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Based on the advantages of cloud theory and the connection number approach in handling uncertain information, this paper
established a new quaternary connection number using the domain of interval corresponding to the centroid of a cloud model’s
expectation curve. Consequently, based on the cloud model theory of transformation between qualitative and quantitative
uncertainties, this study suggests a model describing uncertain information more precisely by combining the advantages of
quaternary connection numbers with three digital aspects of the cloudmodel.We de�ned the weighted nearness degree of the new
connection number and gave a solution for �nding the weight of the weighted nearness degree given that a three-parameter
interval number can more precisely represent the expert’s true intention than a classical interval number. �e method of
multiattribute group decision-making based on a cloud model’s quaternary connection number was developed using a novel
methodology to �nd the evaluation-index weight. According to a comparative analysis, the existing membership cloud gravity
center (MCGC) method is nothing more than an exception to our proposed decision-making technique. It was also demonstrated
that the proposal may present a more complete picture of experts’ overall evaluations and communicate their preferences by
adjusting the quaternion’s uncertain parameters, making the group decision-making approachmore widely applicable to a certain
extent. �e method was used to test a vessel’s counter�ooding capabilities to ensure its practicality and supremacy.

1. Introduction

Multiattribute decision-making (MADM) is one of the most
important and ubiquitous real-life activities for selecting a
suitable alternative among those required to achieve a
certain goal. �e information about accessing the alterna-
tives has always been considered to be in the form of real
numbers. However, in everyday life, ambiguity and insuf-
�cient knowledge make it di�cult for a decision-maker to
make an appraisal of an object. Zhao [1] created the set pair
analysis (SPA) theory, in which certainty and uncertainty are
examined as one system, to better handle uncertainties. �e
essential notions of SPA theory were addressed by Jiang et al.
[2]. �e fundamental idea behind SPA is to look at the
characteristics of a set pair and create a connection number
(CN) for them. To addressMADMproblems with a speci�ed
criteria weight and a criteria value that is an interval random

variable, Wang and Gong [3] suggested a decision-making
approach based on the SPA. Based on cumulative prospect
theory and SPA, Hu and Yang [4] suggested a dynamic
stochastic MADM. Using the TOPSIS approach, Xie et al. [5]
demonstrated a CN under an interval-valued fuzzy set. Aside
from this, some academics [6–9] used the SPA to handle
fuzzy decision-making problems. Shen et al. [10] de�ned
binary connection numbers (BCN) in SPA and utilized BCN
to multiattribute decision-making issues in an interval-
valued intuitionistic fuzzy set environment. Cloud theory,
proposed by Li [11], an academician of the Chinese Academy
of Engineering, is a method for resolving the fuzziness-
randomness problem. �e theory reveals the intrinsic re-
lationship between fuzziness and randomness, which pre-
sented a unique algorithm architecture that simpli�es the
conversion between qualitative concepts and their quanti-
tative representations. A cloud model is de�ned by three
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digital properties(Ex, En, He), in which Ex is the primary, or
most representative, value of a qualitative idea in the do-
main. *e entropy En measures a qualitative concept’s
fuzziness and reflects the concept-accepted value range in
the domain. As the entropyEn, the hyperentropy He indi-
cates the dispersion of cloud drops [11, 12].

A cloud model-based multiattribute decision-making
(CM-MADM) with Monte Carlo technique is developed to
address several challenges occurring in MADM problems
[13]. Based on the probability theory and fuzzy set theory,
the cloud model can study the detail of fuzziness of a
qualitative concept membership function as well as the
stochasticity by three numerical characteristics.

Currently, the cloud model is widely applied in the
comprehensive evaluation, systemic decision-making, and
data mining [14–16]. Many researchers have had positive
outcomes in their research areas using the membership
cloud gravity center (MCGC) [17], which is a common
approach of evaluating a cloud model. In the study on the
distribution of earnings from natural resource development,
for example, Li and Zhou employed the MCGC model to
show that a novel earning distribution strategy may make
such distribution fair and square [18]. Combining the fuzzy
extended analytical hierarchy process with the MCGC
method, Zheng found a better way to manage enterprise
knowledge [19]. To accurately evaluate the performance of
portable devices, Peng et al. came up with an MCGC-based
method [20]. Likewise, Zheng et al. put forward an MCGC-
based approach to cybersecurity evaluation by introducing a
cloud model to assess the cybersecurity situation [21]. Large-
sample group decision-making is now made possible by the
boom in big-data and computer technologies. Cloud theory
is effective in presenting the opinions of large groups,
whereas the dialectic set pair analysis can competently
manage a matter’s uncertainties on a macrolevel.

*e fact that CNs and interval numbers are isomorphic is
one of the key reasons why SPA can be utilized frequently in
MADM with interval numbers. *e CN is characterized by
both certainty and uncertainty. *e interval number has
upper and lower bounds that have been specified, as well as
uncertainty that can be arbitrarily valued within its scope. In
the CN, the uncertainty coefficient might range with in the
interval [− 1, 1].

