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Two different frames’ temperature creates thermal transport that gives advantage in energy fabrication in the power sector,
burning in microscopic devices, and for remedy transport through heat transfer in materials. Here the article scrutinizes the
transport of head utilizing the thermo-sloutal time’s relaxation, and aspects of non-Fick’s flux with variable conductivity and mass
diffusivity in Carreau fluid have been elaborated. +e magnetic aspect is also examined in a bidirectional stretched surface. +e
numerical procedure of ODEs via bvp4c method has been aimed at the solutions of influential parameters. +e portrayal of
influential factors is also presented. +e intensifying behavior has been noted on concentration and temperature scattering when
inconsistent thermal conductivity and variable mass diffusivity boost up. Furthermore, the temperature and concentration
relaxation times are incorporated for the better understanding of the flow problem.+e assessments of current article with former
literature are also presented for the endorsement of outcomes.

1. Introduction

+roughout the past years, it has been noticed that many
substances of industrial importance, particularly of multi-
phase behavior like polymeric melts, foams, emulsions,
suspensions, dispersions, and slurries do not validate the
Newtonian law of viscosity. In the literature, such fluids are
named as, non-Newtonian liquids, nonlinear liquids, and
rheological complex liquids. In non-Newtonian fluids
[1–10], the apparent viscosity is not persistent and is a
function of shear rate, and shear stress. In fact, under
suitable conditions, the apparent viscosity of nonlinear
materials is a function of kinematic history of fluid elements,

flow geometry and shear rate. Non-Newtonian models come
into play when major variations in the shear rate of fluid
elements. Various rheological models had been considered
to cater the behavior of non-Newtonian materials. In 1972,
Carreau suggested the Carreau fluid model; for instance see
Carreau [11] and Carreau et al. [12]. It remains with this
physical model that the viscosity can be characterized for a
boundless shear rates range. Carreau fluid viscosity is
considered as a function of shear rate, infinite shear rate,
relaxation time, power law index, and zero shear rates.
Pantokratoras [13] elucidated a particular Carreau model
with the help of controlling number “n.” For, 0< n< 1, fluid
behavior is considered as shear-thinning, shear-thickening
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for n> 1, and for n� 1, Newtonian. So, the Carreau fluid acts
as the classical Newtonian fluid at smaller values of shear rate
and power law fluid at larger values of shear rate. Recently,
Salahuddin [14] considered the numerical solutions of
Carreau fluid flow and the flow was generated by the
stretching cylinder. Transport mechanism in MHD nano-
Carreau fluid flow with microorganism’s gyrotactic flow was
discussed by Elayarani et al. [15].

In literature, analysis of transport mechanisms in the
Carreau fluid flow mainly considered classical Fourier equa-
tions for heat and mass distributions. Classical Fourier equa-
tions are parabolic equations that lead to a paradox of heat and
mass flux, i.e. an initial contribution of energy and concen-
tration delivers an immediate experience by a whole system.
+e paradox was addressed by Cattaneo [16] with the addition
of relaxation time. Christov [17] contributed to the theory of
Cattaneo with the introduction of Oldroyd, an upper-con-
vected derivative in place of an unsteady rate of change. So in
this article, instead of classical Fourier equations we have
adopted the Cattaneo–Christov transport mechanism for
standard Carreau fluid flow. Reddy and Kumar [18] analyzed
the stream line study of heat transfer in micro-polar fluid flow
above a melting boundary. Ibrahim and Gadisa [19] discussed
the simulations for transfer of heat in convective Oldroyd-B
fluid flow using Finite Element Method (FEM). Flow was
generated by a stretching sheet with heat absorption. Utilizing
the theory of Cattaneo-Christov numerous researchers have
analyzed these aspects in diverse models [20–24].

Here disclose the properties of thermo-sloutal time’s
relaxation in 3D magneto Carreau fluid considering variable
mass diffusivity and variable conductivity. +e existent
Carreau fluid model is proficient in describing the phe-
nomena of shear thinning and shear thickening. +e blood
flow via tapered arteries with stenosis is the noteworthy
application of Carreau fluid. Moreover, blood flow via ta-
pered arteries with stenosis has fascinated the consideration
of numerous researchers. Because flows via arteries pose
grave healthiness threats and are a foremost reason of hu-
manity and sickness in the technologically advanced do-
main. Reduction of an artery, or stenosis, can outcome from
considerable plaque pledge, and possibly will reason a severe
decline in blood flow. +e plaques possibly will also be
disrupted off into elements, or emboli, which might be
lodged in an artery downstream. In intellectual arteries the
threat of embolism is that the cracked spots are passed into
the brain, frustrating neurological indications or a stroke.
+e impacts of numerous factors are examined graphically.
Additionally, assessment tables via limiting sense with
(bvp4c) and analytically (HAM) are reported.

