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�e development of computer technology has promoted the widespread application of unmanned technology. Remote mon-
itoring of wireless devices is an application of unmanned technology. To improve the remote monitoring of wireless devices, this
study establishes a remote monitoring and decision-making framework based on wireless communication systems. With the
wireless communication system, signals that characterize the operating status of devices can be obtained in real-time. Based on the
collected signals, the remote monitoring system can identify the current health status of wireless devices, thereby providing
auxiliary decision-making for device operation. In the case study, the main engine of an unmanned surface vehicle is used as the
study object. �e results show that most of the relative errors corresponding to the state identi�cation results of the established
remote monitoring framework are within 5%. Moreover, the results present that the linear correlation coe�cients between the
predicted and real results are greater than 0.95. �erefore, the established remote monitoring framework based on the wireless
communication system has good reliability in the state identi�cation of wireless devices.

1. Introduction

Computer technology plays an increasingly important role
in human production and life, and it promotes the appli-
cation of unmanned technology. For instance, the appear-
ance of automatic driving of ships can not only liberate the
labor force but also improve the level of navigation safety;
the unmanned technology of cars makes the car design does
not need to consider the impact of the car on the human
body, so it can adapt to more complex working conditions
and then better play the car performance [1]; the use of
unmanned aerial vehicles (UAVs) in modern warfare has
greatly increased combat capabilities, and its unmanned
nature can reduce casualties [2]. However, the above
technologies all rely on stable and fast wireless signal
transmission. Based on the wireless signal transmission, a
large amount of real-time data generated by the unmanned
terminal can be transmitted to the base station, thereby
realizing the communication between the unmanned ter-
minal and the base station [3]. �erefore, to promote the

development of unmanned technology, it is necessary to
develop wireless communication technology.

�e wireless communication system mainly includes
three parts: signal transmitting device, transmission me-
dium, and signal receiving device [4]. �e function of the
signal transmitting device is to collect signals that can re�ect
the status of the unmanned terminal and then process the
collected signals for transmission; the role of the trans-
mission medium is to provide a medium for signal trans-
mission; the function of the signal receiving device is to
receive wireless signals and perform inverse signal pro-
cessing. For wireless devices such as UAVs, to achieve re-
mote real-time control, it is necessary to obtain signals
representing the status of the wireless device in real-time at
the base station, thereby judging the operating status of the
wireless device and then deciding the next operation strategy
[5]. �erefore, a wireless communication system between
the base station and the wireless device is required. With the
wireless signal communication system, the base station can
receive a large number of wireless signals from the wireless
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device in real-time.*ese signals can be temperature signals,
pressure signals, speed signals, etc., and they can reflect the
real-time operating status of wireless devices [6].

Although the signals transmitted by the wireless com-
munication system can reflect the operating status of
wireless devices, the identification of some fault status re-
quires a comprehensive analysis of multiple operating sig-
nals, and even these multiple signals do not exceed their
respective normal ranges [7]. Hence, it is necessary to es-
tablish a mapping relationship between multiple signals and
device status. Currently, many researchers tried to establish
numerical models of devices [8, 9] and used the operating
signals as the input of numerical models, thereby realizing
the state identification of devices. However, it is difficult to
establish an accurate numerical model for complex devices,
such as UAVs and marine engines, that exhibit strong
nonlinear and unsteady characteristics [10]. Besides, re-
searchers also attempted to use expert systems to establish
the mapping relationship betweenmultiple operating signals
and device status [11]. However, the expert system needs a
lot of expert knowledge to construct the rule base, so it is
very dependent on the expert experience, and the difference
in expert levels may affect the reliability of the expert system
[12]. Moreover, expert systems also have defects such as
combinatorial explosion and lag in rule update. Hence, both
model-based methods and knowledge-based methods have
limitations in state identification, while data-driven methods
are free of building numerical models and do not rely on
expert knowledge [13], theymake up for the shortcomings of
model-based methods and knowledge-based methods in the
state identification of complex systems. Meanwhile, the
development of wireless communication technology and big
data technology makes devices generate a large amount of
data representing status information during the operation
process. *erefore, in the background of big data, the data-
driven method has a good application prospect in state
identification.