*e particle swarm optimization (PSO) is a relatively
new notion of combinatorial metaheuristic algorithm which
is based on a metaphor of social interaction, namely, bird
flocking or fish schooling. In [22], Chatterjee and Siarry
considered nonlinear inertia weight variation for dynamic
adaptation in particle swarm optimization, where a new
variation of PSO model is considered which introduced
nonlinear variation of inertia weight along with a particle’s
old velocity to improve the speed of convergence and fine-
tune the search in the multidimensional space.

In this study, we developed cloud model’s connection
numbers, by utilizing three parameters’ interval number
containing upper and lower bounds as well as center of
gravity. By integrating CNs in SPA, the production of a
cloudmodel’s connection numbers reveals how cloud theory
renders data expression understandable within a big-data

context and exposes the laws governing the uncertainty of
overall information. On the theoretical basis of a cloud
model and the connection numbers in set pair analysis, we
proposed the following: (1) a cloud model-based method
determines quaternary connection numbers, which have
three digital features (Ex, En, He) of the cloud model and
fully express the model’s fuzzy information; (2) we coined an
arithmetic weighted average nearness of quaternary con-
nection numbers and put forth an approach to determi-
nation of the nearness’s weight; (3) we raised a new method
of determining the evaluation-index weight, given that the
interval number expressed by three parameters can more
accurately express an expert’s real intention; (4) we lever-
aged the results from the above three steps to develop a
multiattribute group decision-making method based on the
connection numbers of a cloud model and through com-
parative analysis proved that the MCGC model is merely an
exception to our proposed decision-making technique; and
(5) we verified our method’s practicality and superiority by
adopting it in the evaluation of a vessel’s counterflooding
capabilities.

To do so, the rest of the manuscript is summarized as
follows: Section 2 gives some overview on the cloud model
and CNs. In Section 3, a cloud model’s CN method for
MADM has been presented under the SPA in which the
assessments related to the attributes are taken in the form of
quaternary connection numbers (QCNs). *is section also
reveals that the following: (i) the definition of weighted
nearness degree of a QCN, (ii) determination method of
weight of a QCN’s nearness degree, (iii) determination
method of index weight based on three parameters interval
number, and (iv) steps of multiattribute group decision-
making based on cloud theory for QCNs; and Section 4 gave
the comparison of the proposed model and Section 5 studied
a numerical example as a case study.

2. Basic Theories on the Cloud Model and
Connection Numbers

2.1. CloudModel Basics. *e cloud model is a type of model
investigating the uncertain conversion between the quali-
tative concepts of natural language and their quantitative
representations.

Definition 1. Assume thatU is a quantitative domain U � x{ }

expressed by precise numerical values; C is the linguistic value
connected toU; themembership μC(x), which shows how the
x element in U falls under the qualitative concept expressed
by C, represents a random number with steady tendency, and
its distribution in the domain U is called a membership cloud,
or simply “cloud,” which can be expressed as

∀x ∈ U,∃μC(x) ∈ [0, 1], f: x⟶ μC(x). (1)

As a critical cloud model, the normal cloud is most
effective in expressing linguistic values.

Definition 2. If the random variable x satisfies x ∼ N(Ex,

E′2n ) and En
′ ∼ N(En, H2

e) and μ(x) satisfies μ(x) �

2 Mathematical Problems in Engineering



e− (x− Ex)2/2E′2n , then the membership cloud of x in the domain
is normal. When En ≠ 0, y � e− (x− Ex)2/2E2

n is known as the
expectation curve for the normal cloud.

Given that the normal cloud follows the 3σ rule gov-
erning the normal distribution, more than 99.73% of cloud
drops of the normal random number fall under the [Ex −

3En, Ex + 3En] range, and the overall features of the cloud
model are not affected by the cloud drops outside the range.

As is displayed in Figure 1 (where u �
�
2

√
/4), the digital

features of a membership cloud have the following impli-
cations [1].

(1) *e domain value corresponding to the centroid
A(Ex,

�
2

√
/4) in the membership cloud-covered area

reflects the central value of information about fuzzy
concepts.

(2) *e bandwidth of a membership cloud model’s
expectation curve indicates the fuzziness of fuzzy
concepts.

(3) *e randomly distributed variance of a membership
corresponding to the point B(Ex +

���
ln 8

√
En,

�
2

√
/4)

on a membership cloud-based expectation curve, or
the hyperentropy He, suggests the dispersion of the
membership cloud.

2.2. Backward Cloud Generator. *e backward cloud gen-
erator is designed to identify the three digital features
(Ex, En, He) of a cloud model by using the given cloud
drops. A variety of ideas about the generator’s algorithm
have been provided by scholars. Having considered the scale
of data for multiattribute group decision-making in practical
issues, we offered an optimized Algorithm 1 of the backward
cloud generator.

2.3. ConnectionNumber Basics. *e connection number is a
major instrument in set pair theory. It serves as a connector
between a certain number and its range and between
macroscopic certainties andmicroscopic uncertainties. Also,
it is a structure function that reflects the relationships of
studied subjects under various conditions. Its commonly
used form is the ternary connection number.