2. Development of Physical Model

2.1. Rheological Models. +e reported Carreau fluid model
has the following Cauchy stress tensor (τ∗):

τ∗ � −pI + μ(c
·
)A1, (1)

with
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Now considering μ∞≪ μ0 and μ∞ � 0, we have
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2.2. Problem Description. Here examine the characteristics
of inconsistent thermal conductivity and variable diffusivity
of mass in Carreau fluid flow to bidirectional stretched
surface. Velocities of the fluid in x−and y−directions are
reflected to be u � ax and along the vertical direction v � by;
where a, b> 0 and occurrence of flow exists in area z> 0 see
Figure 1. +e non-Fick’s mass, and non-Fourier’s heat fluxes
scheme considering magnetic influence have been studied.
+ese norm yields the following Carreau fluid equations
[2, 3, 5]:
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� 0,

Uw(x) � u � ax, Vw(y) � v � by, w � 0, T � Tw, C � Cw at z � 0,

u⟶ 0, v⟶ 0, w⟶ 0, T⟶ T∞, C⟶ C∞, asz⟶∞.

(5)

+e variable aspect of thermal conductivity K(T) and
mass diffusivity D(C), respectively, elaborated as

K(T) � k1 1 + ε1
T − T∞
ΔT

 , D(C) � k2 1 + ε2
C − C∞
ΔC

  .

(6)

2.3. Appropriate Transformations. Letting

u � axf′(η), v � ayg′(η), w � −
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(6) and (7) yield the following expressions:
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f(0) � 0, g(0) � 0, f′(0) � 1, g′(0) � α, θ(0) � 1, ϕ(0) � 1 . (12)
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f′ ⟶ 0, g′ ⟶ 0, θ⟶ 0, ϕ⟶ 0, as η⟶∞ . (13)

Here, (We1, We2) � (
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) signify the
local Weissenberg numbers, M(� σB2

0/ρfa) magnetic field,
(δT, δC) � (aΓT, aΓC) thermal and concentration relaxation
time factors, α(� b/a) ratio of stretching rates factor, and
Sc(� v/D) the Schmidt number and.

3. Physical Amounts

3.1. Be Coefficients of Skin Friction Cfx and Cfy. +e
quantities of this interest are

Cfx �
τxz

1/2ρU
2
w

and Cfy �
τyz

1/2ρU
2
w

. (14)

Dimensionless form of the above equation:

1
2
CfxRe

1/2
x � f″(0) 1 + We

2
1f′′

2
(0) 

n− 1/2
,

1
2

Uw

Vw

 CfyRe
1/2
x � g″(0) 1 + We

2
2g′′

2
(0) 

n− 1/2
.

(15)

η

f′(
η)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

M=0.0
M=1.0

M=2.0
M=3.0

n=0.7

(a)

f′(
η)

0

0.2

0.4

0.6

0.8

1

η
0 2 4 6 8 10

M=0.0
M=1.0

M=2.0
M=3.0

n=1.7

(b)

Figure 2: (a, b) Plot of η vs. f′(η) for M.

z

Vw (y) = by

Uw (x) = ax

Figure 1: Flow configuration and coordinate system.
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Here, Rex � ax2/] stands for Reynolds number. 4. Numerical Approach (bvp4c)

+e numerical procedure of ODEs via bvp4c method has
been disclosed here by discretize procedure and we revise the
equations (8)–(13) into first-order differential systems:

f � p1, f′ � p2, f″ � p3, f
‴
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p1(0) � 0, p2(0) � 1, p2(∞) � 0; p4(0) � 0, p5(0) � α, p5(∞) � 0; p7(0) � 1, p7(∞) � 0; p9(0) � 1, p9(∞) � 0.

