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,e K-Nearest Neighbor (KNN) algorithm is a classical machine learning algorithm. Most KNN algorithms are based on a single
metric and do not further distinguish between repeated values in the range of K values, which can lead to a reduced classification
effect and thus affect the accuracy of fault diagnosis. In this paper, a hybrid metric-based KNN algorithm is proposed to calculate a
composite metric containing distance and direction information between test samples, which improves the discriminability of the
samples. In the experiments, the hybridmetric KNN (HM-KNN) algorithm proposed in this paper is compared and validated with
a variety of KNN algorithms based on a single distance metric on six data sets, and an HM-KNN application method is given for
the forward gait stability control of a bipedal robot, where the abnormal motion is considered as a fault, and the distribution of
zero moment points when the abnormal motion is generated is compared. ,e experimental results show that the algorithm has
good data differentiation and generalization ability for different data sets, and it is feasible to apply it to the walking stability
control of bipedal robots based on deep neural network control.

1. Introduction

KNN algorithm is a classical nonparametric machine
learning classification algorithm. ,e trained KNN model is
usually used as a fault classifier in engineering. Reliable KNN
classification models can provide accurate fault detection
and diagnosis (FDD) information. ,e obtained FDD in-
formation is used for system recovery or system decision-
making, such as using an undamaged redundant system or
reprogramming, to achieve the purpose of reliable operation
of the robot and the safety of the robot and its surrounding
environment [1, 2]. FDD approaches are usually divided into
three categories: model-based, knowledge-based, and data-
driven [3–5]. Knowledge-based [6] approaches typically
relate identified behaviors to predefined known faults and
diagnoses. Model-based approaches must construct a system
model to describe real processes and perform fault detection
and diagnosis by analyzing redundancies. ,is approach
usually requires accurate modeling, and therefore, it is only
effective in less than 10% of real-world applications [7, 8].

Unlike model-based approaches, data-driven approaches are
gaining importance because they rely only on measurement
data samples [9]. More importantly, FDD for robots in
performing tasks requires fast, online, and small compu-
tational effort, and machine learning algorithms are well
suited to meet the needs of robotic FDD tasks. Both tra-
ditional machine learning-based classification and deep
neural network classification are typical data-driven FDD
approaches. Although many scholars have applied deep
learning techniques to the field of FDD [10, 11], deep neural
networks are sensitive to hyperparameters, and for different
hyperparameters, the model classification effect can vary
dramatically, so the KNN algorithm, which does not depend
on the initial hyperparameters, is a more desirable alter-
native algorithm. ,erefore, the KNN algorithm is widely
used in fault prediction [12–14] and fault diagnosis [15–20].

K-value selection, k-nearest neighbor voting rules,
sample space partitioning, and intersample distance metric
are the main influencing factors of KNN algorithm per-
formance. ,ere are adaptive k-values [21–25] and
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k-nearest neighbor weighted voting methods [26–32] for
the optimization of K-value research. Optimizing the K
value selection method and the voting rules within the K
value range can improve the performance of the KNN
algorithm, but too large a sample space will have a negative
impact on the performance of the KNN algorithm. When
the sample space is too large, it also affects the classification
accuracy of the KNNmodel to some extent, which is due to
the limitation of the k-value taking, leading to the un-
balanced samples in the k-value range. For this situation,
the mainstream optimization method is to divide the whole
sample space before calculating the distance, and the di-
vided sample clusters are more targeted, and at the same
time, since the number of samples contained in the sub-
clusters is much smaller than the number of samples in the
original set, dividing the sample space can also reduce the
computation of KNN classifier regarding the distance
between samples, such as KD tree [33], ball tree [34],
clustering [35], and other methods. Although the sample
space division can improve the performance of the algo-
rithm to some extent, the distance metric method between
samples has a greater impact on the performance of KNN
algorithm because a reliable distance metric method is a
guarantee to distinguish the basis of different kinds of
samples. ,e optimization for the distance metric at this
stage is the weighted calculation of each dimensional
distance [36, 37] or the improvement of a single metric
[38].

Despite the fact that many methods have been proposed
to improve the performance of the KNN algorithm, the
methods to increase the distinguishability between data still
need further study. In this paper, we proposed a hybrid
metric-based KNN algorithm, which can further distinguish
data that are difficult to be distinguished by a single distance
within the K-neighborhood, thus improving the classifica-
tion performance of the algorithm. Specifically, firstly, a
hybrid metric is designed, which contains the distance in-
formation and phase information between two samples. To
avoid unnecessary consumption of computational resources,
a matching mechanism is designed to detect equidistant
samples in the k-value range, and according to the type of
detection results, different cases of equidistant samples in the
k-value range are distinguished and the mixed metric of
equidistant samples is obtained to further distinguish the
class of equidistant samples.

