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'is work is devoted to present a generalized complex discrete fractional Gaussian map. Analytical and numerical analyses
of the proposed map are conducted. 'e dynamical behaviors and stability of fixed points of the map are explored. 'e
existence of fractal Mandelbrot and Julia sets is examined along with the corresponding fractal characteristics. 'e in-
fluences of the key parameters of the map and fractional order are examined. Moreover, nonlinear controllers are designed
in the complex domain to control Julia sets generated by the map or to achieve synchronization between two Julia sets in
master/slave configuration. Numerical simulations are provided to attain a deep understanding of nonlinear behaviors of
the proposed map. 'en, a suggested efficient chaos-based encryption technique is introduced by integrating the com-
plicated dynamical behavior and fractal sets of the proposed map with the pseudo-chaos generated from the modified
lemniscate hyperchaotic map.

1. Introduction

Mathematical models are used to describe and under-
stand the interesting behaviors of nonlinear systems,
which arise in different disciplines of science. 'ere are a
plethora of mathematical tools, which have proved their
efficacy in mathematical modeling of biological, physical,
engineering, economic, and natural systems. Among
these tools, the differential equations, difference equa-
tions, and statistical methods have attracted a consid-
erable interest [1–5].

However, when dealing with systems with memory,
that is, the associated rate of changes depends on the past
values of state variables in addition to the present values,
the conventional continuous-time differential equation
and discrete-time maps cannot describe these systems
properly. To address this issue, mathematicians and en-
gineers employ fractional calculus to formulate nonlocal

differential operators, which are necessary to study sys-
tems with memory. Firstly, they focused on the fractional-
order differential equations (FDEs) for the past two de-
cades. 'e electric circuits, fluid mechanics, electro-
magnetics, immune systems, nanofluids, epidemics, and
biological and financial systems are only examples of the
fields, where FDEs are of great importance [6–13]. 'ere
are a few definitions for fractional-order derivatives and
integrals, which have been developed so far such as Rie-
mann–Lioville, Caputo Grunwald–Letinkov, andWyl–Riesez
fractional operators. More details are provided in refer-
ences [14–18]. In reference [19], a fractional-order model
based on Atangana–Baleanu–Caputo fractional derivative
was proposed to understand the dynamics of differenti-
ation of stem cells. 'e state-of-the-art developments in
special functions and mathematical analysis tools asso-
ciated with fractional-order differential equations are
provided in reference [20].
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'e numerical solutions of FDEs are usually carried out
with high computational cost and induce several types of
numerical errors.

'erefore, while searching for an efficient and reasonable
alternative, it is recognized that the fractional difference
operators can be applied in a straightforward way to the
mathematical modeling of different nonlinear systems. More
recently, attention has been turned to the discrete fractional
difference equations [21–25], where they have been suc-
cessfully applied in different fields.

On the other side, complex maps are found to exhibit
very interesting and fascinating geometrical structures
known as Julia and Mandelbrot fractal sets [26–28]. 'ese
sets are known to have fractal dimensions and have many
interesting applications. 'e nonlinear dynamics and cha-
otic behavior of discrete fractional Gauss maps are inves-
tigated in the literature. It has been observed that the
fractional Gauss map is more stable compared with the
associated integer map. 'e width of period-3 windows is
found to increase with the decrement in the value of frac-
tional order [29]. Also, the synchronization for standard
integer-order Gauss maps and discrete fractional Gauss
maps has been studied using a parameter estimation scheme
[30].'e emerging nonlinear dynamics and synchronization
in coupled integer-order and fractional-order Gauss maps
with different topologies have been explored in reference
[31, 32]. 'e motivation of this study is based on the ob-
servation that the nonlinear characteristics and dynamics of
the fractional complex maps are still almost an unexplored
point in literature. Indeed, there are very few works that
begin to investigate only the case of fractional-order complex
differential equations [33, 34]. 'e present work extends the
aforementioned works to the more general and unexplored
case, where the state variable of the map has complex values,
and it also investigates the emerging Julia and Mandelbrot
fractal sets along with synchronization methodology of dis-
crete fractional Gaussian map in complex domain for the first
time, to the best of authors’ knowledge. Moreover, the present
work combines the induced fractal sets into a proposed ef-
ficient chaos-based encryption technique.

'e very complicated behaviors of chaotic systems along
with noise-like dynamics, very broadband spectrum, and
ability to attain synchronization between distant systems
have been utilized efficiently in a plethora of schemes for
chaos-based communications [35–52]. In the last two de-
cades, the chaos-based cryptography has become a focus
research point of great interest. 'e critical evaluation of
chaos-based encryption systems reveals that it is essential to
keep high complexity and dimensionality of chaotic dy-
namics in encryption schemes along with effectively pre-
venting any information leakage by possible eavesdroppers
attacks [40–42]. 'e chaotic maps, in particular, are easily
implementable on digital hardware, which can be
straightforwardly integrated with modern communication
systems. However, several works have highlighted the
problem of degradation and suppression of chaotic behavior
in simple structure and low-dimensional chaotic maps.
'ese problems result from hardware finite precision of
floating numbers [43–45]. Also, the small key space in these

chaotic maps is another drawback. 'e employment of
multiple chaos systems and switching between their outputs
is offered along with sufficient long finite precision com-
putations to improve the performance of chaotic maps [46].
'e pseudo-chaotic orbits can be employed as another so-
lution to the aforementioned chaos degradation issue
[47, 48]. More specifically, pseudo-chaotic time series can be
attained by subtracting the output sequences of two
mathematically equivalent chaotic maps, which are non-
equivalent in computations when machine finite precision is
considered [47, 48]. 'e application of discrete fractional
complex maps in the field of chaos-based encryption systems
is also an unexplored research point, to the best of our
knowledge. So, this article aims also at investigating this
challenging task and providing a reliable encryption ma-
chine based on the complicated dynamics of a proposed
fractional complex map.