In [22], Chatterjee and Siarry introduced the concept of
an interval number a on real number R as follows:

a
⌢

� [aL, aU] � a: aL≺a≺aU, a ∈ R , where aL and aU are
the lower bound and upper bound of the interval, respec-
tively. Sengupta and Pal [23] defined a three-parameter
interval as a

⌢
� [aL, a∗ , aU], where aL is the lower bound, a∗

is the center of gravity (the number that has the highest
possibility), and aU is the upper bound of the interval. If
aL � a∗ � aU, then the three-parameter interval number is
reduced to a real number.

Definition 3. Assuming that A, B, C are real numbers and
i ∈ [− 1, 1], j � − 1, then

U � A + Bi + Cj, (2)

which is called a ternary connection number and A, B, and C

denote the identity, difference, and opposite degrees of any
two researched subjects.

Let A + B + C � N,μ� U/N,a � A/N,b � B/N,c � C/Nμ
be regarded as the ternary connection degree:

μ � a + bi + cj, where a, b, c ∈ R, a + b + c � 1. (3)

Particularly, U � A + Bi is called the binary or identical-
different connection number.

In practical decision-making scenarios, the actual
identity and difference degrees can be determined on a case-
by-case basis, making possible the generation of all forms of
the connection number, such as quaternary or quinary
connection numbers.

3. Multiattribute Decision-Making Method
Based on Cloud Model’s
Connection Numbers

3.1. Creation of Cloud Model’s Connection Numbers.
Various uncertain and fuzzy pieces of information must be
dealt with in a practical decision-making process. In
processing such information, many scholars have created
connection numbers according to the expression of in-
formation [15]. However, the existing methods of estab-
lishing connection numbers find it hard to express the
overall features of large-sample data. *e creation of a
cloud model’s connection numbers demonstrates how
cloud theory renders data expression reasonable within a
big-data context and shows the laws governing the un-
certainty of overall information by combining connection
numbers in set pair analysis. According to the three im-
plications of a cloud model’s digital features mentioned in
Section 2.1, the domain value corresponding to the centroid
A of the cloud model’s expectation curve reflects the central
information of fuzzy concepts; that is, the domain value
range can be used to develop quaternary connection
numbers for the cloud model, which can express the
model’s uncertain information more accurately. *e spe-
cific process is as follows.

Step 1: develop the equations for the internal and
external envelopes by involving the standardized cloud
model (Ex, En, He):

0

1

u A B DC

Ex 3En
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Figure 1: A sketch map of a cloud model.
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y � e
− x− Ex( )

2/2 En− He( )
2( 

,

y � e
− x− Ex( )

2/2 En+He( )
2( 

.

⎧⎪⎨

⎪⎩
(4)

Step 2: given the cloud model’s asymmetry, the right
half of the internal and external envelopes was
extracted for calculation of the corresponding abscissa
value when u �

�
2

√
/4:

xB � Ex +
���
ln 8

√
En − 3He( ,

xC � Ex +
���
ln 8

√
En + 3He( .

⎧⎨

⎩ (5)

In light of the 3σ rule, the abscissa of the D point was
xD � Ex + 3En.
Step 3: ensure that the quaternary connection number
satisfies U � A1 + B1i1 + C1i2 + D1i3 and make
i1, i2, i3 ∈ [− 1, 1], where

A1 � Ex,

B1 �
���
ln 8

√
En − 3He( ,

C1 � 6
���
ln 8

√
He,

D1 � (3 −
���
ln 8

√
)En − 3

���
ln 8

√
He.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Upon normalization, it was found that the quaternary
identical-different connection number for the cloud model
was μ � a + bi1 + ci2 + di3 and i1, i2, i3 ∈ [− 1, 1]:

a �
A1

N
,

b �
B1

N
,

c �
C1

N
,

d �
D1

N
,

N � A1 + B1 + C1 + D1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Built on the research on the abscissa interval of an ex-
pectation curve’s centroid, the method of creating the

quaternary connection number fully takes into account the
implications of the cloud model’s three digital features, thus
expressing the model’s uncertain data in a more compre-
hensive way.

3.2. Definition of the Weighted Nearness Degree of a Qua-
ternary Connection Number. As a concept in fuzzy math-
ematics, nearness degree measures the extent to which two
fuzzy subsets are similar to each other.

Definition 4. Assume A, B, C ∈ F(U), if the mapping
T: F(U) × F(U)⟶ [0, 1] satisfies the following conditions:

(1) T(A, B) � T(B, A).
(2) T(A, A) � 1, T(U,φ) � 0.
(3) If A⊆B⊆C, then T(A, C)≤T(A, B) and T(A, C)≤

T(B, C).

*en, T(A, B) is known as the nearness degree of A and B

fuzzy sets, and T is the nearness function in F(U).
Based on the aforementioned definition of the fuzzy set

nearness and the importance of fuzzy information contained
in all parts of a quaternary connection number, the nearness
of the quaternary connection number is defined.