Although scholars have done a lot of research work on
the KNN algorithm, there is less research on equidistant
sample differentiation when sorting in the K range. Aiming
at the problem that equidistant samples between samples
within the range of K value affect the classification accuracy,
a hybrid metric KNN (HM-KNN) algorithm is proposed,
and a simple application example is given. In the example,
the abnormal motion input is regarded as a fault affecting the
normal gait, the abnormal motion position is determined
according to the classification results, and the action is
reoutput according to the HM-KNN model, to improve the
walking stability of biped robot.

,e main contributions of our work can be viewed from
the following aspects:

(1) ,e existence of equidistant samples in the K-value
range is less studied, so a hybrid metric KNN al-
gorithm is proposed to further distinguish equidis-
tant samples in the K-value range and achieve the
effect of optimizing the KNN algorithm

(2) A mechanism is designed to detect duplicate values
in the range of k values, which avoids the need to find
the hybrid metric for all samples and reduces the
computational effort of the algorithm

(3) ,e classification effect of the HM-KNN algorithm is
verified on multiple datasets, and the experimental
results show that HM-KNN performs better com-
pared with other KNN models

(4) A biped robot gait controller framework based on
HM-KNN, a data-driven bipedal robot gait con-
troller, is designed, and the experimental results
show that the control framework has a positive effect
on improving the gait stability of the bipedal robot

,e rest of this paper is organized as follows. Section 2
introduces the details of the proposed HM-KNN method.
Experimental results are illustrated in Section 3. Section 4
concludes this paper and offers future work.

2. Methods

2.1. Background. KNN is a very efficient nonparametric
classification method, which is essentially a predictive su-
pervised classification algorithm. It is also a typically inert
learning method, constructing a model at the last moment
before classifying a given test tuple. Only when a test tuple is
seen it is generalized to classify the tuple based on the
similarity of the stored training tuples. ,e most common
way to measure the similarity of two samples is based on the
Euclidean distance, Marxian distance, etc., between the data.
,e classical KNN algorithm flow is as follows.

(1) Calculate the distances between the samples to be
measured and the known class samples

(2) Sort the samples in increasing order of distance
(3) Select the k points with the smallest distance from the

current point
(4) Count the frequency of the category in which the first

k points are located
(5) Return the category with the highest frequency

among the first k points as the predicted classifica-
tion of the current point

Figure 1 is a schematic diagram of KNN classification. It
is known that there are three classes, which are blue dots,
orange squares, and green triangles. ,e yellow area has 6
sampling points, which means the k value is 6. ,e red point
is the sample to be tested. ,e category with the highest
frequency among the first k points in the statistics is the
green triangle, so it is determined that the red points belong
to the category represented by the green triangle.

,e KNN algorithm has the advantages of simplicity and
efficiency, low retraining cost, low complexity of the
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algorithm, and being suitable for automatic classification of
large samples. However, KNN for classification depends on
the similarity metric between data, and a single similarity
metric is sometimes difficult to achieve the classification
requirements, so this paper proposes a hybrid metric-based
KNN algorithm.

2.2. Hybrid Metric. KNN classification is reliable when the
distances between the samples to be tested and the known
samples of different categories can be clearly distinguished.
Otherwise, the reliability of the KNN classification results in
decreases. Such points with indistinguishable distances
become equidistant sample points, which are defined as
follows.

Known sample points that are not sufficiently differ-
entiated by a single distance measure or similarity measure
in the range of K values of the sample points to be measured
are called equidistant sample points.

Two causes of equidistant samples are given in Figure 2.
,e red pentagon indicates the sample to be tested, and the
green triangle and blue dots indicate two different known
categories of sample points. d1 is the distance between the
sample to be tested and the green triangle sample. d2 is the
distance between the sample to be tested and the blue dot
sample.

Figure 2(a) represents the case where a single metric
based on the space distance between samples cannot dis-
tinguish equidistant samples. In this case, the distances
between different types of known samples and the samples to
be measured are the same. A single distance metric, in this
case, cannot distinguish the data. For example, when a bi-
pedal robot walks with asymmetric gait, the joint angle data
of the left leg support phase and the right leg support phase is
the case represented in Figure 2(a). Figure 2(b) represents
the case where a single vector pinch angle based metric is
unable to distinguish between equidistant samples. In this
case, the directional vector angle between the known
samples of different kinds and the sample to be measured is
0. ,e case of Figure 2(b) may arise if there is a need to
distinguish the sizes of objects with the same shape.

