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A new constrained multi-objective optimization coevolutionary algorithm (CCMO) based on the NSGA-II algorithm is proposed
to cope with the e�cient optimization of multiple objectives containing constraints in the optimal combined carbon-energy �ow
(OCECF).  e algorithm improves the convergence of the population by evolving a new auxiliary population that shares e�ective
information with the original population for weak cooperation, o�ering signi�cant performance advantages. Applying the
algorithm for reactive power control on two di�erent-sized IEEE benchmark systems (IEEE-57 and IEEE-300 bus systems),
respectively, minimizes carbon emissions and voltage deviations in the grid. Simulation results show that the CCMO algorithm
has signi�cant advantages in terms of the convergence speed and Pareto front.

1. Introduction

 e emergence of extreme weather and global warming
trends has gradually attracted the attention of many
scholars, which is closely linked to carbon dioxide (CO2)
emissions. In response to the demand to reduce carbon
emissions and mitigate climate change, power operators, as
signi�cant producers of CO2, need to be given prime focus
and take action on generation dispatch and grid carbon
emissions [1]. In recent years, renewable energy sources such
as solar power, wind power, and hydro power have entered
themarket, but a threatening share of fossil fuel power plants
remains. Carbon capture and storage technology is an ef-
fectual way to decrease emissions from the power sector’s
reliance on fossil energy [2]. Economic dispatch plays an
in�uential part in the operation of power systems by
searching for the ideal generation mix within the framework
of promised units subject to operational safety constraints
[3]. Over the past decade, many measures to control carbon
emissions have been proposed by researchers and scholars.
 e widespread integration of wind generation and the
expanded use of carbon capture facilities on combustion

units can signi�cantly curtail the amount of CO2 released
into the air. Nevertheless, although wind capacity is clean
and inexpensive, its volatile nature puts a lot of pressure on
the power system dispatch [4]. In order that the carbon
emissions can be reduced along with the production costs, a
powerful scheduling of an ambient economy through a clean
reliable energy for electricity generation with carbon capture
was proposed in [5]. With rising attention to climate risk
from air pollution and quality issues, in�exibility on the
demand side for electricity, and demands for reliability, the
power sector is focused on discovering solutions to drive a
more productive and greener industry, keep power prices
relatively constant, and provide the power generation
necessary to meet the future demand while ensuring that the
grid meets the resilient needs of local communities [6].

 ese studies mentioned above mainly focus on the
generation side, i.e., the total carbon emissions of the
bene�cial generators, ignoring the carbon emissions and
economic bene�ts of the grid operators. A composite electric
power system of the low carbon-optimized model [7] can
properly integrate various objective features such as energy
emissions, �ame cost, active energy loss, voltage excursion,
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and capital loss. +is tracking method determines carbon
emission obligations but inevitably double-counts carbon
emissions [8]. By studying the connection and association
between energy use and carbon emissions, the carbon
emission flow in the network is proposed and the funda-
mental computation method of emission is proposed. +is
problem may be addressed by means of typical optimality
techniques, such as affine programming algorithms, New-
ton’s method [9], etc. Nevertheless, the processing suffers
from system nonlinearities, function discontinuities, and
easy convergence to local minima [10], with unsatisfactory
performance. Traditional artificial intelligence algorithms
such as genetic algorithms [11] are used to modify them, but
due to their low stability of conversion, they can only obtain
locally optimal solutions. Particle swarm optimization (PSO)
is a swarm intelligence algorithm inspired by the natural
behavior of birds [12]. In recent years, the competitive
swarm optimizer (CSO) [13] has shown its ability to be
competitive in tackling large-scale single-objective optimi-
zation problems, and it is a novel swarm algorithm that
differs from particle swarm optimization (PSO).