Definition 5. Assuming that (μ1, μ2) are quaternary con-
nection numbers, μ1 � a1 + b1i1 + c1i2 + d1i3 and μ2 � a2+

b2i1 + c2i2 + d2i3, where a1 + b1 + c1 + d1 � 1, a2 + b2 + c2+

d2 � 1, and a1, b1, c1, d1, a2, b2, c2, d2 ∈ [0, 1]; then the
nearness of the two connection numbers is

T μ1, μ2(  � 1 − wa a1 − a2
����

���� + wb b1 − b2
����

���� + wc c1 − c2
����

����

+ wd d1 − d2
����

����,

(8)

where 0≤wa, wb, wc, wd ≤ 1 and wa + wb + wc + wd � 1. *e
definition can be straightforwardly proved to meet the three
conditions in Definition 3.

3.3. Weight Determination in Definition of a Quaternary
ConnectionNumber’sNearnessDegree. *is section provides

Input: the quantitative location of N cloud drops in the number field and the certainty of the quantitative concept represented by each
cloud drop.
Output: the expectation value Ex, entropy En and hyperentropy He of a quantitative concept.
*e detailed algorithm is as follows.

Step 1: solve E
∧

x and E
∧

n through the given cloud drop and the fitting using the least-squares method and the equation of the cloud
model’s expectation curve μ(x) � e− (x− Ex)2/2E2

n ;
Step 2: remove the points satisfying μ(x)> 0.999 and mark the remaining number of cloud drops as m;

Step 3: solve Eni
′ using the equation Eni

′ �

����������������

− (xi − E
∧

x)/2 ln(μi)



;

Step 4: solve H
∧

e with the standard deviation function H
∧ 2

e � 1/m − 1
�������������


m
i�1 (Eni

′ − E
∧

n)2



;

Step 5: output E
∧

x, E
∧

n, and H
∧

e, which are the expectation value Ex, entropy En , and hyperentropy He of a certain qualitative concept.

ALGORITHM 1: *e process of reverse cloud generator
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a new method of determining the weight in the definition of
a quaternary connection number’s nearness.

Assuming that, after standardizing the evaluation in-
formation of the evaluation index j(j � 1, 2, . . . , m) for all
plans A1, A2, . . . , An , the cloud model’s connection
number is μij � aij + biji1 + ciji2 + diji3 and i1, i2, i3 ∈
[− 1, 1], where i � 1, 2, . . . , n, j � 1, 2, . . . , m. Let the ideal
cloud model’s connection number of the indexes
j(j � 1, 2, . . . , m) in the model be μ0

j
� a0

j
+ b0

j
i1+ c0

j
i2 + d0

j
i3

and its average cloud model’s connection number be
j

μ �
j

a
+

j

b
i1 +

j

c
i2 +

j

d
i3, where

aj �
1
n



n

i�1
aij,

bj �
1
n



n

i�1
bij,

cj �
1
n



n

i�1
cij,

dj �
1
n



n

i�1
dij.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

*e optimized model is developed as follows:

minH � w
2
aj a

0
j − aj 

2
+ w

2
bj b

0
j − bj 

2
+ w

2
cj c

0
j − cj 

2

+ w
2
dj d

0
j − dj 

2

s.t.waj + wbj + wcj + wdj � 1, 0≤waj, wbj, wcj, wdj ≤ 1.

(10)

*e Lagrange function L � H − λ(waj + wbj + wcj+

wdj − 1) is created and solved:

zL

zλ
� 0,

zL

zwaj

� 0,
zL

zwbj

� 0,
zL

zwcj

� 0,
zL

zwdj

� 0. (11)

*en, we obtain

waj �
1

G · aj − a
0
j 

2
 

,

wbj �
1

G · bj − b
0
j 

2
 

,

wcj �
1

G · cj − c
0
j 

2
 

,

wdj �
1

G · dj − d
0
j 

2
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where

G �
1

aj − a
0
j 

2 +
1

bj − b
0
j 

2 +
1

cj − c
0
j 

2 +
1

dj − d
0
j 

2. (13)

*eweight determination method is designed to develop
a nonlinear planning model using the objective function or
the quadratic sum of the difference between the expected
and ideal values.*e smaller the objective function, themore
reasonable the corresponding plan for assigning the weight.
In this method, the difference between the expected and
ideal values of group decision-making information is fully
considered, which can objectively show how each part of the
connection number is prioritized in group opinions by
specific evaluation indices.

3.4. Method of Determining the Index Weight Based on the
Interval Number Expressed by <ree Parameters. In the
practical decision-making process, decision-makers tend
to evaluate information in the form of interval numbers,
given that experts find it complicated and uncertain to
describe the importance of indices. When a parameter is
expressed by an interval number expressed by two pa-
rameters, the opportunity to obtain a value within the
whole interval is believed to be equal, which would
produce a result far from the real intention of experts.
Hence, the section offers a novel method of determining
the index weight based on the interval number expressed
by three parameters.