'is study is organized as follows: the mathematical
model of the proposed discrete fractional complex Gaussian
map is presented in Section 2. 'e control and synchro-
nization of Julia sets generated by the proposed map are
examined in Section 3. 'e proposed hybrid chaos-fractal
encryption scheme is presented in Section 4, while the as-
sociated security analysis is addressed in Section 5. Section 6
contains conclusion and final discussion.

2. Discrete Fractional Complex Gaussian Map

'e discrete fractional complex Gaussian map is proposed in
the following form:

CΔα0z(t) � e
−az2(t+α−1)

+ b, (1)

where z, a≠ 0, and b≠ 0 take complex values, whereas the
fractional order α ∈ (0, 1]. 'e complex discrete fractional
map (1) has infinite number of fixed points, which can be
evaluated from the following equation:

e
−az∗

2

� −b, (2)

or

z
∗

�
ln|b| + i θ0 +(2k + 1)π􏼈 􏼉

a
􏼢 􏼣

1/2

,

k � 0, ± 1, ± 2, . . . ,

(3)

where θ0 denotes the principal argument of complex-valued
constant b. 'is means that the equilibrium points of the
proposed map are determined according to the assigned
values for a, b, and k.

'e asymptotic stability analysis of fixed points in the
complex fractional Gaussian map (1) is conducted in the
following subsection:

2.1. Stability Analysis of Fixed Points

Theorem 1. 4e fixed point z∗ of the fractional complex
Gaussian map (1) is locally asymptotically stable if
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−2az
∗
e

− az∗2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 2 cos
Arg −2az∗e− az∗2􏼐 􏼑 − π

2 − α
⎛⎝ ⎞⎠

α

,

Arg −2az
∗
e

− az∗2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
>
απ
2

.

(4)

Proof. Assume that ε(t) � z(t) − z∗, then the next linear-
ized map is derived from equation (1):

CΔα0ε(t) � −2az
∗
e

− az∗2ε(t + α − 1)

� cε(t + α − 1).
(5)

Expressing the above equation in terms of its real and
imaginary parts, it follows that

Δα0εr(t) + i
CΔαaεi(t) � cr + ici( 􏼁

· εr(t + α − 1) + iεi(t + α − 1)( 􏼁,
(6)

and therefore the next equivalent 2D discrete fractional
system is attained:

Δα0εr(t) � crεr(t + α − 1) − ciεi(t + α − 1),

Δα0εi(t) � ciεr(t + α − 1) + crεi(t + α − 1).
(7)

Now, the above two equations can be expressed as
follows:

Δα0εr(t)

Δα0εi(t)
􏼠 􏼡 �

cr −ci

ci cr

􏼠 􏼡
εr(t + α − 1)

εi(t + α − 1)
􏼠 􏼡, (8)

where it can be verified that the eigenvalues of the matrix of
coefficients are given by cr ± ici.

Define Λ by

Λ �
cr −ci

ci cr

􏼠 􏼡, (9)

such that tr(Λ) � 2cr. and det(Λ) � c2
r + c2

i > 0. 'e zero
equilibrium point of equation (8) is asymptotically stable if
its associated eigenvalues satisfy

������

c
2
r + c

2
i

􏽱

< 2 cos
tan− 1 ci/cr( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − π
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α

, tan− 1 ci
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.

(10)

For z∗ � [ln|b| + i θ0 + (2k + 1)π􏼈 􏼉/a]1/2, k � 0, ± 1,

± 2, . . ., the stability conditions reduce to

−2az
∗
e
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􏼌􏼌􏼌􏼌􏼌
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(11)

In this case, the trajectories which start from small initial
perturbations εr(0). and εi(0). around the origin will al-
gebraically decay to the equilibrium point such
that‖ε(n)‖ � O(n− α). as n⟶∞.

For the special case, where principal argument of b is
considered, that is, k � 0, we get

z
∗
1,2 �

1/2ln b2r + b2i( 􏼁 + i θ0 + π( 􏼁
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a
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2
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∗1/2 cos
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2
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ϕ0
2
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1

������
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2
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2
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2
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2
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(12)

where a � ar + iai and b � br + ibi,

r
∗

�

����������������������������������������������������

1
2
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2
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2
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2
+ ar θ0 + π( 􏼁 +

1
2
ailn b

2
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2
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2
􏽳
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2
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(13)
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'e specific forms of z∗1,2 can be substituted in above-
mentioned stability conditions to investigate their stability.

By the aid of numerical simulations, previous results re-
garding stability conditions of fixed points are validated for
different values of α, k, a, and b (Figure 1). 'e obtained so-
lution orbits indicate that the stability conditions are satisfied
for selected parameter sets employed in Figure 1.

2.2. Fractal Sets Induced by Discrete Fractional Complex
Gaussian Map. 'e notions of Julia fractal set and Man-
delbrot fractal set in integer-order complex-valued maps can
be extended to the general case of discrete fractional-order
complex maps. Given the next discrete fractional map of
order α

Δα0z(t) � Ψ(z(t + α − 1), μ), (14)

where Ψ: C⟶ C and μ ∈ C. 'e Julia set generated by
map (5) is described in the following definition
[26–28, 33, 34]:

Definition 2. 'e filled-in Julia set of complex-valued dis-
crete fractional map (5) is defined as the set Ω of initial
points z ∈ C, whose solution orbits are bounded. 'e
boundary of Ω set is referred to as zΩ and it is known as the
Julia set ΥαΨ of the map (5).