In order to keep a tradeoff betweenminimizing goals and
meeting restraints, several investigators have put together
multiple mechanisms for dealing with restraints, which in
turn could be classified into two categories, consisting of
using separate restraint treatment schemes at separate stages
of evolution or in separate subtopics. For instance, the
adaptive tradeoff model (ATM) [14] makes use of both
distinct types of restrictive limit mechanisms at various
stages of evolution, including a polyobjective method and
self-adapting punishment factors. +e push-pull search
(PPS) framework separates the process of searches as a push
phase and a pull phase. In the push phase, the population
evolves without considering any restrictions, while in the
pull phase, all restrictions and goals are considered. NSGA-II
[15] has embedded viability within the Pareto domination, in
which the viable option governs the unviable option, and the
option with fewer infractions of restrictions governs the
other option with more infractions of restrictions. +e al-
gorithm proposed in this paper applies the search advan-
tages of NSGA-II, evolves an auxiliary population based on
the original population, and performs a weak cooperation,
which greatly improves the search efficiency by expanding
the scope of the search while reducing the search speed.

2. Mathematical Modeling of OCECF

2.1. Carbon-Energy Combined-Flow. In today’s available
research field, the equilibrium calculation of carbon footprint
is generally translated and measured in terms of primary
energy consumption, which does not exhibit the specific
characteristics of carbon emissions in the power system. As
one of the industries with the most significant carbon emis-
sions, the power sector bears the brunt of the responsibility for
carbon emissions. Power system carbon streams measure
carbon emissions in terms of power system tide calculations.
+e power system carbon current is a sort of virtual grid flows
that rely on power trend calculations to represent the amount
of carbon emitted to maintain any path in the power network

[9]. For carbon flow, not only factors such as grid configu-
ration, generators’ export, and nodal demand affect the
fluctuation, but also the carbon intensities of the generators
and the joint liability between the power producers and those
who use energy.+e calculation of CO2 flows relies mainly on
power tides for the purposes of analysis, and the carbon
emissionsof theentirepower systemareconsideredas theCO2
emissions of theCP on the generation side.+erefore, it can be
described as an accumulation of grid lossesCloss and demand-
side carbon emissions Cd, as outlined below:

CP � 
w∈W

Pwδw � Cd + Closs, (1)

where Pw in the matrix stands for the power transmission of
the w th generator; δw refers to the emission intensity of the
carbon of the wth generator; andW denotes gensets in total.

Essentially, electricity manufacturers, i.e., power plants
as well as electricity grid firms, are principally involved in the
quantum and fleet of their own carbon impacts [6]. For
factories and ordinary citizens, they are interested in the
quantities of their own carbon output. Accordingly, only the
former two would unavoidably contribute to multiply cal-
culations of carbon impacts. To refine this matter, the co-
responsibility algorithm applies an appropriate disaggre-
gation of the whole carbon impacts of electricity consumers
and producers, as summarized below:

Cp � 1 − αp Ce + αpCloss + 1 − βC( αpCL + αpβCCL, (2)

where αP indicates the proportion of producer’s duties
(0< αP< 1), which implies that not only the production of
energy is held responsible for the entire carbon bill and βC
indicates the proportion of the consumer’s role, 0< βC< 1.

+e grid company is obligated for the carbon footprint
with respect to carbon flows by performing an analysis of the
active power damage through the power tidal network. +e
power losses can be characterized as shown below:

Ploss � 
i,j∈NL

gij V
2
i + V

2
j − 2ViVj cos θij , (3)

where Vi and Vj represent the amount of voltage of the ith
and jth nodes; gij shows the conductivity of line i-j; θijmeans
the variation of the voltage phasor angle (node i and j); and
NL shows the branch set.

As such, the grid company performs the corresponding
liability of capital reduction Cpgc, which could be counted
accordingly as follows:

Cpgc � αpCloss + 1 − βC( αpCL, (4)

where Closs is derived by performing calculations based on
proportional allocation, and the proportionate contribution
rules can be displayed as listed below:

Cds � 
i,j∈NL


w∈W

α(−1)
jw ΔPij

Pj
′

⎛⎝ ⎞⎠Pwδw, (5)

where ajw(−1) describes the energy power factor between the
jth node and wth generator and Pij and Pj

′ denote the active
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energy depletion of line i-j and the aggregate energy stream
at the jth node in the equivalence of lossless power networks,
separately.