Assume that, in the hundred-mark system, the score of
the index j(j � 1, 2, . . . , m) given by the expert
Si(i � 1, 2, . . . , n) is [Vij , Vij, Vij]; then the estimated
weighted value of the interval number expressed by three
parameters [wij , wij, wij] can be obtained upon normali-
zation through the following equation:

wij �
Vij


m
j�1 Vij

, wij �
Vij


m
j�1 Vij

, wij �
Vij


m
j�1 Vij

, (14)

where wij is the gravity center of the interval number. Let
d ±j � w+

j − w−
j be the maximal measure of the upper and

lower bounds of the index j’s estimated weights, where w−
j �

min w1j , w2j , . . . , wnj  represents the minimal value of the

lower bound of the index’s j(j � 1, 2, · · · m) estimated
values, while w+

j � max w1j, w2j, . . . , wnj  is the maximal
value of the upper bound of the index’s j(j � 1, 2, . . . , m)

estimated values.
Let the weighted preference deviation of the expert si

be hsi:

hsi �
w
∗
ij − wij

d
±

j

�
w
∗
ij − wij

w
+
j − w

−
j

�


m
j�1 w

∗
ij − wij 


m
j�1 w

+
j − w

−
j 

�


m
j�1 w
∗
ij − 

m
j�1 wij


m
j�1 w

+
j − w

−
j 

�
1 − 

m
j�1 wij

 m w
+
j − w

−
j j � 1

,

(15)

where w∗ij is what the expert Si believes the real weight of the
index j(j � 1, 2, . . . , m) is and hsi is the ratio of the index j’s
weight error to d ±j given by the expert si. (Note: the expert’s
weight error is measured by the difference between the
gravity center of the interval number expressed by three
parameters and the real weight.) Each evaluating expert may
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regard hsi consistently with each evaluation index, expressed
as j(j � 1, 2, . . . , m). *erefore, the estimated value of j’s
weight, expressed as w∗j (j � 1, 2, . . . , m), is

w
∧ ∗

j � hs w
+
j − w

−
j  + wj, (16)

where wj is an aggregation of wij(i � 1, 2, . . . , n) and hs is an
aggregation of hsi involving all participating experts. *e
equation 

m
j�1 w
∧ ∗

j � 1 can be easily proved.

Definition 6. Assuming that fk: Rn⟶ R is an n-element
function, k � (k1, k2, . . . , kn)T is a weighted vector associ-
ated with fk and satisfies 

n
i�1 ki � 1, ki ≥ 0 and

i � 1, 2, . . . , n. If fk(a1, a2, . . . , an) � 
n
i�1 kibi, where bi is

the number of i in a1, a2, . . . , an, a progression that goes
from largest to smallest, then the function fk denotes the
orderly weighted average (OWA) operator in the n

dimension.
*e definition suggests that the weighted coefficient ki of

the OWA operator is associated with the i spot in
a1, a2, . . . , an, rather than the number ai. When
k � (1/n, 1/n, . . . , 1/n)T, the OWA operator can be reduced
to a simple arithmetic average operator. *us, the aggre-
gation can be conducted by using the following simplified
equation.

hs �
1
n



n

i�1
hsi, wj �

1
n



n

i�1
wij. (17)

And, after they are substituted into (14), the estimated
aggregated value of the index weight, expressed as w

∧ ∗

j , can be
calculated.

3.5. Steps of Multiattribute Group Decision-Making Based on
CloudModel’s QuaternaryConnectionNumber. Plan sorting
has always been of critical importance in multiattribute
decision-making methods.*e section provides a method of
this kind by ranking plans based on the calculation of the
weighted arithmetic average nearness of the quaternary
connection number and ideal connection number in dif-
ferent cloud models. *e specific steps are as follows.

Step 1: have experts score of all plans in light of the
evaluation-index system and standards, generate
standardized cloud drops by indices oriented to ben-
efits and costs, translate these cloud drops into a cloud
model by using the backward cloud generator con-
structed according to Section 2.2, and subsequently
create digital features.
Step 2: use the method of creating a cloud model’s
connection numbers, as indicated in Section 3.1, to
construct the quaternary connection number for a
cloud model founded on scoring by experts, and obtain
a connection number-based decision-making matrix.

Step 3: develop the ideal cloud model by each index for
the creation of the quaternary connection number, and,
as instructed in Section 3.3, calculate the weight of each
part of the cloud model’s quaternary connection
number.
Step 4: calculate the weight of all indices in the given
index system as suggested in Section 3.4.
Step 5: measure the nearness of all proposed plans and
the ideal plan by using (8) and (12), respectively, and
calculate Tip, the overall nearness of all these plans,
through the following equation, where i � 1, 2, . . . , M

(M is the total of plans):

Tip � 
t

j�1
wjTj μij, μpj . (18)

In this equation, T is the total number of evaluation
indices, wj indicates the weight of each index, and μpj

denotes the quaternary connection number of each
index for the ideal plan.
Step 6: rank plans based on their overall nearness Tip.

