of SE and ACC of each image segmentation is
shown in Figures 6(a) and 6(b). In Figure 6(a), the proposed
model’s sensitivity is higher than the existing model. 1e
accuracy of the proposed model is shown in Figure 6(b)
which is also comparatively higher than other methods.

In Figure 7, the curve of ROC is exhibited, and the AUC
values are displayed. 1e improved U-Net’s ROC curve is
nearer to the high left corner than the existing U-Net, as seen
in Figure 6. 1e upgraded U-Net has an AUC of 0.9796,
which is higher than the existing method (0.9553). 1is
shows that the proposed method strategy produces a more
accurate classifier.

To perform the accuracy comparison, the input image is
split into two sections in the case of thin vessel segmentation.
1in vessels are grouped together which have diameter less than
five pixels. Figure 8(a) shows the initial test ground truth image,
Figure 8(b) shows the ground truth for thin vessels, and
Figure 8(c) shows the ground truth for large vessels. 1in
vessels’ ground truth map is calculated to find the sensitivity of
both existing and proposed improved U-Net which is shown in
Figure 9. An improved U-Net is used to detect the thin vessels,
as shown in Figure 10. 1e proposed U-Net is also used to
segment the thin vessels; even their contrast is very poor.

5.3. Computational Time. 1emodel is run by an Intel Xeon
E5-2683 2.0GHz processor and a NVIDIA Titan XP GPU
framework. A retinal picture takes about 21.5 seconds to
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Table 1: Performance comparison for retinal blood vessel segmentation.

Model Sensitivity (SE) Specificity (SP) Accuracy (ACC) Geometric mean (G-mean)
Reference human observer 0.77 0.97 0.9010 0.8141
Proposed U-Net method 0.82 0.98 0.9661 0.8992

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Retinal images’ segmentation: (a, e) retinal images in color; (b, f ) result from masking; (c, g) human reference; (d, h) result of the
proposed U-Net architecture.

Table 2: Comparison between the traditional and proposed U-Net.

Model Sensitivity Specificity Accuracy Geometric mean
Vanilla U-Net 0.712 0.992 0.9557 0.8752
Proposed U-Net 0.82 0.98 0.9661 0.8992
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segment. 1e computational time taken for the task by
different methods is compared. We cannot compare the
processing time directly and honestly because the imple-
mentation software and platform are different. However, it is
shown in Figures 8 and 9 that the proposed strategy not just

beats all of the existing techniques as far as sensitivity,
specificity, accuracy, and geometric mean are concerned but
also additionally distinguishes slender vessels successfully.
For assisted diagnosis in the proposed method, segmenta-
tion achieves a better computing time of 21.562 seconds.

= +

(a) (b) (c)

Figure 8: 1in and large vessel partition.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

�
in

 V
es

se
l S

en
sit

iv
ity

Sample Images

Sensitivity of Improved U-net Model

Vanilla U-net
Improved U-net

Figure 9: Sensitivity of the improved U-Net model.

Image Manual 
Segmentation

Improved 
U-net

Vanilla
U-net

r1

r2

r3

r4

Figure 10: 1in vessel segmentation result representation.

8 Mathematical Problems in Engineering



6. Conclusion

1e proposed method uses vanilla U-Net that includes
multiscale inputs and dense block for segmenting retinal
blood vessels from the fundus image.. Compared to the
vanilla U-Net and other approaches, experimental findings
show that the improved U-Net method delivers high-quality
results in segmentation and computation. Furthermore, the
findings of the proposed method, in particular for the
segmentation of narrow arteries, indicate significant im-
provements. As a result, this approach is fundamental since
it can help doctors diagnose fundus-related disorders.
Currently, the proposed method only harvests picture
patches surrounding vessel pixels as the network’s input and
achieves an accuracy of 95.6% in 21.56 sec. 1is accuracy
level is comparatively higher than the traditional U-Net
architecture. As a result, the modified dense conventional
U-Net architecture contributes to better results in retinal
blood vessel segmentation.

In the future, other data augmentation strategies will be
used to improve the efficiency of medical diagnosis.1ey can
be used not only in retinal image classifications but also can
be used for other X-ray and CT images for biomedical
applications to improvise the modern healthcare system for
quick diagnosis [73, 74].
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[39] D. Maŕın, A. Aquino, M. E. Gegúndez-Arias, and J. M. Bravo,
“A new supervised method for blood vessel segmentation in
retinal images by using gray-level and moment invariants-
based features,” IEEE Transactions on Medical Imaging,
vol. 30, no. 1, pp. 146–158, 2010.