2.2.OptimizationModel. Active and reactive power dispatch
plays a crucial impact on the mixed flow of carbon energy.
+e power plant, the grid, and the electricity consumers act
together and change the active power dispatch scheme; only
the grid company influences and acts on the reactive power
dispatch. A simplified diagram of the combined carbon-
energy flow of the grid is presented in Figure 1. Hence, the
OCECF model attempts to minimize the voltage deviation
f1 and minimize the total carbon emission loss f2. +ese
two objectives need to be accomplished simultaneously and
can be written as follows:

minf1(x) � Vd,

minf2(x) � Cpgc.

⎧⎨

⎩ (6)

subject to

PGi − PDi − Vi 
j∈Ni

Vj gij cos θij + bij sin θij  � 0,

QGi − QDi − Vi 
j∈Ni

Vj gij cos θij − bij sin θij  � 0,

Q
min
Gi ≤QGi ≤Q

max
Gi , i ∈ NG,

V
min
Ci ≤Vi ≤V

max
Ci , i ∈ Ni,

Q
min
Ci ≤QCi ≤Q

max
Ci , i ∈ NC,

T
min
k ≤Tk ≤T

max
k , k ∈ NT,

Sl


≤ S

max
l , l ∈ NL,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where x denotes the subsystem vector, which can be replaced
by the voltage at the generator terminals, the individual tap
positions of the on-load tap-changer (OLTC) transformer,
the total number of connected capacitors and inductors, etc.
and Vd represents the voltage deviation index.

+e active and reactive power of the ith node is expressed
by PGi and QGi, respectively; while the active and reactive
power demand of the ith node is expressed by PDi and QDi,
respectively. QCi is the reactive power compensation of the
ith node; Bij is the sensitivity rate of transmission lines i-j; Tk
is the transformer tap ratio; Sl is the apparent power of
transmission line l; Ni is the node set; NG is the unit set; NC
denotes the device group used to compensate the reactive
power; NT is the set of transformer taps; and NL is the group
of branches. In turn, the index of voltage deviation is
specified as follows: [8]

Vd � 
i∈Ni

2Vi − V
max
i − V

min
i

V
max
i − V

min
i

���������

���������
. (8)

3. Coevolutionary Framework for Constrained
Multi-Objective Optimization Problems
(CCMO) for OCECF

3.1. Optimization Introduction. Constrained multi-objective
optimization problems are very common in engineering
applications, and multiple objectives as well as multiple
constraints are difficult for the algorithms to handle at the
same time. Some evolutionary algorithms perform well on
most multi-objective optimization problems but perform
poorly on convergence or diversity when there are many
constraints. To face this dilemma, a coevolutionary frame-
work for constrained multi-objective optimization was de-
veloped, which consists of the same optimizer evolving two
different populations Population1 and Population2. +e
former solves the initial optimization problem, and the latter
solves the auxiliary problem derived from the evolution of
the initial optimization problem, and these two populations
share and use each other for useful information. +e cir-
culating process flow chart of the proposed CCMO is
presented in Figure 2.

+e sequence of the operation of the algorithm is il-
lustrated in depth as follows:
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Carbon Emission
CP 

CO2

CO2

Carbon Flow

Energy Flow

Carbon Flow

Energy Flow

HV/MV MV/LV

Carbon Emission Loss Closs

Active Power Loss Ploss

Carbon
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Generation Side Power Grid Side Demand Side

CO2

CO2

Figure 1: Carbon-energy combined flow of the power grid.
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(1) Initialization:+e presented algorithm begins by
randomly generating two initial population Pop-
ulation1 and Population2 whose population size isN.

(2) Screening evolutionary process: In per round of it-
erations, two parent sets Parent1 and Parent2 are
chosen from Population1 and Population2, respec-
tively, using either of the mating selection strategies
in the multi-objective optimization algorithm.

(3) Evolutionary process of mating: +e above-
mentioned two parent sets (Parent1 and Parent2)
were crossed separately to produce one descendant
population each, i.e., the process yielded two de-
scendant populations. +en, Population1 and Pop-
ulation2 are combined with the two descendant
populations by mating, and the newly generated
populations are further screened for evolution
through a strategy of environmental screening.

(4) Output: +e optimal result of the final iteration is
returned to the Population1.