4. Comparative Analysis between the MCGC
Model and the Decision-Making Method
Based on Cloud Model’s Quaternary
Connection Number

*eMCGCmethod is typical for evaluating a system using a
cloudmodel. Specifically, if the system status of m evaluation
indices is described by the m-dimensional comprehensive
cloud, then a changing system status would make the
comprehensive cloud and its gravity center altered. *ere-
fore, a possible evaluation way is through the weighted
deviation of the comprehensive cloud gravity center and
ideal cloud gravity center under a certain status. Also,
proposed plans can be sorted based on the weighted devi-
ation between their comprehensive cloud gravity center and
that of the ideal plan. *e detailed process is as follows [5].

(1) For a system to be evaluated, calculate the gravity
center vector G0 of the m-dimensional compre-
hensive cloud for the ideal plan A0 through

G
0

� G
0
1 , G

0
2
, . . . , G

0
m

  � a0 × b0, (19)

where a0 � (E0
x1, E0

x2, . . . , E0
xm) is the position vector

of the m-dimensional comprehensive cloud gravity
center and its component is the expectation value of
each index; b0 � (b0

1
, b0

2
, . . . , b0

m
) represents the alti-

tude vector of the comprehensive gravity center,
which is a determined value in a to-be-evaluated
system and is commonly known as the weight value
of each index [8].
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(2) For a given proposed plan Ai, provide its corre-
sponding m-dimensional cloud gravity center vector,
expressed as Gi, through the equation Gi � (Gi

1 ,

Gi
2, . . . , Gi

m) � ai × bi, where i � 1, 2, . . . , n.
(3) Give the definition of deviation of Gi and G0 in the

proposed plan Ai, calculate the deviation using
equation (17), and evaluate Ai based on the weighted
deviation.

θi � 
m

j�1
wjθ

i
j, i � 1, 2, . . . , n, (20)

where

θi
j �

G
0
j − G

i
j /G0

jG
i
j <G

0
j

G
i
j − G

0
j /Gi

jG
i
j ≥G

0
j

⎧⎪⎨

⎪⎩
j � 1, 2, . . . , m. (21)

Building on the aforementioned MCGC logic and steps,
we found the following.

Theorem 1. For a cloud model’s quaternary connection
number μ � a + bi1 + ci2 + di3 and i1, i2, i3 ∈ [− 1, 1], when
i1 � i2 � i3 � 0, the evaluation method based on a cloud
model’s quaternary connection number is equivalent to the
MCGC model.

Proof. As is known in the method of creating a cloud
model’s quaternary connection number (see (7)), a �

A1/N, N � A1 + B1 + C1 + D1, A1 � Ex. When i1 � i2 �

i3 � 0, the quaternion needs not to be normalized, meaning
that it is reduced to μ � Ex. And, for the proposed plan Ai, all
its indices are reduced to the cloud model’s expectation
values, expressed as Ei

x1, Ei
x2, . . . , Ei

xm.

As to the cloud gravity center’s structure, Ai’s position
vector ai � (Ei

x1, Ei
x2, . . . , Ei

xm) is, in essence, the expected
value of each index, and the altitude vector
bi � (bi

1, bi
2, . . . , bi

m) is the determined weighted value of
each index. For a particular evaluation system, the index
weight, once generated, is a determined value. Hence, each
component of Ai’s cloud gravity vector
Gi � (Gi

1, Gi
2, . . . , Gi

m) � ai × bi is the constant multiple of
an expected value or Gi � (w1E

i
x1, w2E

i
x2, . . . , wmEi

xm),
where w1, w2, . . . , wm are weights of indices.

As shown in (18) and (21), θi
j is determined by inves-

tigating the extent to which the two weighted vectors,
namely, (w1E

i
x1, w2E

i
x2, . . . , wmEi

xm) and (w1E
0
x1,

w2E
0
x2, . . . , wmE0

xm), deviate from each other. In the evalu-
ation method based on a cloud model’s connection
number, the overall nearness Tip is determined by observing
the deviation between (Ei

x1, Ei
x2, . . . , Ei

xm) and (E0
x1,

E0
x2, . . . , E0

xm). *erefore, when i1 � i2 � i3 � 0, the two
evaluation approaches are in practice equivalent.

*e abovementioned theorem and proof indicate that
the following.

(1) *eMCGCmethod is an exception to the evaluation
method based on a cloud model’s connection
number, where i1 � i2 � i3 � 0. For the latter, the

quaternary identical-different connection number
demonstrates how the expectation value plays its role
in index evaluation information and takes into ac-
count the full impact of the model’s entropy and
hyperentropy on evaluation.

(2) *e steps of evaluation based on a cloud model’s
quaternary connection number showed that, in a
practical decision-making process, expressing expert
preferences through appropriate adjustments to
(i1, i2, i3) can offset the evaluation error arising from
how the quaternary connection number’s weight
relies merely on objective numerical values rather
than expert preferences.