'e main characteristics of Julia set ΥαΨ are summarized
as follows [27, 28, 33, 34]:

(1) ΥαΨ ≠ϕ (Julia set is nonempty).
(2) ΥαΨ is invariant with respect to associated map (5) in

the forward and backward directions of time.
(3) Assuming that an attractive fixed point 􏽢z of the

discrete fractional map (5) has period p and exists at
α, then ΥαΨ includes the basin of attraction of 􏽢z.

'e well-knownMandelbrot set has been investigated by
Benoit Mandelbrot in 1979 [27, 28]. Its concept can also be
generalized to the discrete fractional case. More specifically,
fixing the value of fractional order α, the Mandelbrot set χαΨ
consists of the set of values of parameter μ ∈ C at which the
values of |z(t)|, t> 0 are bounded for z(0) � 0.

'e space-filling dimension can be employed to quantify
the fractal properties of Julia and Mandelbrot sets. In par-
ticular, the box-counting measure for dimension is one of
the most accessible measures in fractal analysis and it is
defined as follows:

Definition 3. Consider the nonempty bounded subset Ξ of
Rn and suppose that there are Nρ boxes with side length ρ,
which are required to cover the set Ξ. 'en, the box-
counting dimension (Minkowski–Bouligand dimension) is
determined by the following equation:

dimΞ � lim
ρ⟶0

log Nρ􏼐 􏼑

log(1/ρ)
, (15)

where Nρ is the number of boxes to cover Ξ. In addition, the
upper box dimension (entropy dimension) and the lower

box dimension (lower Minkowski dimension) of Ξ are also
defined, respectively, by the following equations:

dimΞ � lim
ρ⟶0

log Nρ􏼐 􏼑

log(1/ρ)
,

dim Ξ � lim
ρ⟶ 0

log Nρ􏼐 􏼑

log(1/ρ)
.

(16)

'e generation of Mandelbrot and Julia sets is explored
through numerical simulations at different values of pa-
rameters. 'e following table summarizes the obtained re-
sults at different values of fractional order α, constant q, and
exponent p. In addition, the box-counting dimensions for
the different cases considered in simulations are also pre-
sented in Table 1 'e corresponding Mandelbrot and Julia
sets are depicted in Figures 2 to 4.

3. Control and Synchronization of Julia Sets

'e problem of achieving control and synchronization of
Julia sets generated by the discrete fractional complex
Gaussian map is discussed in this section.

For two discrete fractional-order complex Gaussian
maps, the first map is known as the master map and it
produces the output z1(t), while the second map, with the
output z2(t), will be referred to as the slave one.

Definition 4. 'e synchronization between the master and
slave maps is achieved, if z2(t)⟶ z1(t) as t⟶∞. In
other words, it can be expressed as follows [33, 34]:

lim
t⟶∞

z2(t) − z1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0. (17)

When the synchronization is attained between two
trajectories, it implies that the corresponding characteristics
of convergence and divergence are identical. Assume that Υα1
and Υα2 denote the Julia sets induced by fractional-order
master and fractional-order slave Gaussian maps, respec-
tively, at fractional order α. 'erefore, the synchronization
between the mentioned two Julia sets can be defined as
follows [29,30]:

Definition 5. 'e asymptotic synchronization of the two
Julia sets Υα1 and Υα2 is satisfied if

lim
t⟶∞
Υα1 ∪Υ

α
2 − Υα1 ∩Υ

α
2( 􏼁 � ∅. (18)

3.1. Control of Julia Sets of Discrete Fractional Complex
Gaussian Map. In this section, the appropriate controller is
designed in order to change the characteristics and geometry
of Julia sets generated by the proposed fractional map via
varying the type of stability of one of the fixed points of the
present map. More specifically, we consider the feedback
controller in the following form:

ϱ(t) � −ς(z(t) − 􏽥z) − e
− az2(t)

− b, (19)

where 􏽥z is the selected unstable fixed point intended to be
stabilized under the influence of controller and ς � ςr + iςi
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represents the complex-valued gain of the controller, which
can be evaluated as follows:

Theorem 6. Assume that the gain ς of controller ϱ(t) of the
controlled fractional-order complex Gaussian map

Δα0z(t) � e
− az2(t+α− 1)

+ b + ϱ(t + α − 1), (20)

fulfills the two inequalities

ςr > 0,

������

ς2r + ς2i
􏽱

< 2α, (21)

then the fixed point 􏽥z become stable, such that the associated
Julia set in its neighborhood is changed.

Proof. By applying the control signal (6), we get the fol-
lowing controlled fractional-order complex map:

Δα0z(t) � −ς(z(t + α − 1) − 􏽥z). (22)

Defining δ(t) � z(t) − 􏽥z ∈ C, equation (22) takes the
following form:

-1.7

-1.6

-1.5

-1.4

-1.3

Re
 (z

n)

50 100 150 200 250 3000
n

(a)
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-3.2

-3.1

-3.0

Im
 (z

n)

50 100 150 200 250 3000
n

(b)

50 100 150 200 250 3000
n

-1.84

-1.83

-1.82

-1.81

-1.80

Re
 (z

n)

(c)

2.20

2.21

2.22

2.23

2.24

2.25

2.26

Im
 (z

n)
50 100 150 200 250 3000

n

(d)

Figure 1: Time series solution of fractional Gaussian map depicting stable fixed points at (a, b) a � 0.15 − 0.15i, α � 0.9, b � 0.71 + 0.25i and
(c, d) a � 0.3 + 0.2i, α � 0.85, b � 0.3 − 0.1i.