3.2. Case Studies of CCMO for OCECF

3.2.1. Introduction and the Computational Complexity.
OCECF is controlled on the principle of reactive power dis-
patching; hence, generator terminal voltage, transformer tap
ratio, andreactivepower compensationof shunt capacitors act
as controllable variables in this paper. +e algorithm uses
NSGA-II as a co-optimizer for the evolution of the two
populations. Assuming that N serves as the density of stock
size, D serves as the set of decision variables, M serves as the
number of objectives, and the least-case time complexity of
mating selection, genetic operator, and selectionon the setting
for NSGA-II is O(N), O(ND), and O(MN2), respectively.

CCMO evolved both populations under the same
strategy (NSGA-II), so the least-case time complexity of
mating selection, inheritance operators, and selection on the
environment for CCMO is as follows

2 × O N
2

  � O(N),

2 × O
N

2
D  � O(ND),

2 × O MN
2

  � O MN
2

 .

(9)

+e proposed CCMO has the same worst-case time
complexity as the used NSGA-II.

3.2.2. Parameter Setting. +ere are two commonly available
power systems (IEEE-57 bus system and IEEE-300 bus
system) that have been adopted to serve as benchmark
systems. +e initial problem in CCMO is set to function (6)
in OCECF in the experiments, and the auxiliary problem is
set to the primary problem in the absence of any restrictions.
Simulated binary crossover [16] and polynomial mutation
[17] were used to generate offspring in CCMO, where the
former probability was set to 1 and the latter one was set to 1/
D, and the distribution index of crossover and mutation was
set to 20. To further enhance population diversity, the
truncation strategy in SPEA2 [18] was used in the envi-
ronmental screening. +e number of objectivesM is set to 2
(the voltage deviation index Vd and the carbon emission
intensity Cpgc) and the set of decision variables D is 7. +e
number of populations N and the maximum number of
iterations MaxIteration are set to 150 in the IEEE-57 and set
to 100 in the IEEE-300, separately. PPS, a typically applicable
algorithmwith good convergence, is selected for comparison
experiments to compare the convergence and divergence on
the model of OCECF. +e parameters of the comparison
algorithm are kept consistent with the proposed algorithm
during the experiments.+emain parameters of CCMO and
PPS are given in Table 1. Moreover, the flow chart of CCMO-
based OCECF is displayed in Figure 3.
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Figure 2: Circulating process flow chart of the proposed CCMO.

Table 1: Main parameters of CCMO and PPS.

Algorithm Parameters setting IEEE-57 IEEE-300

CCMO

+e number of populations N 50 100
+e maximum iterations 50 100

+e set of decision variables D 7 7
+e number of objectives M 2 2

PPS

+e number of populations N 50 100
+e maximum iterations 50 100

+e set of decision variables D 7 7
+e number of objectives M 2 2

A 0.95 0.95
Τ 0.1 0.1
Cp 2 2
L 20 20
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4. Case Studies

+e NSGA-II based CCMO model was built due to its wide
applicability and good performance on most models. +e
Pareto front distribution of the OCECF model based on
CCMO and the comparison algorithm (PPS) on the IEEE-57
and IEEE-300 systems is shown below, with the same
simulation parameter settings in MATLAB for both algo-
rithms. +e IEEE-57 system has 7 generators, 57 buses, 80

branches, 17 transformers, 3 reactive power compensation
units, and 42 loads. In contrast, the IEEE-300 system has 69
generators, 300 buses, 411 branches, 107 transformers, 29
reactive power compensation devices, and 201 loads. In both
IEEE-57 and IEEE-300 bus systems [19], the controllable
variables are the combination of reactive power compen-
sation setting gears and transformer taps that minimize the
objective function. Table 2 illustrates the controllable vari-
ables of the IEEE-57 and IEEE-300 bus systems.
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Figure 3: Flow chart of the proposed CCMO for OCECF.

Table 2: Controllable variables of IEEE-57 and IEEE-300 bus systems.