Deep learning is a data-driven approach, andmeanwhile,
it is also a branch of big data technology [14]. Compared
with traditional data-driven methods, which need to man-
ually extract the feature information in the signal by means
such as Fourier transform, deep learning can adaptively
extract the feature information in the signal without relying
on manual experience [15]. Besides, based on the extracted
feature information, deep learning can directly output state
identification results. *erefore, compared with traditional
data-driven methods, deep learning can achieve end-to-end
state identification with the support of big data [16]. With
the signals representing the status of devices obtained by the
wireless communication system, deep learning methods can
directly identify the status information of devices.

Based on the above analysis, to promote the further
development of unmanned technology, this study proposes a
remote monitoring and decision-making framework for
wireless devices. *e framework is mainly composed of two
parts: a wireless communication system and a deep learning-
based state identification system. With the output of the
established framework, it can not only realize the remote
status monitoring of wireless devices but also provide

auxiliary decisions for the device’s operation. In the process
of quantifying the performance of the established state
identification system, two statistical parameters, relative
error and correlation coefficient, are used to evaluate the
identification accuracy of the state identification system.

*is study is organized as follows: Section 1 introduces
the research background of the study, and it also describes
the role of wireless communication systems and the ap-
plication of big data technology in conditionmonitoring and
decision-making. Section 2 describes the progress of related
research works. In Section 3, the established remote mon-
itoring and the decision-making framework for wireless
devices is presented. Section 4 presents the data preparation
for the case study. In Section 5, the feasibility and reliability
of the established remote monitoring and the decision-
making framework for wireless devices are analyzed. Section
6 is the conclusion of this study.

2. Related Work

As wireless communication systems play an increasingly
important role in the development of unmanned technology,
many scholars have invested a lot of research into wireless
communication systems.

Ojaroudi Parchin et al. [17] described the current and
future development of wireless communication systems and
explored the feasibility of using reconfigurable antennas
with multifunctional and small-sized devices in wireless
communication systems. *e research results showed that
the wireless communication system is very suitable for 4G
and 5G terminals. *en, to improve the reliability of wireless
communication systems in practical applications, Bakare
and Enoch [18] reviewed the commonly used simulation
methods in recent years and analyzed the layout strategies of
wireless communication systems in complex systems
through simulation cases. *ereafter, to improve the effi-
ciency, capacity, and reliability of wireless communication
systems in signal transmission, Chowdhury et al. [19]
prospected the application of the 6G wireless communica-
tion system. *e content of the article showed that the
development of 6G will provide strong assistance for the
further development of unmanned technology.

With the further development of the wireless commu-
nication system, the signal representing the status of wireless
devices can be obtained more conveniently at the base
station. Based on the obtained status signals, researchers
have made some progress in the remote monitoring of
devices.

Rekha et al. [20] built a real-time embedded system for
traffic monitoring. *e system takes advantage of the
wireless communication system without wiring and can
monitor the status of wireless devices. Besides, to reduce
energy consumption, Alulema et al. [21] built a wireless
sensor network to realize remote monitoring of household
electricity consumption. *e results indicated that the built
wireless network not only has high precision but also has a
simpler structure than traditional wired devices. *ereafter,
in the background of COVID-19, based on the Internet of
*ings technology, Paganelli et al. [22] used wireless
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wearable sensors to collect the physical information of
COVID-19 patients, thereby providing data support for
remote monitoring of the patient’s physical status.

According to the aforementioned description, re-
searchers have attempted to build more efficient wireless
communication systems. Besides, they also tried to realize
the status monitoring of wireless devices based on signals.
However, most of the existing research is to improve the
wireless communication system or the remote monitoring
system of the wireless equipment alone, and few explore how
to improve the overall framework of the remote monitoring
system based on the wireless communication system.

3. Methodology

In the background of big data, to realize the remote control
of wireless devices, this study establishes remote monitoring
and decision-making framework for wireless devices. *e
schematic diagram of the framework is shown in Figure 1.
As can be seen from Figure 1, the established framework is
mainly divided into two parts: the wireless communication
system and the state identification system. In the following,
the details and roles of the two subsystems are introduced,
respectively.