(3) Compared with the MCGC approach, the evaluation
method based on a cloud model’s quaternary con-
nection number collects more information from
experts, thus producing more science-based results.
Beyond that, (i1, i2, i3) in the connection number can
be tailored to the needs of the application context,
which makes results better aligned with the oper-
ating condition of the evaluation system.*at is how
the proposed method can be further applied across
different scenarios. □

5. Case Study

Among the damage control capabilities of a vessel, coun-
terflooding is vital. *ere are four indices to evaluate a ship’s
overall counterflooding performance, namely, the cabin’s
capabilities of leak stoppage, bearing, drainage, and bal-
ancing. All these indices are oriented to benefits. Eight
experts were invited to score the importance of these four
evaluation indices in the hundred-mark system using the
interval number expressed by three parameters, as is dis-
played in Table 1.

Table 1 is then normalized using (14), as shown in
Table 2.

Using (13), we calculated the determined weight devi-
ation degrees of experts, which were [− 0.2186 − 0.1976
− 0.3100 − 0.1524 − 0.1993 − 0.2141 − 0.1706 − 0.1857]. And
upon the aggregation of the OWA operator, we input these
values into (15) and obtained

hs � − 0.2060, w1 � 0.1808.w2 � 0.2286.w3

� 0.3121, w4 � 0.3184.
(22)

Lastly, with (16), we measured the estimated weight
value of these four counterflooding indices, which were

w
∧ ∗

1 � 0.1727, w
∧ ∗

2 � 0.2193, w
∧ ∗

3 � 0.2996, w
∧ ∗

4 � 0.3084. (23)

In addition, we had these experts’ score of the coun-
terflooding performance of three vessels, and each of them
was required to provide the score and corresponding
membership degree of the four indices in ideal and actual
scenarios. *en, the backward cloud generator, as instructed
in Section 2.2, was employed to translate the cloud drops
offered by experts into a cloud model, whose digital features
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are shown in Table 3. Among others, V0 represents the ship
equipped with ideal counterflooding capabilities.

Adopting the method of establishing a cloud model’s
connection number, as displayed in Section 3.1, we obtained

Table 1: Scoring of the importance of a vessel’s counterflooding indices.

Expert no Cabin leak stoppage capability Cabin bearing capability Cabin drainage capability Cabin balancing capability
s1 [40, 42, 46] [51 53 54] [71 74 80] [74 77 82]
s2 [39, 41, 44] [54 55 60] [71 75 79] [71 73 80]
s3 [43, 44, 46] [50 56 57] [69 72 77] [71 75 79]
s4 [40, 42, 45] [51 52 55] [70 73 75] [76 77 78]
s5 [38, 40, 43] [49 51 56] [74 76 83] [72 75 81]
s6 [40, 43, 47] [53 55 58] [73 74 82] [75 79 84]
s7 [44, 45, 49] [53 56 57] [72 74 81] [73 75 82]
s8 [45, 48, 50] [55 58 59] [75 77 84] [75 76 83]

Table 2: Normalized scoring of the importance of a vessel’s counterflooding indices.

Expert no. Cabin leak stoppage capability Cabin bearing capability Cabin drainage capability Cabin balancing capability
s1 [0.1695 0.1780 0.1949] [0.2161 0.2246 0.2288] [0.3008 0.3136 0.3390] [0.3136 0.3263 0.3475]
s2 [0.1660 0.1745 0.1872] [0.2298 0.2340 0.2553] [0.3021 0.3191 0.3362] [0.3021 0.3106 0.3404]
s3 [0.1845 0.1888 0.1974] [0.2146 0.2403 0.244] [0.2961 0.3090 0.3305] [0.3047 0.3219 0.3391]
s4 [0.1688 0.1772 0.1899] [0.2152 0.2194 0.2321] [0.2954 0.3080 0.3165] [0.3207 0.3249 0.3291]
s5 [0.1631 0.1717 0.1845] [0.2103 0.2189 0.2403] [0.3176 0.3262 0.3562] [0.3090 0.3219 0.3476]
s6 [0.1660 0.1784 0.1950] [0.2199 0.2282 0.2407] [0.3029 0.3071 0.3402] [0.3112 0.3278 0.3485]
s7 [0.1818 0.1860 0.2025] [0.2190 0.2314 0.2355] [0.2975 0.3058 0.3347] [0.3017 0.3099 0.3388]
s8 [0.1800 0.1920 0.2000] [0.2200 0.2320 0.2360] [0.3000 0.3080 0.3360] [0.3000 0.3040 0.3320]

Table 3: Digital features of a cloud model for evaluating a vessel’s counterflooding performance.

Vessel no. Cabin leak stoppage capability Cabin bearing capability Cabin drainage capability Cabin balancing capability
V 0 [85.20, 18.70, 1.20] [83.40 17.90 1.30] [86.50 19.20 2.10] [ 82.40 11.30 1.70]
V 1 [83.70 19.10 1.50] [84.10 18.90 1.41] [83.20 14.50 3.11] [81.70 10.10 1.54]
V 2 [ 85.70 18.20 2.10] [81.50 16.50 1.00] [85.70 17.10 2.30] [82.60 12.10 1.60]
V 3 [84.50 17.80 1.80] [82.90 18.20 1.20] [87.30 21.10 1.40] [ 80.70 12.30 1.43]

Table 4: Connection numbers of the cloudmodel for evaluating the
ideal counterflooding capabilities of vessel V0.