,e hybrid metric consists of distance information L and
a phase information P. Figure 3 illustrates the hybrid metric
based on the distance metric, and when the single distance
information L cannot be differentiated, the phase infor-
mation P is used for the equidistant samples for further
differentiation.

2.2.1. Distance Information L. To eliminate the dimensional
differences between the dimensions of the samples, the
Mahalanobis distance between the sample to be measured
and the known sample is calculated according to equations
(1) and (2). ,e covariance of the training set samples is
calculated according to equation (1), and the distance is
calculated according to equation (2).

Σ � cov X0, . . . , Xn � E X0 − μ0( 􏼁 . . . Xn − μn( 􏼁􏼂 􏼃( 􏼁, (1)

where Xi is the training set sample and μi denotes the mean
value corresponding to the sample.

d Xi, Yi( 􏼁 �

�������������������

Xi − Yi( 􏼁
TΣ− 1

Xi − Yi( 􏼁

􏽱

, (2)

where d(Xi, Yi) indicates the distance between samples Xi

and Yi.

2.2.2. Phase Information P. ,e calculated Mahalanobis
distance is called distance information. ,e direction in-
formation is calculated by the cosine similarity. Calculate the
cosine similarity according to the following equation:

cos Xi, Yi( 􏼁 � 􏽘

n

i�1

Xi · Yi( 􏼁

Xi

����
���� Yi

����
����
. (3)

Based on the distance information L and phase infor-
mation P between samples, the hybrid metric dhm is cal-
culated according to the following equation:

dhm � L
s

+ w(1 − P),

wε[0, 1],
(4)

where dhm is the hybrid metric and w is the weighting factor.
S is an identifier with a value of 0 or 1, which is set to 0 if
there are equidistant samples.

When equidistant data exist in the range of K values, it is
known from equation (4) that dhm floats up and down at the

Figure 1: A KNN-based triple classification problem.
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Figure 3: Two cases of equidistant samples.
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Figure 2: Two causes of equidistant samples.
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central value 1. To increase the data differentiation, the
mapping function is defined as equation (5). ,e function
curve is shown in Figure 4.

F(x) �
1

1 + e
−10(x− 1)

. (5)

,e final hybrid metric is calculated as shown in the
following equation:

Dhm � F dhm( 􏼁, (6)

where Dhm is the value of the hybrid metric after mapping by
the mapping function F(x). According to the function
image shown in Figure 4, ω is taken as 0.3 in order to ensure
that the value of the hybrid metric falls within the linear
interval of the mapping function.

2.3. K-Nearest Neighbor Set Update. ,ree cases of known
occurrence of equidistant sample points when K is a fixed
value are shown in Figure 5. ,ese three cases are defined
in Figure 5, where C indicates the classification labels of
the known samples returned according to the distance
between the sample points to be tested and the sample
points known to the classification, the subscript repre-
sents the classification, the dashed box A is the size of K
values, and the dashed box B is the number of points
indicating equal distances between the sample points to
be tested and the sample points known to the
classification.

Figure 5(a) indicates that the repetition area is within
the range of K values, which will not change the frequency
of the sample categories falling within the range of K. In
this case, the sample points of equal distance will not affect
the classification result, and no secondary differentiation of
the samples is needed, Figure 5(b) indicates that the rep-
etition area covers the range of K values, which will change
the frequency of the sample categories falling within the
range of K, and a mixed metric differentiation of the
repetition values within the range of dashed box B is
needed, Figure 5(c) indicates that the repetition area is at
the end of both sides of K values, which will also change the
frequency of the sample categories falling within the range
of K. ,is case also changes the frequency of the sample
categories falling in the K-range and requires a mixture of
metrics to distinguish the Neighbors at the end of the K-
value region.

,e cases in Figures 5(b) and 5(c) affect the final clas-
sification results, and the hybrid measure between the
samples in region B and the samples to be tested needs to be
calculated one by one.,e samples contained in region B are
sorted according to the order of the hybrid measure from
smallest to largest. After obtaining the ascending series of the
hybrid measure, the classification with the highest frequency
is counted according to equations (7) and (8).

,e set of samples in region A is named A(k). k is the
value of K taken in KNN.,e number of samples in region B
is m. ,e set of samples in region B is named B(m).