3.1. Wireless Communication System. To remotely monitor
the condition of wireless devices, signals characterizing the
condition of wireless devices are necessary. So, a wireless
communication system between the wireless device and the
base station is required. In this study, the established wireless
communication system is shown in Figure 2. As can be seen
from Figure 2, the wireless communication system consists
of three parts: signal acquisition and transmission device,
transmission medium, and signal receiving device.

For the signal acquisition and the transmission device,
various sensors, such as temperature sensors and pressure
sensors, collect signals representing the status of the wireless
device; then, signal processing methods are used to process
the collected signals to facilitate signal transmission;
thereafter, the signal transmitting device transmits the
processed signal into the signal transmission medium.

*e signal transmission medium is the medium of signal
transmission between the wireless device and the base
station, which can be water or air. Since the signal trans-
mission characteristics of different types of transmission
mediums are very different, to optimize the transmission
efficiency of signals, it is necessary to adopt a signal pro-
cessing method matching the transmission medium in the
signal acquisition and transmission device.

Wireless
communicat
ion system

Base station

Status
identification

system
Remote control

Health status
identificationSignals

Decision
-making

signal
transmission

wireless devices

Figure 1: Remote monitoring and decision-making framework for wireless devices.

Interface Inverse signal processing Receiver Transmission medium

ProjectorSignal processingSensorWireless device

Signal sending terminal

Signal receiving terminal

Figure 2: Diagram for the wireless communication system.
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For the signal receiving device, firstly, signals from the
transmission medium are received through the device; then,
the signal is inversely processed with the signal processing
method corresponding to the signal acquisition and trans-
mission device; finally, signals that can characterize the
operating status of the device is obtained at the output end of
the wireless communication system.

Based on the established wireless communication sys-
tem, a bridge of signal transmission is built between wireless
devices and base stations, thereby providing data support for
the remote control of wireless devices.

3.2. State Identification System. With wireless communica-
tion systems, signals that characterize the operational status
of wireless devices can be obtained. For simple systems, it is
possible to directly derive the health status of devices by
analyzing the relationship between these signals and the
normal operating range. However, when a complex device
fails, many of the acquired signals may still be within the
normal range. At this time, the health status of devices
cannot be directly judged through the value range of signals.
*erefore, to analyze the health status of a complex wireless
device, it is necessary to establish a mapping relationship
between multiple signals and device status. With the
established mapping relationship, the influence of multiple
signals is comprehensively analyzed to monitor the oper-
ating status of wireless devices.

Considering the large amount of data generated in the
operation of wireless devices, and deep learning methods are
good at mining latent feature information from big data, this
study established a state identification system based on deep
learning. *e established deep learning-based state identi-
fication system is shown in Figure 3. Based on the big data
support provided by the wireless communication system, the
deep learning method can establish the mapping relation-
ship between multiple signals and the status of the wireless
device. *en, the deep learning-based state identification
system can monitor the status information of wireless de-
vices in real-time and provide auxiliary decision-making for
device operation.

As can be seen from Figure 3, the deep learning-based
state identification system is mainly divided into two parts:
feature extractor and state identification. In the following,
the roles of these two parts are described separately.

3.2.1. Feature Extractor. *e feature extractor is used to
adaptively extract feature information from signals. Since
the signals collected by the wireless communication system
are usually in the form of sequences, to extract as much
feature information of the signals as possible, the long-short-
term memory (LSTM) network is applied in this study.

LSTM is a variant of recurrent neural network (RNN)
[23]. Although RNN can extract the feature information in
the sequence, in the process of using RNN to extract the
feature information of the long sequence, the problem of
gradient disappearance or gradient explosion will occur,
which seriously affects the training efficiency of the RNN
and reduces the quality of the extracted feature

information. LSTM introduces control gates, which can
alleviate the problem of gradient anomalies in long-se-
quence applications. *e structure diagram of LSTM is
shown in Figure 4.