System
Controllable variables

Reactive compensation Transformer tap
IEEE-57 Nodes 18, 25, 53 Circuits 4–18, 21–20, 34–32, 39–57, 7–29, 9–55

IEEE-300 Nodes 117, 120, 154, 164, 166,
173, 190, 231, 238, 240, 248

Circuits 9021–9022, 9002–9024, 9023–9025, 9023–9026, 9007–9071, 9007–9072,
9003–9031, 9003–9032, 9003–9033, 9004–9041, 9004–9042, 9004–9043, 9003–9034,
9003–9035, 9003–9036, 9003–9037, 9003–9038, 213–214, 222-237,227-231, 241–237,
45–46, 73–74, 81–88, 85–99, 86–102, 122–157, 142–175, 145–180, 200–248, 211–212,
223–224, 196–2040, 7003–3, 7061–61, 7166–166, 7024–24, 7001–1, 7130–130, 7011–11,

7023–23, 7049–49, 7139–139, 7012–12
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Figures 4(a)–4(c) plot the presentation of algorithms
CCMO and PPS applying the OCECF model on a typical
small-scale IEEE-57 system. Also, Figures 5(a)–5(c) plot the
performance of these two algorithms on an IEEE-300 large-
scale system. It can be seen from figures below that the
CCMO algorithm is superior to PPS in terms of the degree of
convergence of the Pareto solution and the uniformity of the
distribution. In the small-scale 57-node system, the ad-
vantages of the CCMO algorithm are mainly reflected in its
fast computational speed and less solution convergence rate
and nondominated solutions. However, in the large-scale
300-node system, the performance of CCMO (including the
computational speed, convergence speed, solution value
domain, and solution distribution) is more clearly presented
in the figure.

Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) is a commonly used multi-objective

decision analysis method. It determines the optimal solution
or the ranking among solutions by calculating the relative
closeness to the positive and negative ideal points (the
optimal and inferior solutions of each indicator) and
combining the multiple objectives into one value. In this
paper, an attempt is made to synthesize the results of the
Pareto front using the TOPSIS method, where the distance is
calculated using the Euclidean distance, yielding the need to
satisfy the minimization of carbon emissions and voltage
deviations, making it more suitable for practical applica-
tions. Taking a day as an example, one point was taken every
15minutes, i.e., divided into 96 points. Moreover, the two
algorithms mentioned above (CCMO and PPS) were applied
on OCECF for one complete day, and the resulting optimal
solutions of the Pareto front corresponding to the carbon
intensity and voltage deviation were plotted separately, and
the images are shown in Figures 6–9.
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Figure 4: Comparison of OCECFmodels based on CCMO and PPS at different typical time points on the IEEE-57 system: (a) IEEE-57 at 5 :
00; (b) IEEE-57 at 15 : 00; and (c) IEEE-57 at 20 : 00.
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Figure 6: CCMO-based OCECF model on the IEEE-57 system in one day: (a) voltage deviation and (b) carbon intensity.
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Figure 7: PPS-based OCECF model on the IEEE-57 system in one day: (a) voltage deviation and (b) carbon intensity.
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Figure 8: CCMO-based OCECF model on the IEEE-300 system in one day: (a) voltage deviation and (b) carbon intensity.
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Figure 9: PPS-based OCECF model on the IEEE-300 system in one day: (a) voltage deviation and (b) carbon intensity.
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As can be seen from Table 3 and Figures 7–9, the CCMO-
based OCECFmodel shows better performance than the PPS
on the IEEE-57 and IEEE-300, including less carbon in-
tensity and less voltage deviation. At the same time, it is
CCMO that has the superior advantage in terms of calcu-
lation speed.

5. Conclusions

+is paper develops an OCECF model based on the CCMO
co-evolutionary framework, in which two populations
evolving in CCMO cooperate with each other to solve the
OCECF problem of simultaneously reducing carbon emis-
sions and reducing voltage deviations. In contrast to other
algorithms, CCMO solves the original multi-objective
problem while evolving another auxiliary population to
solve the auxiliary problem derived from the original
problem. In contrast to other co-evolutionary algorithms,
the CCMO co-evolutionary population takes a weakly co-
operative approach, cooperating only in the generation of
offspring. As verified in Section 3, CCMO has significant
performance advantages when processing the OCECF
model for experiments on the IEEE-57 system versus the
IEEE-300 system: (1) fast computation and low complexity,
(2) superior Pareto front, and (3) small final obtained target
values (carbon emission losses and voltage deviations).
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