[40] A. M. Mendonca and A. Campilho, “Segmentation of retinal
blood vessels by combining the detection of centerlines and
morphological reconstruction,” IEEE Transactions on Medical
Imaging, vol. 25, no. 9, pp. 1200–1213, 2006.

[41] M. Z. Alom, C. Yakopcic, M. Hasan, T. M. Taha, and
V. K. Asari, “Recurrent residual U-Net for medical image
segmentation,” Journal of Medical Imaging, vol. 6, no. 1,
Article ID 014006, 2019.

[42] L. Jin, “3AU-Net: triple attention U-net for retinal vessel
segmentation,” in Proceedings of the 2020 IEEE 2nd Inter-
national Conference on Civil Aviation Safety and Information
Technology (ICCASIT, pp. 612–615, IEEE, 2020, October.

[43] G. B. Kande, T. S. Savithri, and P. V. Subbaiah, “Retinal vessel
segmentation using histogram matching,” in Proceedings of
the APCCAS 2008-2008 IEEE Asia Pacific Conference on
Circuits and Systems, pp. 129–132, IEEE, Macao, China, 2008,
November.

[44] S. Suthir and S. Janakiraman, “SNT algorithm and DCS
protocols coalesced a contemporary hasty file sharing with
network coding influence,” Journal of Engineering Research,
vol. 6, no. 3, pp. 54–69, 2018.

[45] Z. Yan, X. Yang, and K. T. Cheng, “A three-stage deep
learningmodel for accurate retinal vessel segmentation,” IEEE
journal of Biomedical and Health Informatics, vol. 23, no. 4,
pp. 1427–1436, 2018.

[46] X. You, Q. Peng, Y. Yuan, Y. M. Cheung, and J. Lei, “Seg-
mentation of retinal blood vessels using the radial projection
and semi-supervised approach,” Pattern Recognition, vol. 44,
no. 10-11, pp. 2314–2324, 2011.

[47] O. Oktay, J. Schlemper, L. L. Folgoc et al., “Attention u-net:
learning where to look for the pancreas,” 2018, https://arxiv.
org/abs/1804.03999.

[48] M. U. Akram, A. Atzaz, S. F. Aneeque, and S. A. Khan, “Blood
vessel enhancement and segmentation using wavelet trans-
form,” in Proceedings of the 2009 International Conference on
Digital Image Processing, pp. 34–38, IEEE, Bangkok,1ailand,
2009, March.

[49] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio,
“1e one hundred layers tiramisu: fully convolutional den-
senets for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition
workshops, pp. 11–19, Honolulu, HI, USA, July 2017.

[50] W. S. Oliveira, J. V. Teixeira, T. I. Ren, G. D. C. Cavalcanti, and
J. Sijbers, “Unsupervised retinal vessel segmentation using
combined filters,” PloS one, vol. 11, no. 2, p. e0149943, 2016.

[51] J. I. Orlando and M. Blaschko, “Learning fully-connected
CRFs for blood vessel segmentation in retinal images,” in
Proceedings of the International Conference On Medical Image
Computing And Computer-Assisted Intervention, pp. 634–641,
Springer, Virtual Event, September 2014.

[52] Q. Peng, X. You, L. Zhou, and Y. M. Cheung, “Retinal blood
vessels segmentation using the radial projection and

10 Mathematical Problems in Engineering

https://arxiv.org/abs/1603.04833
https://arxiv.org/abs/1603.04833
https://arxiv.org/abs/1804.03999
https://arxiv.org/abs/1804.03999


supervised classification,” in Proceedings of the 2010 20th
International Conference on Pattern Recognition, pp. 1489–
1492, IEEE, Istanbul, Turkey, 2010, August.

[53] K. Shanmugam, K. Subburathinam, and
A. Velayuthampalayam Palanisamy, “A dynamic probabilistic
based broadcasting scheme for manets,” Ee Scientific World
Journal, vol. 2016, Article ID 1832026, 8 pages, 2016.

[54] O. Ali, N. Muhammad, Z. Jadoon, B. M. Kazmi, N. Muzamil,
and Z. Mahmood, “A comparative study of automatic vessel
segmentation algorithms,” in Proceedings of the 2020 3rd
International Conference on Computing, Mathematics and
Engineering Technologies (iCoMET), pp. 1–6, IEEE, Sukkur,
Pakistan, 2020 January.