As can be seen from Figure 4, LSTM is mainly composed
of three control gates: the forgetting gate, the input gate, and
the output gate. *e mathematical expressions of the three
control gates are equations (1)–(3), respectively.

ft � σ Wf · xt + Wf · ht−1 + bf , (1)

it � σ Wi · xt + Wi · ht−1 + bi( , (2)

ot � σ Wo · xt + Wo · ht−1 + bo( , (3)

where σ is the sigmoid activation function, Wf, Wi, and Wo
are the weights corresponding to the forgetting gate, the
input gate, and the output gate, respectively, bf, bi, and bo are
the biases corresponding to the forgetting gate, the input
gate, and the output gate, respectively, xt is the input at time
t, ht-1 is the hidden layer state at time t-1.

Among the three control gates, the forgetting gate can
selectively forget part of the previous memory information,
thereby reducing the redundancy of the extracted feature
information; the input gate is used to perform the nonlinear
transformation on the current input to enrich feature in-
formation; the output gate is used to determine the feature
information that needs to be output.

Based on the outputs of the three control gates, the state
and output of the LSTM cell at time t can be obtained, and
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Figure 3: Structure for the deep learning-based state identification
system.
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the expressions of the cell state and cell output of LSTM are
equations (4) and (5), respectively.

Ct � ft ∘Ct−1 + it ∘C
’
t−1, (4)

ht � ot ∘ELU Ct( , (5)

where Ct-1 represents the cell state of LSTM at time t-1, ◦
denotes an element-wise multiplication operation, and the
expression of C’t-1 is

C
’
t−1 � tan WC · xt + WC · ht−1 + bC( . (6)

Note that the exponential linear unit (ELU) is an im-
proved activation function that makes the distribution of
network layers close to a zero-centered distribution [24],
thereby alleviating the problem of gradient anomalies in the
network. *e mathematical expression of ELU is

y �
α e

x
− 1( (x≤ 0),

x(x> 0),
 (7)

where α is a constant, and α is set as 1 in this study.
*e above are the specific details of the LSTM network.

Besides, Figure 4 points out that in the established state
identification system, four LSTM layers with the same
structure are applied, which is to extract the feature infor-
mation contained in the multidimensional sequence signal
as adequately as possible by using the deep learning method.

3.2.2. State Identification. With the feature information
extracted by the feature extractor, a state identification unit
is needed to establish a mapping between the feature in-
formation and the status of the wireless device.

In this study, as shown in Figure 4, fully connected (FC)
layers are used to establish the mapping relationship be-
tween feature information and device status, and its
mathematical expression is

fullk � f 
N

n�1
xnwn,k + bk

⎛⎝ ⎞⎠, (8)

where fullk is the kth neuron output in the output layer, xn is
the input of the FC layer, w and b are the weight and bias,
respectively, and f(·) is the activation function. Herein, ELU
is used as the activation function of FC layers.

Based on the output of the state identification unit, the
health status of the wireless device can be identified.

3.3. Workflow of the Remote Monitoring and the Decision-
Making Framework. According to the aforementioned de-
scription, the specific workflow of the remote monitoring
and decision-making for wireless devices is shown in Fig-
ure 5, and its specific details are as follows:

(i) Data collection. *e signals that characterize the
operating status of the wireless device are collected
through the wireless communication system.

(ii) Data preprocessing. Since the signals collected
through the wireless communication system will
inevitably have data anomalies, such as missing
data, it is necessary to perform data preprocessing
on the collected signals, such as supplementing
missing values, removing outliers, and
regularization.

(iii) State identification. Taking the preprocessed data as
input, the state identification system can automat-
ically output the wireless device state information at
the current moment, thereby realizing the remote
monitoring of the wireless device. Meanwhile, the
output of the state identification system can provide
auxiliary decision-making for device operation.
Note that before applying the state identification
system, the state identification system needs to be
trained to achieve a certain identification accuracy.
In this study, the back-propagation algorithm is
adopted to train the deep learning-based state
identification system. *e training process mainly
includes: (1) the calculation of the loss function.*e
mean squared error (MSE) is used for the loss
function, and its expression is

MSE �
1
N

 ypre − yreal 
2
, (9)

where ypre and yreal are the predicted and real device status,
respectively, and N is the number of samples; (2) calculate
the gradient of the loss function on the trainable parameters
and update the trainable parameters, and the expression for
updating parameters is

θ � θ − r · g(θ), (10)

where θ and r are the trainable parameter and the learning
rate, respectively; (3) repeat the above steps (1) and (2) until
the preset training accuracy is met.