S yi, cj􏼐 􏼑 �
0, yi ≠ cj,

1, yi � cj,

⎧⎨

⎩ (7)

where yi is the classification label of the samples in B(m). cj is
the classification label contained in the dataset. When yi is
the same as cj, S (yi, cj) returns 1.

y � argmaxcj
􏽘

xi∈A(k)

S yi, cj􏼐 􏼑, i � 1, 2, . . . , n; j � 1, 2, . . . , k,

(8)

where yi is the final determination of the sample to be tested.
Equation (8) can determine the class of the sample to be

tested based on the samples within the set A(k). ,e set A(k)
in Figures 5(b) and 5(c) needs further clarification.

,e sample hybrid metric values within B(m) are cal-
culated one by one, and the samples in B(m) are arranged in
ascending order according to the hybrid metric values. ,e
obtained ascending sequence is defined as D(m) in the form
of the following equation:

D(m) � x1, y1( 􏼁, . . . , xi, yi( 􏼁 |xi ∈ B(m), i ∈ (0, m]􏼈 􏼉,

(9)

where yi is the final determination of the sample to be tested.
In Figure 5(b) A(k) is a subset of B(m). ,e updated A(k)

used for the final classification is given in the following
equation:

A(k)
5b
new � x1, y1( 􏼁, . . . , xj, yj􏼐 􏼑|xj ∈ D(m), j ∈ (0, k]􏽮 􏽯.

(10)

In Figure 5(c), there exists an intersection of A(k) and
B(m), which is defined as C(p). n samples are included in
C(n). ,e updated A(k) used for the final classification is
given in the following equation:

A(k)1 � x1, y1( 􏼁, . . . , xi, yi( 􏼁 |xi ∈ A(k), i ∈ (0, k − n]􏼈 􏼉, (11)

A(k)2 � x1, y1( 􏼁, . . . , xj, yi􏼐 􏼑 |xj ∈ D(m), j ∈ (0, p]􏽮 􏽯, (12)
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Figure 4: Function curve of F(x).

4 Mathematical Problems in Engineering



A(k)
5c
new � A(k)1, A(k)2􏼈 􏼉. (13)

Combining the three cases in Figure 5, the update rule of
A(k) is given in the following equation:

A(k)new �

A(k), case in Figure 5(a),

A(k)
5b
new, case in Figure 5(b),

A(k)
5c
new, case in Figure 5(c).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

,e three cases shown in Figure 5 are more explicitly
expressed as described below. In Figure 5(a), B(m)⊂A(k). In
Figure 5(b), B(m)⊇A(k). In Figure 5(c), B(m)∩A(k)≠∅ and
B(m)∪A(k)≠B(m) and B(m)∪A(k)≠A(k).

2.4. Algorithm Time Complexity Analysis. ,e KNN based
on the Euclidean Distancemetric short for E-KNN, the KNN
based on the Manhattan Distance metric short for MH-
KNN, and the KNN based on the cosine similarity metric
short for C-KNN, the KNN algorithm based on Chebyshev
distance short for CH-KNN, the KNN algorithm based on
Mahalanobis Distance metric short for M-KNN, and the
KNN algorithm based on the hybrid metric short for HM-
KNN are proposed in this paper.

Algorithm time complexity is an important indicator of
algorithm performance, and the HM-KNN algorithm pro-
posed in this paper differs from other comparative KNN
algorithms in the main difference in the mixing metric and
A(k) update. So, the following discussion addresses these two
main factors that affect the time complexity.

An important factor affecting the time complexity of the
KNN algorithm is the method of measuring the variance
between samples. Assume that the time frequency of cal-
culating the distance between a single dimensional known
sample and a single dimensional sample to be measured
using a single metric is 1. Among the above KNN models,
only the HM-KNN model uses the hybrid metric, and the

rest of the KNN models are single metric. ,e time fre-
quencies of the 5 KNN models using a single metric are
shown in the following equation:

T(n)
other KNN
d � dn, (15)

where d is the sample dimension. n is the number of known
data samples.

,e calculation of the discrepancy between the samples
to be measured and the known samples in the HM-KNN
algorithm consists of two processes. First, a single metric,
such as the Marxian distance, Euclidean distance, etc., is
calculated between the sample to be measured and the
known sample, and then the hybrid metric between the
elements in the B(m) set and the sample to be measured is
calculated based on the detected B(m) set. ,e hybrid metric
is calculated according to equations (2) to (6), and the time
frequency of the hybrid metric can be estimated as shown in
the following equation:

T(n)
HM−KNN
d � d(n + 3m), (16)

where m is the number of samples in B(m).
Another important factor that affects the time com-

plexity of the KNN algorithm is the sample ordering. In the
KNNmodels described in this paper, the sorting methods all
use the insertion sorting method. Except for HM-KNN, the
highest ranking time frequency of the other five KNN
models is shown in the following equation:

MAX T(n)
other KNN
Q􏼐 􏼑 � n

2
. (17)

,e HM-KNN has an additional updated mechanism of
A(k) based on a single metric ranking. According to
equations (7) to (14), the time frequency of A(k) update can
be estimated as in the following equation:

MAX T(n)
HM−KNN
Q􏼐 􏼑 � n

2
+ m

2
. (18)
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Figure 5: Classification of cases with duplicate values within the first K minimum values.
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Comparing equations (15) and (16), the difference in the
time frequency between HM-KNN and other KNN algo-
rithms is 3md when calculating the difference between
samples. Comparing equations (17) and (18), the difference
in the time frequency between HM-KNN and other KNN
algorithms is m2 when sorting to obtain A(k). Generally,
m≪ n, when n increases, the difference in time frequency
generated bym can be neglected. ,e highest subterm of the
final time frequency of HM-KNN is n2. Based on the cal-
culated time frequency, the time complexity of HM-KNN
and other HNN algorithms can be derived, as shown in
Table 1.

According to Table 1, it can be concluded that although
HM-KNN increases the hybrid measure of samples in the
local range and the update mechanism of A(k), it does not
affect the increase of the highest subterm of time frequency,
which means that HM-KNN does not increase the algorithm
time complexity significantly while increasing the classifi-
cation accuracy.

2.5. HM-KNN Algorithm. ,e HM-KNN pseudocode is
based on the hybrid metric method proposed in Section 2.2
and the k-neighborhood set update method proposed in
Section 2.3, as Figure 6.

In Figure 6, d denotes the value of any single metric
between the input samples to be tested and the samples of
known class, such as Euclidean distance, Marxian distance,
Manhattan distance, etc.

3. Results and Discussion

3.1. Results. ,e experiment is divided into two parts. ,e
first part compares the performance of HM-KNN with that
of the single metric-based KNN on five UCI (University of
California Irvine) public datasets. ,e HM-KNN algorithm
flow in the first part is shown in the classical KNN algorithm
flow in Section 2.1, but the way to measure the difference
between the samples to bemeasured and the known category
samples is the mixed metric. ,is is to compare the dif-
ference in performance between the mixed metric and other
single metric approaches on a generic dataset. ,e second
part compares the performance of the HM-KNN algorithm
with other KNN algorithms on a collected bipedal robot
forward gait dataset containing equidistant samples. ,e
flow of the HM-KNN algorithm used in this section is shown
in Figure 6. And the optimized HM-KNN algorithm is used
in the bipedal robot forward gait walking task.

3.1.1. Performance Comparison of Different Classification
Models on UCI Dataset. In this section, 5 UCI datasets were
selected to validate the algorithm. ,e four datasets are the
Iris dataset, the heart disease dataset, the wine dataset, and
the breast cancer dataset. ,e basic information of the
datasets is given in Table 2.

Figure 7 gives a comparison of the classification results of
the hybridmetric-based KNN proposed in this paper and the
other five commonly used metric-based KNN algorithms.
,e other five metrics are Euclidean distance, Manhattan

distance, cosine similarity, Chebyshev distance, and
Mahalanobis distance.

In Figure 7(a), this paper compares the classification
accuracy rates of 6 KNN classification models on the Iris
dataset. When K< 5, the HM-KNNmodel performs the best
among the 6 KNN models with the highest classification
accuracy of 0.9873 and the lowest of 0.9774. When
4<K< 16, the mean value of the classification accuracy of
the HM-KNNmodel is 0.9678, but there is some fluctuation,
which is caused by the change of the sample number in the
range ofK. However, as the value ofK increases, after K> 14,
the HM- KNN model classification accuracy rises to the
highest value of 1. ,e results indicate that HM-KNN has
better generalization ability on this dataset.

Comparing the 6 KNN models in terms of model sta-
bility, the HM-KNN model performs the best, with a mean
classification accuracy of 0.9773 and a standard deviation of
0.0143, and has the highest mean classification accuracy and
the lowest variance compared with the other five KNN
classification models. In summary, the HM-KNNmodel has
a higher classification accuracy, better generalization ability,
and better stability compared with the other five KNN
models on this dataset.