Table 1: Summary of fractal sets generated from complex fractional Gaussian map and their fractal dimensions.

Graph Fractal set Parameters Dimension

Figure 2(a) Mandelbrot set α � 1,

a � 0.5 + 0.3i
1.544

Figure 2(b) Julia set α � 1,

a � 0.5 + 0.3i
, b � 0.3 + 0.3i

1.838

Figure 2(c) Julia set α � 1,

a � 0.5 + 0.3i
, b � − 0.15 − 0.4i

1.6438

Figure 2(d) Mandelbrot set α � 1,

a � 0.19 − 0.5i

1.429

Figure 2(e) Julia set α � 1, a � 0.19 − 0.5i, b � 0.5 − 0.5i 1.8321
Figure 3(a) Mandelbrot set α � 0.8, a � 0.19 − 0.5i 1.753
Figure 3(b) Mandelbrot set α � 0.5, a � 0.19 − 0.5i 1.4775
Figure 3(c) Mandelbrot set α � 0.3, a � 0.19 − 0.5i 1.512
Figure 3(d) Julia set α � 0.8, a � 0.19 − 0.5i, b � 0.5 − 0.5i 1.781
Figure 3(e) Julia set α � 0.5, a � 0.19 − 0.5i, b � 0.5 − 0.5i 1.6574
Figure 3(f ) Julia set α � 0.3, a � 0.19 − 0.5i, b � 0.5 − 0.5i 1.932
Figure 4(a) Mandelbrot set α � 0.9, a � − 0.59 + 0.93i 1.5016
Figure 4(b) Julia set α � 0.9, a � −0.59 + 0.93i, b � − 0.75 − 0.05i 1.753
Figure 4(c) Mandelbrot set α � 0.5, a � 1.15 − 0.7i 1.483
Figure 4(d) Julia set α � 0.5, a � 1.15 − 0.7i, b � 0.5 − 0.5i 1.4485
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Δα0δ(t) � −ςδ(t + α − 1). (23)

'e corresponding two-dimensional real-valued frac-
tional map can be expressed as follows:
Δα0δr(t) � −ςrδr(t + α − 1) + ςiδi(t + α − 1),

Δα0δi(t) � −ςiδr(t + α − 1) − ςrδi(t + α − 1).
(24)

'en, the coefficients of the above system can be put in
the following matrix:

Λ �
−ςr ςi

−ςi −ςr

􏼠 􏼡, (25)

and the associated eigenvalues are computed as −ςr ± iςi.
Hence, the sufficient conditions required for local asymp-
totic stability of 􏽥z can be formulated as ςr > 0 and������
ς2r + ς2i

􏽱
< 2α. □

3.2. Synchronization of Julia Sets. 'e discrete fractional
master system is defined in the following form:

Δα0z1(t) � e
− az21(t+α− 1)

+ b, (26)

(a) (b) (c)

(d) (e) (f )

Figure 3: 'e Mandelbrot and Julia sets of generalized fractional Gaussian map obtained at specified values in Table 1.

(a) (b) (c) (d)

(e)

Figure 2: 'e Mandelbrot and Julia sets of generalized fractional Gaussian map obtained at specified values in Table 1.
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whereas the corresponding slave system is formulated as
follows:

Δα0z2(t) � e
− az22(t+α− 1)

+ b + ϕ z1, z2, t + α − 1( 􏼁, (27)

where ϕ(z1, z2, t + α − 1) is the adequate controller to be
designed. Note that the initial values of two systems are
assumed to be different and since the present map has
infinite number of fixed points, the solutions z1 and z2 may
converge to different fixed points in the way that they induce
distinct filled Julia sets. When the synchronization is
achieved between the two maps, it is achieved for the as-
sociated Julia sets.

Theorem 7. 4e two fractional maps (8) and (9) are syn-
chronized under the influence of the following controller:

ϕ z1, z2, t + α − 1( 􏼁 � e
− az21(t+α− 1)

− e
− az22(t+α− 1)

− κ z2(t + α − 1) − z1(t + α − 1)( 􏼁,

(28)

where the gain κ � κr + iκi, satisfying |κ|< 2α and κr > 0.

Proof. 'e discrete fractional error map is obtained by
subtracting equation (8) from equation (9) as follows:

Δα0e(t) � e
− az22(t+α− 1)

− e
− az21(t+α− 1)

+ ϕ z1, z2, t + α − 1( 􏼁,

e(t) � z2(t) − z1(t).

(29)

Using the proposed controller (10) into the above
fractional error system, it results in

Δα0e(t) � −κe(t + α − 1), (30)

or

Δα0 er(t) + iei(t)( 􏼁 � −κr − iκi( 􏼁

· er(t + α − 1) + iei(t + α − 1)( 􏼁,
(31)

which can be expressed in the following two dimensional
system:

Δα0er(t) � −κrer(t + α − 1) + κiei(t + α − 1),

CΔei(t) � −κier(t + α − 1) − κrei(t + α − 1).
(32)

It is obvious that the eigenvalues of error system are
−κr ± iκi, so that the asymptotic stability to zero fixed point
of error system is attained provided that |κ|< 2α and κr > 0.

Numerical simulations are now employed to validate the
theoretical results acquired in this section. 'e synchroni-
zation between orbits of two fractional-order complex
Gaussian maps initiated from different initial conditions is
shown in Figure 5. □

4. Proposed Encryption Algorithm

'e objective of this section is to introduce an efficient
chaos-based encryption technique, which utilizes the idea of
pseudo-chaotic dynamics along with complicated fractal
patterns to boost its security performance.