4. Case Study

To explore the effectiveness of the established remote
monitoring and the decision-making framework for wireless
devices, this study takes an unmanned surface vehicle (USV)
as an example to analyze the performance of the established
framework in the remote monitoring of the USV’s main
engine.

Data preprocessing

Data collection with the wireless
communication system

Obtain the trained deep learning-based
state identification system

Perform state identification on the newly
collected signals

Newly collected signals

Output the health status of the wireless
device

Provide decision-making for the wireless
device

Train the deep learning-based state
identification system

Figure 5: Workflow for the remote monitoring and decision-
making framework.
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To monitor the operating status of the main engine in
real-time at the base station, multiple signals representing
the operating status of themain engine are transmitted to the
base station through a wireless communication system. *e
monitored signals include the pressure signal, temperature
signal, and speed signal.

Before using the established state identification system to
analyze the collected signal sequence, the deep learning-
based state identification system needs to be trained first. In
this study, the state identification system is trained using a
large amount of data obtained from the wireless commu-
nication system in the base station.

Since the collected signal sequences have different di-
mensions and amplitudes, and as indicated in Ref. [25], the
standard normal distribution is conducive to improve the
network training efficiency, the Z-score standardization
method [26] is used to process the collected signals to ensure
the training efficiency of the deep learning method and the
effect of state identification.*emathematical expression for
normalizing the signals is

Nor �
X − μ
σ

, (11)

where X� {x1, x2,. . ., xn} represents the signal sequence, μ is
the mean of the vector X, and σ is the standard deviation of
the vector X. With Z-score standardization, the processed
signal follows a standard normal distribution. Note that
because different types of signals have different dimensions,
each type of signal is processed separately by (11).

To train the established state identification system and
explore the identification accuracy of the trained state
identification system, the processed signals are divided into
15 groups according to the navigational speed of USV.
Among them, each group of signals contains 100 samples.
*e variable composition of each sample is (s, X1, X2, X3),
where s represents the health status of the main engine, and
X1, X2, and X3 represent the temperature sequence, pressure
sequence, and speed sequence, respectively. In this study, the
value range of s is [0, 100], and the larger the s is, the
healthier the engine is. *ereafter, the 15 sets of signals are
divided into the training set, validation set, and testing set.
*e specific division details are shown in Table 1. Among
them, the training set and the verification set are used to
train the deep learning-based state identification system; the
testing set is used to verify the identification accuracy of the
trained state identification system. Note that the naviga-
tional speed corresponding to the testing set is outside the
range of the speed corresponding to the training set and the
validation set, this is to ensure the reliability of evaluating the
performance of the state identification system on the testing
set. Based on the divided datasets, the identification accuracy
of the established state identification system can be
evaluated.

5. Results and Discussion

5.1. Evaluation of the Performance of the Established
Framework. After the deep learning-based state identifica-
tion system is trained, its prediction performance on the
testing set is evaluated in this subsection. Notably, the
hyperparameters in the deep learning-based state identifica-
tion system are set as [32, 64, 32], where the first “100”
represents the number of units in four LSTM layers, and “64”
and the second “32” are the number of neurons in FC layers.

As can be seen from Table 1, the corresponding navi-
gational speed of the testing set is 3 or 10. Under the two
navigational speeds, the comparison between the health state
of the main engine predicted by the state identification
system and the real health status is shown in Figure 6. It can
be seen from Figures 6(a) and 6(b) that although the dif-
ference between the predicted and real health status under
the speed� 3Kn is slightly bigger than that under the
speed� 10Kn, the predicted and real health status at both
navigational speeds are all closed.