[55] G. S. Ramlugun, V. K. Nagarajan, and C. Chakraborty, “Small
retinal vessels extraction towards proliferative diabetic reti-
nopathy screening,” Expert Systems with Applications, vol. 39,
no. 1, pp. 1141–1146, 2012, [CrossRef] [Google Scholar].

[56] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
Proceedings of the International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241,
Springer, Munich, Germany, October 2015.

[57] S. Roychowdhury, D. D. Koozekanani, and K. K. Parhi,
“Blood vessel segmentation of fundus images by major vessel
extraction and subimage classification,” IEEE journal of
biomedical and health informatics, vol. 19, no. 3, pp. 1118–
1128, 2014, [PubMed] [CrossRef] [Google Scholar].

[58] D. Koukounis, C. Ttofis, A. Papadopoulos, and
T. 1eocharides, “A high performance hardware architecture
for portable, low-power retinal vessel segmentation,” Inte-
gration, vol. 47, no. 3, pp. 377–386, 2014, [CrossRef] [Google
Scholar].

[59] T. A. Soomro,M. A. U. Khan, J. Gao, T.M. Khan, andM. Paul,
“Contrast normalization steps for increased sensitivity of a
retinal image segmentation method,” Signal, Image and Video
Processing, vol. 11, no. 8, pp. 1509–1517, 2017, [CrossRef]
[Google Scholar].

[60] J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and
B. Van Ginneken, “Ridge-based vessel segmentation in color
images of the retina,” IEEE Transactions on Medical Imaging,
vol. 23, no. 4, pp. 501–509, 2004.

[61] N. Strisciuglio, G. Azzopardi, M. Vento, and N. Petkov,
“Supervised vessel delineation in retinal fundus images with
the automatic selection of B-COSFIRE filters,” Machine Vi-
sion and Applications, vol. 27, no. 8, pp. 1137–1149, 2016,
[CrossRef] [Google Scholar].

[62] T. Laibacher, T. Weyde, and S. Jalali, “M2u-net: effective and
efficient retinal vessel segmentation for real-world applica-
tions,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, p. 0, Long
Beach, CA, USA, June 2019.

[63] Q.Wang, Z. Yuan, Q. Du, and X. Li, “GETNET: a general end-
to-end 2-D CNN framework for hyperspectral image change
detection,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 57, no. 1, pp. 3–13, 2018.

[64] S. Wang, Y. Yin, G. Cao, B. Wei, Y. Zheng, and G. Yang,
“Hierarchical retinal blood vessel segmentation based on
feature and ensemble learning,” Neurocomputing, vol. 149,
pp. 708–717, 2015.

[65] X. Wang, X. Jiang, and J. Ren, “Blood vessel segmentation
from fundus image by a cascade classification framework,”
Pattern Recognition, vol. 88, pp. 331–341, 2019.

[66] X. H. Wang, Y. Q. Zhao, M. Liao, and B. Zou, “Automatic
segmentation for retinal vessel based on multi-scale 2D Gabor

wavelet,” Acta Automatica Sinica, vol. 41, no. 5, pp. 970–980,
2015.

[67] W. Xiancheng, L. Wei, M. Bingyi et al., “Retina blood vessel
segmentation using a U-net based Convolutional neural
network,” in Proceedings of the Procedia Computer Science:
International Conference on Data Science (ICDS 2018),
pp. 8-9, Beijing, China, June 2018.

[68] Z. Yan, X. Yang, and K.-T. Cheng, “Joint segment-level and
pixel-wise losses for deep learning based retinal vessel seg-
mentation,” IEEE Transactions on Biomedical Engineering,
vol. 65, no. 9, pp. 1912–1923, 2018, [PubMed] [CrossRef]
[Google Scholar].

[69] P. Elumalaivasan, S. Suthir, S. Ravikumar, V. Pandiyaraju, and
T. Munirathinam, “CBIR: retrieval of similar images using
median vector algorithm,” in Proceedings of the 2013 Inter-
national Conference on Green Computing, Communication
and Conservation of Energy (ICGCE), pp. 1–5, IEEE, Chennai,
India, 2013, December, [CrossRef] [Google Scholar].

[70] X. Yin, B. W.-H. Ng, J. He, Y. Zhang, and D. Abbott, “Ac-
curate image analysis of the retina using hessian matrix and
binarisation of thresholded entropy with application of tex-
ture mapping,” PLoS one, vol. 9, no. 4, [PMC free article]
[PubMed] [CrossRef] [Google Scholar], Article ID e95943,
2014.
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