Consider the following two modified chaotic lemniscate
maps [47]:

x1(n + 1) �
cos 23/2+r cos 2r

x1(n)􏼂 􏼃sin 2r
x1(n)􏼂 􏼃/1 + sin2 2r

x1(n)􏼂 􏼃􏽨 􏽩

1 + sin2 23/2+r cos 2r
x1(n)􏼂 􏼃sin 2r

x1(n)􏼂 􏼃/1 + sin2 2r
x1(n)􏼂 􏼃􏽨 􏽩

,

y1(n + 1) �
2

�
2

√
cos 2r cos 2r

y1(n)􏼂 􏼃/1 + sin2 2r
y1(n)􏼂 􏼃􏽨 􏽩sin 2r cos 2r

y1(n)􏼂 􏼃/1 + sin2 2r
y1(n)􏼂 􏼃􏽨 􏽩

1 + sin2 2r cos 2r
y1(n)􏼂 􏼃/1 + sin2 2r

y1(n)􏼂 􏼃􏽨 􏽩
,

(33)

(a) (b) (c) (d)

Figure 4: 'e Mandelbrot and Julia sets of generalized fractional Gaussian map obtained at specified values in Table 1.
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x2(n) �
cos 23/2 cos 2r

x2(n)( 􏼁/
���������������

1 + sin2 2r
x2(n)( 􏼁

􏽱

× 2r sin 2r
x2(n)( 􏼁/

���������������

1 + sin2 2r
x2(n)( 􏼁

􏽱

􏼔 􏼕

1 + sin2 23/2 cos 2r
x2(n)( 􏼁/

���������������

1 + sin2 2r
x2(n)( 􏼁

􏽱

× 2r sin 2r
x2(n)( 􏼁/

���������������

1 + sin2 2r
x2(n)( 􏼁

􏽱

􏼔 􏼕

,

y2(n) �
2 cos 2r/

���������������

1 + sin2 2r
y2(n)( 􏼁

􏽱

× cos 2r
y2(n)( 􏼁/

���������������

1 + sin2 2r
y2(n)( 􏼁

􏽱

􏼔 􏼕

1 + sin2 2r cos 2r
y2(n)( 􏼁/1 + sin2 2r

y2(n)( 􏼁􏽨 􏽩
×
sin 2r sin 2r

x2(n)( 􏼁/1 + sin2 2r
x2(n)( 􏼁􏽨 􏽩

1/
�
2

√ .

(34)

It is obvious that these two maps are mathematically
equivalent, yet the finite floating-point representation ren-
ders the corresponding orbits diverge exponentially from
each other even in the case where identical initial conditions
are used. Now, a set of q random perturbation values,
b1, b2, . . . , pq􏽮 􏽯, is chosen and used to update the generated
sequences from the above two systems as follows:

For n � 1: 1000

Xi(n) � xi(n) + b1,

Yi(n) � yi(n) + b1,

i � 1, 2.

(35)

For n � 1001: 2000

Xi(n) � xi(n) + b2,

Yi(n) � yi(n) + b2,

i � 1, 2.

(36)

. . ..
For n � (q − 1)(1000) + 1: q × 1000,

Xi(n) � xi(n) + bq,

Yi(n) � yi(n) + bq,

i � 1, 2.

(37)

'e modular one operations are employed to get

􏽢Xi(n) � mod Xi(n), 1( 􏼁,

􏽥Yi(n) � mod Yi(n), 1( 􏼁,
(38)

and hence, the associated lower bound errors can be ob-
tained by setting

eX(n) �
􏽢X1(n) − 􏽢X2(n)

2
,

eX(n) �
􏽢Y1(n) − 􏽢Y2(n)

2
.

(39)

Fractal images are used in the proposed encryption
technique to boost the security performance of the technique
via incorporating additional layers of encryption. More
specifically, the color components of each pixel in randomly
selected two fractal images are used to confuse the values of
each color component in the way that the first fractal image
is used with the plain image and the second one is concerned
with the shuffled plain image. In order to control and reduce
the computation cost, a catalog of secretly pregenerated
fractal images can be saved and then employed as one of the
secret keys in the scheme. 'e advantages of using discrete
fractional complex maps in the generation of fractal images
are that they significantly increase key space. In particular,
the two complex-valued parameters a and b in addition to
the real-valued parameters α, r, x(0), and y(0) are the key
parameters in the system in addition to the random per-
turbing values for pseudo-chaotic signals. 'is implies that
using IEEE 754 double-precision floating-point format, the
established key space is approximately 23922 for 256 × 256
plain images and increases considerably for larger plain
images. 'e pseudo-chaotic time series represented by the
obtained lower bound errors are utilized in the encryption
process as illustrated in the next section.
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Figure 5: Synchronization errors between master and slave systems at a � 0.15 − 0.15i, α � 0.9, b � 0.71 + 0.25i, where initial value for
master system is (−1.43 − 3i) and that for slave system is (−1.4 − 2.8i), whereas κ � 1 + i.
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4.1. Steps of the Proposed Algorithm

Step 1. 'e original color image is separated into
R-channel Pr, G-channel Pg, and B-channel Pb, which
are arranged into three matrices of size M × N.
Step 2. Establish three time-varying and plain-image
dependent perturbation values ξr,g,b by evaluating