To present the difference between the predicted and real
health status more clearly, the relative error between the
predicted and real health status is calculated. *e expression
of the relative error is

RE �
abs ypre − yreal 

yreal
, (12)

where ypre and yreal represent the predicted and real health
status, respectively, and abs(·) represents the operation to
calculate the absolute value. Figure 7 presents the relative
error distributions corresponding to the two navigational
speeds. It can be seen from Figure 7 that most of the relative
errors under the two navigational speeds are less than 5%, and
even at speed� 10Kn, the relative errors are basically within
3%. Moreover, the average relative errors between the pre-
dicted and real health status under the two navigational
speeds are shown in Figure 8. As can be seen from Figure 8,
the average relative errors under the two navigational speeds
are 1.1256% and 2.0315%, respectively.

As indicated in Ref. [27], 5% is an acceptable relative
error for state identification accuracy. So, from the per-
spective of the relative error, the results reveal that the
predicted and real health status are in good agreement,
which confirms the reliability of the established state
identification system in health status identification.

Table 1: Dividing details of the dataset.

Data set Navigational speed (Kn)
Training set [3.5, 4, 4.5, 5.5, 6, 6.5, 7.5, 8, 8.5, 9.5]
Validation set [5, 7, 9]
Testing set [3, 10]
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5.2. StatisticalAnalysis. To further verify the performance of
the established state identification system in health status
identification, the results are statistically analyzed in this
subsection.

Firstly, MSE between the predicted and real health status
under the two navigational speeds is calculated, and the

formula for calculating MSE is equation (9). Figure 9 shows
that MSE under the two navigational speeds is 2.8956 and
1.5256, respectively, which shows that the MSE values are
small at both navigational speeds. Since the health status of
the main engine is in the range of [0, 100] in this study, the
MSE results indicate that the predicted and real health status
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Figure 6: Comparison of the predicted and real health status of the main engine under two navigational speeds: (a) navigational speed� 3;
(b) navigational speed� 10.
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Figure 7: Relative errors between the predicted and real health status of the main engine under two navigational speeds: (a) navigational
speed� 3; (b) navigational speed� 10.
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are very close to each other under the two navigational
speeds.

Secondly, the linear correlation between the predicted
and real health status is also analyzed. Figure 10 presents the
correlation results between the predicted and real health
status under the two navigational speeds. As can be seen
from Figure 10, the data points consisting of the predicted
and real health status are close to the liney� x under both
navigational speeds. Moreover, Figure 10 shows that the

linear correlation coefficients under the two navigational
speeds are 0.9510 and 0.9881, respectively. Hence, the results
reveal a strong linear correlation between the predicted and
real health status.

*erefore, from the perspective of statistical analysis of
the results, it is further shown that based on the signals
collected by the wireless communication system, the
established state identification system is reliable in identi-
fying the health status of wireless devices.
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6. Conclusion

In this study, based on the signals that characterize the status
of devices collected by the wireless communication system, a
remote monitoring and a decision-making framework for
wireless devices is established. *e established framework
can monitor the status of wireless devices in real-time by
analyzing signals and can provide auxiliary decision-making
for device operation. With a case study, the performance of
the established framework in wireless device state identifi-
cation is analyzed. *e results are summarized below.

Comparing the predicted and real health status under
the two navigational speeds on the testing set, the results
reveal that the relative error at both navigational speeds is
mostly within 5%, which indicates that the predicted and real
health status have strong consistency.

According to the statistical analysis results, the corre-
lation coefficients between the predicted and real health
status under the two navigational speeds are 0.9510 and
0.9881, respectively, which reveals a strong linear correlation
between the predicted and real results.

Based on the relative error and linear correlation results,
it is revealed that the established framework has high pre-
diction accuracy for the health status of wireless devices.
Moreover, since the navigational speed on the testing set is
outside the range of the training set and the validation set,
the established framework also has extrapolation abilities in
the state identification.

Although the established remote monitoring framework
can achieve good accuracy in the background of big data
provided by wireless communication systems, it needs to
accumulate numerous historical data to train the state
recognition system. In the future, we will explore more
intelligent remote monitoring and decision-making
frameworks.
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