In Figure 7(b), this paper compares the classification
accuracy rate of the 6 KNN classificationmodels on the heart
disease dataset. When K< 7, except for the CH-KNNmodel,
which fluctuates less, all the KNN models fluctuate more
because as the value of K increases, the frequency of sample
categories falling within the range of K values changes,
causing accurate classification rate to fluctuate, and the
classification models are not stable at this time. When K> 6,
the models are relatively stable. At K� 8 and K� 9, the HM-
KNN model achieves a maximum of 0.9673. At 6<K< 18,
the HM-KNN model was significantly better than the other
five classification models in terms of accuracy. When K� 18,
the classification accuracy is slightly lower than that of the
M-KNN model and C-KNN model, and the classification
accuracy is 0.9442. When K� 19, the classification accuracy
increases and is slightly higher than that ofM-KNN.WhenK
is not greater than 19, HM-KNN has relatively higher
classification accuracy and better generalization ability
compared with other models except for individual values of
K. When K is not greater than 19, HM-KNN has relatively
higher classification accuracy and better generalization
ability compared with other models.

Comparing the 6 KNN models in terms of model sta-
bility, the HM-KNN model has a mean classification ac-
curacy of 0.9417 and a standard deviation of 0.0326. ,e
HM-KNN model has the highest mean classification

Table 1: Maximum time complexity of different KNN algorithms.

Algorithm name Time complexity
E-KNN O(k × n2)

MH-KNN O(k × n2)

C-KNN O(k × n2)

CH-KNN O(k × n2)

M-KNN O(k × n2)

HM-KNN O(k × n2)
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accuracy but the largest variance compared with the
remaining five KNN classification models, which is caused
by the initial dataset cut, and it is obvious from the figure
that when K� 1, each classification model classification. It is
obvious from the figure that the classification accuracy of
each model is lower than 0.88 when K� 1 and the classifi-
cation accuracy of HM-KNN classification increase the
fastest, causing the variance to be too large. In summary, the
HM-KNN model has a higher classification accuracy
compared with the other five KNN models in this dataset
and has better stability when K> 6. After K> 14, the gen-
eralization ability is slightly lower than that of M-KNN as the
value of K increases but better than the other four classi-
fication models.

In Figure 7(c), this paper compares the classification
accuracy of the 6 KNN classification models on the wine
dataset. ,e classification accuracy of the 6 KNN models is
relatively stable without significant fluctuations. When K� 4
is, the HM-KNN classification accuracy reaches the highest
value of 1, and the classification accuracy of the rest K values
is stable at 0.9777. ,e results indicate that HM-KNN has
better generalization ability on this dataset. Comparing the 6

KNN models in terms of model stability, the HM-KNN
model has a mean classification accuracy of 0.9789 and a
standard deviation of 0.0051. It has the highest mean
classification accuracy and the smallest variance compared
with the other five KNN classification models. In summary,
the HM-KNN model has higher classification accuracy,
better generalization ability, and better stability than the
other five KNN models in this dataset.

In Figure 7(d), this paper compares the classification
accuracy of 6 KNN classificationmodels on the breast cancer
dataset. ,e results in the figure show that the classification
accuracy of the 6 types of KNN classification models on this
dataset is relatively satisfactory, with the classification ac-
curacy rate above 0.95.,eHM-KNN classification accuracy
reached the maximum value of 0.9930 when K� 3 and K� 4.
,e classification accuracy of all 6 KNNmodels decreased as
the value of K increased. When K> 7, HM-KNN classifi-
cation stability is better than other classification models.
However, the classification accuracy decreases and fluctuates
with increasing K values, which is due to the presence of
interference data in the sample.

Comparing the 6 KNN models in terms of model sta-
bility, the HM-KNNmodel has a mean value of 0.9806 and a
standard deviation of 0.0072. It has the highest mean value of
classification accuracy and the lowest variance compared to
the other five KNN classification models. In summary, the
HM-KNN model has higher classification accuracy, better
generalization ability, and better stability than the other five
KNN models in this dataset.

HM-KNN is a secondary classification of repetitive data
based on M-KNN. Combining subfigures Figures 7(a)–7(d),

Algorithm Hybrid Metric KNN

Input: xi
k; g is Equidistant sample marker;Initial:

while do

else do

else do

end if

end while

Return the classification label with the highest frequency in A (k) as the predicted classification
of the test data.

Determine the distribution of equidistant samples and update A (k) according to Eqs.
(7) to (14);

Select the first k minimum values according to the ordering in A (k);
if g = False do

g = False;

g = True;
Obtain the set of equidistant samples B (m);

Calculate the distance di between xi and each known data;
Store the known samples in Z according to the increasing order of di;
Select the first k samples from Z and store them in A (k);
if equidistant samples exist do

Figure 6: Pseudocode of hybrid metric KNN algorithm.

Table 2: Data set parameters.