ξr,g,b � ]τ(t) +
1

3(M × N)
2 􏽘

M

i�1
􏽘

N

j�1
Pr,g,b(i, j), (40)

where the value of τ(t) refers to a scaled value of time
difference between the moment when the plain image
was supplied to encryption machine and another se-
cretly specified moment in the past, for example, 10 :
45 :12 : 73 Jan 1, 2000. 'e difference can be taken in
units of milliseconds. Also, the scaling factor ] is used
to render ]τ(t)spans the required range of time range.
Moreover, i and j are pixel positions of the R-channel,
G-channel, and B-channel matrices of plain images,
that is, Pr, Pg, Pb, respectively. We use ξr,g,b. as per-
turbation values for chaotic map parameter r, such that

r1,2,3 � r0 + ξr,g,b, (41)

where r0 is a base-value for r. 'erefore, three pseudo-
chaotic sequences are generated and utilized in per-
mutation and diffusion processes of the aforemen-
tioned three plain image channels.
Step 3. 'e chaotic lemniscate map is used to generate
two pseudo-chaotic sequences ex(i), ey(i) and used in
creating the following sequences:

rowColi � mod floor ex(i) × 1015􏼐 􏼑, 450􏼐 􏼑 + 1,

ksi � mod floor ey(i) × 1015􏼐 􏼑, 256􏼐 􏼑.
(42)

We use mod operation between variables xi and M �

N to get a sequence to build a new position for pixels
value image matrices IR, IG, IB as shuffling process.
Also, we use mod operation between the variable yi and
256 to get a random sequence that we used it in en-
cryption process as a secret key.

Step 4. We get row(j) and column(j) as a new position
of image pixels, where j � 1, 2, . . . , M, from rowColi
sequence.
Step 5. Rearrange the pixel position as shuffle process as
follows:

IRsh(i, j) � IR(row(i), column(j)),

IGsh(i, j) � IG(row(i), column(j)),

IBsh(i, j) � IB(row(i), column(j)),

(43)

where IRsh and IR are the matrix for shuffled and plain
images, respectively, where i � 1, 2, . . . , M and
j � 1, 2, . . . , N are the image matrix dimensions.
Step 6. We use two randomly selected fractal images
from previously constructed catalog, for example,
Figures 6(a) and 6(b), as secret keys Keyf1 and Keyf2
for each red, green, and blue color images by separating
each color image from each fractal image and using it as
secret keys with corresponding color in the plain image.
'erefore, we have six secret keys based on the two
fractal images.
In addition, to enhance the confusion of the secret key,
we do a shuffle process as in step 4 to R-channel,
G-channel, and B-channel of fractal image (Figure 6(a))
before using them as a secret key.
Step 7. We divide the sequence ks to three sequences
ksr, ksg, ksb for each color in the plain image. To set the
secret keys in matrix form, the reshape function is used
as follows:

ksR � reshape(ksr, M, N),

ksG � reshape(ksg, M, N),

ksB � reshape(ksb, M, N),

(44)

to be used as secret keys ksR, ksG, ksB for red, green,
and blue channels in the plain images, respectively.
Step 8. Apply two bitwise XOR operation between
Keyf, ks, Ish to establish the encrypted image Ien as
follows:

IRen(i, j) � IRsh(i, j)⊕KeyfR1(i, j)􏼐 􏼑⊕KeyfR2(i, j)􏼐 􏼑⊕ ksR(i, j),

IGen(i, j) � IGsh(i, j)⊕KeyfG1(i, j)􏼐 􏼑⊕KeyfG2(i, j)􏼐 􏼑⊕ ksG(i, j),

IBen(i, j) � IBsh(i, j)⊕KeyfB1(i, j)􏼐 􏼑⊕KeyfB2(i, j)􏼐 􏼑⊕ ksB(i, j),

(45)

where IRen, IGen, and IBen are the encrypted images for
each color component in plain image.

'e process of decryption is carried out using the reverse
approach. 'e proposed encryption scheme is applied to
three colored images. 'e three perturbation constants that
are used in the proposed scheme are 3.9724 × 10− 4,

3.7782 × 10− 4, and 4.0288 × 10− 4 for baboon, pepper, and
house images, respectively. 'e values of r0, x(0), y(0) are
taken as 35, 0.5, 0.5, respectively. Figure 7 depicts the
original, shuffled, and encrypted images for the three images
with size M � N � 450 after applying the presented
algorithm.
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5. Security Analysis

'e proper encryption scheme must be evaluated to in-
vestigate his efficacy in resisting several types of attacks.
'ese involve brute force, statistical, differential, known-
plaintext, chosen-plaintext, and chosen-ciphertext attacks.
In this section, a thorough security analysis is carried out
considering these types of attacks.

5.1. Histogram. 'e histogram analysis is used to visualize
the distribution of pixels in an image before and after the
encryption process. Uniformity of pixels distribution in
encrypted data implies that statistical features of input data
are efficiently hidden by encryption operation. Histograms
for red, green, and blue plain, shuffled, and encrypted images
for baboon image are shown in Figure 8 whereas histograms
for red, green, and blue plain, shuffled, and encrypted images

(a) (b)

Figure 6: Example of fractal images that are generated by the proposed fractional complex map (1).

(a) (b) (c)

Figure 7: 'e plain, shuffled, and encrypted images in (a), (b), and (c), respectively, for baboon, pepper, and house images.
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for pepper image are shown in Figure 9. Finally, histograms
for red, green, and blue plain, shuffled, and encrypted images
for house image are shown in Figure 10.