Evaluation indices Cloud model’s connection number
values by indices

Cabin leak stoppage
capability 0.6030 + 0.1541i1 + 0.0735i2 + 0.1694i3
Cabin bearing capability 0.6083 + 0.1473i1 + 0.0820i2 + 0.1624i3
Cabin drainage capability 0.6003 + 0.1291i1 + 0.1261i2 + 0.1445i3
Cabin balancing capability 0.7085 + 0.0769i1 + 0.1265i2 + 0.0881i3

Table 5: Connection numbers of the cloudmodel for evaluating the
ideal counterflooding capabilities of vessel V1.

Evaluation indices Cloud model’s connection number
values by indices

Cabin leak stoppage
capability 0.5936 + 0.1493i1 + 0.0920i2 + 0.1650i3
Cabin bearing capability 0.5973 + 0.1502i1 + 0.0866i2 + 0.1658i3
Cabin drainage capability 0.6567 + 0.0588i1 + 0.2124i2 + 0.0721i3
Cabin balancing capability 0.7295 + 0.0706i1 + 0.1190i2 + 0.0810i3

Table 6: Connection numbers of the cloudmodel for evaluating the
counterflooding capabilities of vessel V3.

Evaluation indices Cloud model’s connection number
values by indices

Cabin leak stoppage
capability 0.6108 + 0.1223i1 + 0.1295i2 + 0.1374i3
Cabin bearing capability 0.6221 + 0.1486i1 + 0.0660i2 + 0.1632i3
Cabin drainage capability 0.6174 + 0.1122i1 + 0.1434i2 + 0.1270i3
Cabin balancing capability 0.6947 + 0.0885i1 + 0.1164i2 + 0.1003i3

Table 7: Connection numbers of the cloudmodel for evaluating the
ideal counterflooding capabilities of vessel V4.

Evaluation indices Cloud model’s connection number
values by indices

Cabin leak stoppage
capability 0.6128 + 0.1297i1 + 0.1129i2 + 0.1446i3
Cabin bearing capability 0.6029 + 0.1531i1 + 0.0755i2 + 0.1685i3
Cabin drainage capability 0.5797 + 0.1618i1 + 0.0804i2 + 0.1781i3
Cabin balancing capability 0.6862 + 0.0982i1 + 0.1052i2 + 0.1103i3
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the following decision-making tables, as shown in
Tables 4–8.

*e weights of the connection number’s identical and
three difference degrees in each evaluation index were
calculated, as instructed in Section 3.3, and are shown as
follows.

According to (18), the nearness degrees between the
three vessels’ counterflooding capabilities and their ideal
performance were T1 � 0.9902, T2 � 0.9682, T3 � 0.9780,
respectively. *at suggested that vessel V1 boasted the
strongest counterflooding capabilities, followed by vessel V3
and vessel V2, consistently with the practical scenario.

6. Conclusions

*e quantitative analysis of uncertain and fuzzy infor-
mation has always been important in information pro-
cessing. Quantifying such information in group decision-
making would lead to reasonable and science-based re-
sults. Cloud theory and set pair analysis have made great
contributions to the research area. In this paper, based on
the strengths of a cloud model and the connection
number method in processing uncertain data, we (1)
proposed a new cloud model-based method of estab-
lishing a quaternary connection number, which has the
model’s three digital features (Ex, En, He) that render the
expression of the model’s uncertain information more
accurately and comprehensively; (2) we defined a new
weighted arithmetic average nearness degree of the
quaternary connection number and provided specific
steps to determine the weight of such a nearness degree;
(3) we offered a novel method of determining the weight
of an index based on interval numbers expressed by three
parameters, given the fact that the deviation degree re-
mains unchanged when each expert determines the index
weight; (4) we proposed an innovative multiattribute
group decision-making method built on a cloud model’s
connection number and through comparative analysis
proved that the MCGC method is an exception to our
proposed decision-making method. *e proposed ap-
proach can provide a fuller picture of the overall eval-
uation made by experts and express their preferences
through adjustments to the quaternary connection
number’s uncertain parameters, which makes the group
decision-making method more broadly applicable. Also,
the technique can be applied to decision-making in-
volving large-sample data and to the decision-making
context where evaluation values are measured through
modal particles. Nonetheless, when it comes to an ap-
plication context, it awaits more research efforts to find

out how to translate these particles into a cloud model
reasonably and make sensible adjustments to the values
(i1, i2, i3) in the model’s connection number, so that the
resulting decisions better suit the context [24–29].
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MCGC: Membership cloud gravity center
MADM: Multiattribute decision-making
SPA: Set pair analysis
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BCN: Binary connection number
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Cloud model-based multiattribute decision-
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PSO: Particle swarm optimization
QCNs: Quaternary connection numbers
U: Quantitative domain
μC(x): Membership
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