Dataset Instances Attributes
Iris 150 4
Heart disease 304 14
Wine 178 13
Breast cancer 569 30
Hydraulic system condition monitoring 2205 43680
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it can be concluded that the HM-KNN proposed in the paper
is more general than the other five KNN models on the four
classical UCI datasets, and has better generalization ability,
and significantly outperforms M-KNN. It can also be seen
that the hybrid metric has a boosting effect on the correct
classification rate at suitable K values when a single metric
cannot distinguish the samples.

Using the validation of the hydraulic system condition
monitoring dataset [39], the dataset was obtained experi-
mentally through a hydraulic test stand. ,e test stand
consists of a main working unit and an auxiliary cooling and
filtering circuit, which are connected through the oil tank.

,e system periodically repeats constant load cycles and
measures process values while the state of the four hydraulic
components changes quantitatively. ,e data set

characteristics include pressure data, temperature data, and
flow data, among others.

,e Hydraulic System Conditions Monitoring dataset
has five target categories corresponding to the five param-
eters describing the system, and the specific classification is
given in Table 3. ,e distribution of the data in the table
shows that the samples are distributed relatively evenly and
there are no cases where there are very few or very many
samples in a particular category. ,erefore, it is feasible to
use the classification accuracy to describe the classification
model on this dataset.

In Figure 8, we compare the accuracy of six KNN
classification models on the hydraulic system condition
monitoring dataset. When K< 10 and 12<K< 17, the HM-
KNN classification rate is lower than that of M-KNN. When
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Figure 7: Comparison of classification accuracy of different KNN models on UCI classical dataset (cross validation 25%).
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8<K< 13 and K> 16, the HM-KNN model outperforms the
other five KNN models. Compared with the other five KNN
models, the generalization ability of HM-KNN is relatively
better with the increase of K. When the value of K increases
from 18 to 19, the classification accuracy of HM-KNN im-
proves to 0.9806, which indicates that HM-KNN can make
more reliable judgments in a larger range of K. ,is indicates
that HM-KNNN can make more reliable classifications.

Comparing the 6 KNN models in terms of model sta-
bility, the mean value of the classification accuracy of the
HM-KNN model is 0.9827 and the standard deviation is
0.0078. ,e mean value of the classification accuracy of
M-KNN is equal to that of HM-KNN, but the standard
deviation of the classification accuracy of the M-KNNmodel
is larger than that of the HM-KNN model. ,e standard
deviation of the M-KNN model is 0.0093. In summary, the

HM-KNN model has a relatively higher classification ac-
curacy, better generalization ability, and better stability than
the other KNN models on this dataset.

3.1.2. Performance Comparison of Different Classification
Models on Biped Robot ForwardWalking Dataset. ,e biped
robot forward walking dataset used for the experiments is
based on the NAO robot collection shown in Figure 9. Nao
robot with robot body version H25.,e robot has a total of 6
degrees of freedom for each leg, which are 3 degrees of
freedom for the hip joint, 1 degree of freedom for the knee
joint, and 2 degrees of freedom for the ankle joint.

,e experimental dataset consisted of one normal gait
cycle bipedal joint angle data and 19 abnormal gait cycle
bipedal joint angle data of NAO robot forward walking
based on deep network control. ,e data set angle data to
include hip pitch angle, hip roll angle, knee pitch angle, ankle
pitch angle, and ankle roll angle.

,e dataset includes the biped motor angles for one
normal forward walking gait cycle of the biped robot and
multiple forward walking abnormal gait cycles of the biped
motor angles, of which there are 28 items of data in each
class, and the information of the dataset is given in Table 4.

,e dataset is relatively balanced in each class, and there are
no classes with large differences in sample size, and it is feasible
to use the classification model as a measure of the classification
accuracy. ,e classification results are shown in Figure 10.

,e results in Figure 10 show that M-KNN, CH-KNN,
C-KNN, and E-KNN had better performance than HM-
KNN when K≤ 8. In general, when the value of K is small, it
is easy to lead to overfitting and insufficient generalization
ability, so it is difficult to evaluate the classification per-
formance of the KNN models. When K ∈ [9, 19], the clas-
sification accuracy of the HM-KNN model is higher than
that of other KNN algorithms, and the classification accu-
racy reaches 0.987 and is more stable. It indicates that for this
dataset, HM-KNN has good generalization ability. When
K> 16, the classification accuracy decreases, but its classi-
fication effect is better than other KNN models.

Table 3: Parameters for hydraulic system condition monitoring dataset.