(16)

5. Analysis of Results

Here, variable aspects of mass diffusivity and thermal
conductivity considering non-Fick’s mass, and non-
Fourier’s heat and fluxes have been studied with magnetic
properties. Here ΓT � ΓC � 0.1, ε1 � ε2 � 0.4, M � α � 0.5,

Pr � Sc � 1.5, We1 � We2 � 2.5 have been stated fixed
values excepting particular in graphs for
n � 0.7 and n � 1.7.

5.1. Velocity f′(η) for M. Figures 2(a) and 2(b) determine
the performance of magnetic factor M on velocity com-
ponent f′(η). +e higher M falloff the velocity component
for both cases (n � 0.7) and (n � 1.7). Physically, higher
magnetic field creates a body force named as Lorentz force,
which faces the fluid gesture and, therefore, it diminishes the
fluid independence of movement. Consequently, when
magnetic flux growths, the retardation force rises and this
struggle existing to the flow is accountable for diminishing
the liquid velocity.

5.2. Temperature θ(η) for M, ε1, Pr, and ΓT. Figures 3(a),
3(b), 4(a), and 4(b) envision the plots of magnetic factor M

and variable conductivity factor ε1 on Carreau fluid tem-
perature scattering. Here noted that θ(η) intensifies when M

and ε1 enhances. When M increases, the Carreau fluid
temperature rises and similar performance is acknowledged
for ε1. When M intensify the Lorentz force improves which
form additional struggle to the liquid motion to convert the
energy into heat. +is information reasons to the intensi-
fying of θ(η). Significantly, θ(η) growths for augmenting
values of ε1 as a consequence of enormous heat transport

amount from the sheet to the solid and as a result the θ(η)

boosts up.
Figures 5(a), 5(b), 6(a), and 6(b) explore temperature of

the Carreau fluid with the values of the Prandtl number Pr
and the thermo relaxation factor ΓT which falloff θ(η). +e
Carreau fluid temperature decays for larger Pr. As thermal
diffusivity and Pr have differing relationship, this fact decays
θ(η). When Pr≫ 1, the momentum diffusivity controls the
performance; however, Pr≪ 1, the thermal diffusivity
controls. Furthermore, ΓT decline θ(η). Physically, the fluid
material needs an extra interval for heat transportation to its
neighboring fundamentals which improves the gradient of
temperature. Hence, θ(η) decay for ΓT.

5.3. Concentration ϕ(η) for ΓC, ε2, and Sc. +e portrayals of
Figures 7(a) and 7(b) along with Figures 8(a) and 8(b)
scrutinize performance of mass relaxation factor ΓC and
mass diffusivity ε2 concentration field. +e field of con-
centration, ϕ(η) decays for ΓC; but, enhances for ε2. Here
conflicting enactments have been noted for ΓC and ε2 for
both values of (n � 0.7) and (n � 1.7). When ΓC raised the
concentration field falls. Physically, the mass relaxation time
factor is high and liquid elements need much time to diffuse
when ΓC enhancing which display declining behavior of
ϕ(η). +e advanced mass diffusivity factor increases the
mass diffusivity which causes the higher mass trans-
portation. +erefore ϕ(η) intensifies. +e performance of
Schmith number Sc for the values of (n � 0.7) and (n � 1.7)

has been examined in Figures 9(a) and 9(b) on concen-
tration. +e solute of Carreau fluid decays for intensifying
Sc. Physically, Sc is the relation between mass and mo-
mentum diffusivities. When Sc upturned, the mass diffu-
sivity falls off. +erefore, the concentration field declines.
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5.4. Table of Skin Friction Coefficients. Table 1 structured for
larger values of M an d α for 1/2CfxRe1/2x and
1/2(Uw/Vw)CfyRe1/2x for both instances n � 0.7 and n � 1.7.
Here noted that the magnitude of 1/2CfxRe1/2x and
1/2(Uw/Vw)CfyRe1/2x increases when M an d α intensifies.

5.5. Comparison of bvp4c andHAM. Additionally, the HAM
and bvp4c graphical comparisons for Newtonian case are
reported in Figure 10 for f′(η) an d g′(η). Here, excellent
portrayal are noted between both the methodologies.

To elaborate the comparison of −θ′(0) in limiting cir-
cumstances for diverse values of ε1, Pr, and α, respectively,
Tables 2 and 3 are acknowledged. +ese tables indicate a
brilliant outcome associated with former literatures.