In order to quantify the uniformity of histograms, the
variance of histogram is utilized as a useful measure. 'e
variance of histogram is calculated as follows [51]:

Var(h) �
1

2562
􏽘

256

i�1
􏽘

256

j�1

1
2

hi − hj􏼐 􏼑
2
, (46)

where h represents the histogram values arranged in vector
form and hi and hj denote the numbers of pixels having values
of i and j, respectively. 'e variance of histogram for original
and ciphered images is depicted in Table 2 with the percentage
of reduction between the plain and encrypted images. Noting
that the percentage of reduction is greater than 99.6% in the
red, green, blue baboon images and greater than 99.8% in three
separated colors for pepper and house images. 'ese results
confirm the efficiency of the proposed technique.
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Figure 8: Histograms for (a) red, (b) green, and (c) blue baboon image for plain, shuffled, and encrypted image, respectively.
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5.2. Key SpaceAnalysis. Evaluating the size of secret key space
in a specific encryption technique is a crucial step to evaluate its
performance against brute force attacks. When the capabilities
and characteristics of the state-of-the-art computer are taken
into account, it is found that a threshold value for a minimum
sufficient key space is a size of 2100 to ensure that the brute-
force attacks are unfeasible [47, 51]. In our suggested scheme,
the two complex-valued parameters a and b in addition to the
real-valued parameters α, r, x(0), and y(0) are the key pa-
rameters in the system in addition to the random perturbing

values for pseudo-chaotic signals. 'is implies that using IEEE
754 double-precision floating-point format, the attained key
space is approximately 23922 for 256 × 256 plain images and
increases considerably for larger plain images. Accordingly, the
presented scheme has key space that is much greater than the
minimum value of 2100.

5.3. CorrelationAnalysis. 'e correlation analysis utilized to
measure and quantify the similarity among adjacent pixels
throughout the image under consideration, which can be the
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Figure 9: Histograms for (a) red, (b) green, and (c) blue pepper image for plain, shuffled, and encrypted image, respectively.
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plain image or the encrypted image. 'e efficient en-
cryption scheme should make the correlation coefficient
as small as possible to boost the security against con-
ventional statistical attacks. 'e correlation coefficient
can be defined as follows:

r �
cov(x, y)

σxσy

, (47)

where σϕ �
������
var(ϕ)

􏽰
, σψ �

������
var(ψ)

􏽰
.

var(ϕ) �
1
N

􏽘

N

i�1
ϕi − E(ϕ)( 􏼁

2
,

cov(ϕ,ψ) �
1
N

􏽘

N

i�1
ϕi − E(ϕ)( 􏼁 ψi( 􏼁 − E(ψ)( 􏼁,

(48)

where the values of pixels of plain and encrypted images are
denoted by ϕ and ψ, respectively. 'e correlation values
between adjacent pixels in horizontal, vertical, and diagonal
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Figure 10: Histograms for (a) red, (b) green, and (c) blue house image for plain, shuffled, and encrypted image, respectively.
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directions are acquired for baboon, pepper, and house
images and listed in Table 3. It is obvious that the proposed
algorithm is immune to statistical attacks because it is
successfully minimized the values of correlation coefficients
in the encrypted images to about zero.

5.4. Information Entropy. 'e information entropy is an-
other powerful analysis tool used to find the unpredictability
and randomness in the proposed scheme. It is reported that
the optimum value is 8. 'e information entropy of a given
image is outlined as follows:

H(m) � 􏽘
2N−1

i�1
pilog2

1
pi

, (49)

where H(m) denotes the entropy in bits, m is an input
parameter, and finally the value of probability for parameter
m is referred to as pi.

'e entropy values for red, green, and blue images have
been evaluated for baboon, pepper, and house encrypted
images and summarized in Table 4. It is cleared that the
entropy values for the three images are very close to 8;
therefore, the proposed scheme is less feasible to expose
information of the plain image.

5.5. Differential Attack Analysis. To evaluate the immunity
of the proposed cryptosystem against the powerful differ-
ential, two useful quantities reevaluated, namely, the number
of pixels changing rate (NPCR) and unified average
changing intensity (UACI). 'ese measures identify the
sensitivity of the encryption scheme to change a single-pixel
value of supplied plain image or sensitivity to small changes
in the secret key.'e equations to evaluate NPCR and UACI
are expressed as follows [47]:

NPCR(%) �
1

M × N
􏽘

M

i�1
􏽘

N

j�1
sign C1(i, j) − C2(i, j)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × 100,

UACI(%) �
1

M × N
􏽘

M

i�1
􏽘

N

j�1

C1(i, j) − C2(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
× 100,

(50)

where the well-known sign function is referred to as sign(),
while Cis refer to the cipher image. In Table 5, the evaluated
values of UACI and NPCR are given for the three submitted
plain images. It is observed that the values of NPCR are
generally greater than 99.5, while those of UACI are greater
than 33.4, which indicates the sensitivity to a pixel change in
the proposed encryption algorithm.

5.6.CroppingAttack. In order to detect the robustness of the
proposed technique, some blocks of size 450 × 100 of a
cipher house image are converted into black. 'e restored
image after is depicted in Figure 11. Although there is a loss
of significant information, the encrypted image after the
decryption process is still recognizable.

Finally, the aforementioned results are summarized. 'e
proposed encryption technique combines the pseudo-chaos
of modified chaotic lemniscate map [47], which has a dis-
tinct complicated dynamics and large value of positive
Lyapunov exponent with the fractal images generated by
complex discrete fractional Gauss map. When compared
with different state-of-the-art chaos-based encryption
techniques, the main advantages of the present encryption
technique are as follows: (a) it deploys superior positive
values of maximum Lyapunov exponents. For example, the
maximum value of Lyapunov exponent of chaos employed
in the image encryption system [48] and bit-level

Table 2: 'e histogram variance and its reduction for the original
and cipher images for baboon, pepper, and house images.