6. Closing Remarks

Here the essentials of thermo-sloutal time’s relaxation in
magnetite Carreau liquid with inconsistent aspects of mass
diffusivity and thermal conductivity have been examined.
+e upcoming direction and significance of this model is
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Figure 3: (a, b) Plot of η vs. θ(η) for M.
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Figure 4: (a, b) Plot of η vs. θ(η) for ε1.
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that blood flow via tapered arteries with a stenosis is the
essential use of Carreau fluid model because this model deals
with the phenomena of shear thinning/thickening fluids.
Furthermore, this model is extended for calculating the
multiple solutions and also for curved surfaces. +e salient
particulars of this analysis are acknowledged as

(i) +e magnetic factor M declined the velocity field.
(ii) +e Carreau fluid temperature exaggerated for ε1,

however falloffs for δT.

(iii) +e larger M the temperature field is improved for
n � 0.7 an d n � 1.7.

(iv) Opposite influences were noted for ΓC an d ε2 on
concentration scattering.

(v) Outstanding outcomes have been examined in
limiting cases for −θ′(0).

(vi) +e exceptional graphical depictions are plotted for
comparisons of HAM and bvp4c of Carreau fluid
model.
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Figure 5: (a, b) Plot of η vs. θ(η) for Pr.
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Figure 6: (a, b) Plot of η vs. θ(η) for δT.
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Figure 7: (a, b) Plot of η vs. ϕ(η) for δC.

η

φ 
(η

)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ε2=0.0
ε2=0.3

ε2=0.6
ε2=0.9

n = 0.7

(a)

η

φ 
(η

)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ε2=0.0
ε2=0.3

ε2=0.6
ε2=0.9

n = 1.7

(b)

Figure 8: (a, b) Plot of η vs. ϕ(η) for ε2.
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Figure 9: (a, b) Plot of η vs. ϕ(η) for Sc.

Table 1: Outcomes of skin friction coefficients when We1 � We2 � 2.5.

M α
1/2CfxRe1/2x 1/2(Uw/Vw)CfyRe1/2x

n � 0.7 n � 1.7 n � 0.7 n � 1.7

0.5 0.5 −2.75267 −6.28875 −0.735299 −1.17469
1.0 −3.91194 −9.92461 −1.097060 −1.88793
1.5 −5.72221 −16.5755 −1.666760 −3.15998
0.5 0.7 −2.85709 −6.69579 −1.41209 −2.70100

0.8 −2.90692 −6.90700 −1.86225 −3.87658
0.9 −2.95537 −7.12294 −2.39147 −5.40309
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Figure 10: (a, b) Plot of η vs. f′(η) an d g′(η) for HAM and bvp4c comparison.
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Abbreviations

Γ: Material constant
n: Power law index
μ0: Zero and infinity shear rate viscosities
p: Pressure
μ∞: Infinity shear rate viscosities
c
·
: Shear rate

(u, v, w): Velocity components [ms− 1]

(x, y, z): Space coordinates [ms− 1]

(ρc)f: Heat capacity of fluid [JK− 1.m− 3]

]: Kinematic viscosity [m2s− 1]

T: Temperature of fluid [K]

C: Concentration of fluid [K]

K(T): Variable thermal conductivity
D(C): Variable mass diffusivity
k1: +ermal conductivity of (W/m.K) surrounding
k2: Mass diffusivity of surrounding
T∞: Ambient fluid temperature [K]

C∞: Ambient fluid concentration [K]

Tw: Wall temperature [K]

Cw: Wall concentration [K]

δT: +ermal relaxation time
δC: Solutal relaxation time
Cfx, Cfy: Skin friction coefficients
τxz, τyz: Surface shear stresses
We1, We2: Local Weissenberg numbers
α: Ratio of stretching rates parameter
ΓT, ΓC: +ermal and concentration relaxation time

factors
M: Magnetic factor
Pr: Prandtl number
ε1: +ermal conductivity factor
Sc: Schmidt number
ε2: Mass diffusivity factor
HAM: Homotopy analysis method
ODEs: Ordinary differential equations

tr: Trace of a tensor
PDEs: Partial differential equations
α: Ratio of stretching rates parameter.
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