Variance
Plain Encrypted Reduction (%)

Baboon
Red 176920 701.4429 99.6035
Green 348200 755.0115 99.7832
Blue 188610 650.039 99.6553

Pepper
Red 520530 818.9017 99.8427
Green 695920 672.1017 99.9034
Blue 1122000 694.6978 99.9381

House
Red 440620 710.8939 99.8387
Green 756780 764.3449 99.899
Blue 577050 800.1174 99.8613

Table 3: 'e correlation values between adjacent pixels, in all
directions, were obtained for red, green, and blue color compo-
nents in baboon, pepper, and house images, respectively.

Correlation coefficients
Horizontal Vertical Diagonal

Baboon

Red Plain 0.9193 0.864 0.8403
Cipher −0.0005 −0.0039 0.001

Green Plain 0.8795 0.7997 0.7628
Cipher 0.0032 −0.001 −0.0028

Blue Plain 0.9285 0.8827 0.8597
Cipher −0.0021 −0.0013 0.0027

Pepper

Red Plain 0.9681 0.9703 0.9519
Cipher 0.0001 −0.0000 −0.0007

Green Plain 0.9786 0.979 0.9616
Cipher 0.0000 −0.0036 −0.0003

Blue Plain 0.9654 0.9643 0.9414
Cipher −0.0048 −0.0044 −0.0029

House

Red Plain 0.9484 0.9467 0.9087
Cipher −0.0001 0.0024 0.0005

Green Plain 0.9286 0.9481 0.8893
Cipher −0.0005 −0.0003 −0.0004

Blue Plain 0.9704 0.9718 0.9472
Cipher −0.0005 0.0013 −0.0008

Table 4: 'e entropy for encrypted image for red, green, and blue
images for baboon, pepper, and house image, respectively.

Plain Red (%) Green (%) Blue (%)
Baboon 7.9992 7.9991 7.9993
Pepper 7.9991 7.9992 7.9992
House 7.9992 7.9991 7.9991
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permutation spatial system [48] is less than three, while it is
greater than 30 in the present scheme. (b) 'e pseudo-
chaotic time series tame the possible degradation of sta-
tistical features of chaos signals in the cases, where they are
applied immediately [46]. (c) 'e assigned keys for the
suggested encryption technique are set in a way that renders
them controlled by plain data features as well as the time
moment of their processing. 'is means that if identical
plain images are encrypted at different instants, different
secret keys will be used for the encryption process inducing
different cipher images. Moreover, the pseudo-chaos or
lower bound errors between the outputs of two interval
extensions are employed in the presented scheme instead of
applying chaotic signals directly in permutation and diffu-
sion stages. 'is adds another layer of security and hides the
internal characteristics of chaos generators maps. More
details about the lower bound errors and analysis of interval
extensions can be found in references [49, 50]. Now, the
critical scenario of known-plaintext attack (KPA) is con-
sidered, where the opponent successfully attains the specific

plain image and corresponding cipher image, and then he
cannot proceed further to obtain any extra useful infor-
mation about secret keys’ values, which will be used for
upcoming plain images as the scheme utilizes time-varying
secret keys. 'e proposed encryption technique can resist
KPA even in special cases when uniform plain images with
zero values of pixels are deployed, which may lead to a
degenerate performance in other encryption techniques
[52–54]. 'e adoption of fractal images in the scheme boosts
complexity, key space range, and security performance.
Moreover, if the opponent employs chosen-ciphertext attack
(CCA) to supply some specially selected cipher images to
decryption part of the scheme, he would not fulfill his target
too.

'e running time of the proposed encryption scheme on
personal computer with 16GB RAM and Intel Core i7-
8550U CPU 1.8GHz is approximately 0.582 s for 450 × 450
colored images. 'e comparison aspects with some recent
chaos-based encryption techniques are summarized in
Table 6.'eMCC and AVR abbreviations are used to denote

Table 5: NPCR and UACI results for red, green, and blue images for baboon, pepper, and house images, respectively.

Image NPCR (%) UACI (%)

Baboon
Red 99.601 33.559
Green 99.6015 33.4034
Blue 99.6133 33.534

Pepper
Red 99.6281 33.5021
Green 99.597 33.4069
Blue 99.5901 33.5242

House
Red 99.598 33.4591
Green 99.5817 33.4822
Blue 99.5936 33.542

(a)

(b)

Figure 11:'e encrypted house image after converting the left, middle, and right blocks, respectively, of the house image into black color (a)
and the corresponding recognizable decrypted images (b).
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the maximum correlation coefficients attained in all direc-
tions of encrypted color baboon/pepper images and average
running time, respectively.

6. Conclusion

'is study establishes a framework to study dynamical and
fractal characteristics, in addition to potential applications,
of generalized complex-valued discrete fractional Gaussian
map. 'e occurrence of Mandelbrot and Julia sets of the
proposed map is scrutinized at different scenarios for values
of parameters. 'e control and synchronization problems of
Julia sets in the complex domain are addressed. A combined
pseudo-chaos-fractal image encryption technique is intro-
duced as an efficient tool to resist several kinds of attacks. A
thorough security analysis is carried out to validate its ro-
bustness and efficiency against statistical, differential, and
cropping attacks. Indeed, there is a trade-off between in-
creasing chaoticity and security strength from one side and
computational speed from the other side. 'e present ap-
plication in this work is the first step and subsequent work
will focus on realization aspects on a suitable digital hard-
ware platform, that is, DSP or FPGA, further reduce its
running time, and discuss all possible issues that need
separate work and cannot be treated here. Future work can
also involve extending this study to the case of higher di-
mensional complex fractional maps [31, 32].
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