Target item name Conditions Instances

Cooler condition
Close to total failure 732
Reduced efficiency 732
Full efficiency 741

Valve condition

Optimal switching behavior 1125
Small lag 360
Severe lag 360

Close to total failure 360

Internal pump leakage
No leakage 1221

Weak leakage 492
Severe leakage 492

Hydraulic accumulator

Optimal pressure 599
Slightly reduced pressure 399
Severely reduced pressure 399

Close to total failure 808

Stable flag Conditions were stable 1449
Static conditions might not have been reached yet 756

0.99

1.00

0.98

0.97

AC
C 

RA
TE

0.96

0.95

0.94

0.93

E-KNN
C-KNN
MH-KNN

CH-KNN
M-KNN
HM-KNN

1 2 3 4 5 6 7 8 9 10
K

11 12 13 14 15 16 17 18 19

Figure 8: Comparison of classification accuracy of different KNN
models on hydraulic system condition monitoring (HSCM) dataset
(cross validation 25%).
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3.1.3. Summary. Comparing the 6 KNN models in terms of
model stability, the M-KNNmodel has the best performance
with the mean value of 0.9784 and the standard deviation of
0.0155. ,e mean value of the HM-KNN classification ac-
curacy is slightly lower than that of M-KNN with a value of
0.9762. ,e standard deviation of the HM-KNN classifica-
tion accuracy is slightly higher than that of M-KNN, with a
value of 0.0183. However, the median classification accuracy

of HM-KNN is higher than the median accurate rate of
M-KNN with a value of 0.9866, indicating that the accuracy
of HM-KNN classification is higher than that of M-KNN
when K> 10.

Compared with the remaining 5 KNN classification
models, the median accuracy of classification is the largest
and the standard deviation is the smallest when K> 10. In
summary, when K> 10, the HM-KNN model has higher
classification accuracy, better generalization ability, and
better stability compared with the other five KNNmodels on
this dataset.

Figure 11 shows the distribution of the mean and
standard deviation relationship of the classification accuracy
of the 6 KNN models on the 6 datasets. From the results in
the figure, it is observed that except for the heart disease
dataset and the biped robot forward walking dataset, HM-
KNN classification is better than the other KNN models on
the other four datasets.HM-KNN has the largest mean ac-
curate classification rate but also the largest standard de-
viation on the heart disease dataset, which, combined with
the Figure 7(b), is due to the HM-KNN model classification
model has lower classification accuracy when k< 3, while
there is a significantly higher classification accuracy and
better stability when k≥ 3.

HM-KNN has lower average classification accuracy than
M-KNN and CH-KNN on biped robot forward walking
dataset and also has the largest standard deviation. Com-
bined with the analysis in Figure 11, it is known that HM-
KNN has the largest and most stable classification accuracy
when k≥ 9. ,e accuracy of HM-KNN classification is lower
than that of M-KNN and CH-KNN when 1< k< 9, which
causes the problem of small mean value and large standard
deviation of HM-KNN. Combining Figures 7, 8, 10, and 11,
it can be seen that HM-KNN has the largest average accurate
classification rate and the best stability when k≥ 10, while
HM-KNN has relatively better generalization ability com-
pared with other KNN models.

3.1.4. Application of HM-KNN for Deep Neural Network
Control of Biped Robot Walking Tasks. In this section, the
proposed HM-KNN is applied to the walking task of a deep
neural network-controlled bipedal robot to improve the
robot walking stability.

In a deep neural network-controlled biped robot walking
task, when the neural network model controlling the robot is
trained, it receives inputs from the robot sensors and outputs
actions based on the inputs, but the deep network is sensitive
to the sensor inputs, and perturbation changes in the sensor
values can lead to abnormal output actions.

To solve the above problem, this paper proposes a simple
HM-KNN based control framework, where HM-KNN
comes with a small amount of data for discriminating the
output actions of the deep neural network. When the robot
action is generated by the deep neural network, it is fed into
the HM-KNN model. If the action is normal, the action will
act directly on the robot to make the robot move. When the
action value is abnormal, there are two cases, one is the
abnormal action deviates from the normal actions within the

Figure 9: Nao robot.

Table 4: Data set parameters.

Dataset Instances Attributes
Biped robot forward walking 594 10
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Figure 10: Comparison of classification accuracy of different KNN
models on biped robot forward walking (BRFW) dataset (cross-
validation 25%).
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safety limit, HM-KNN will output the nearest normal action
value to the abnormal action, and the second is the abnormal
value deviates from the normal value beyond the safety limit,
HM-KNN model will output the fault location to the op-
erator, who will carry out the next. ,e safety limit is the
absolute value of the distance of the abnormal value, which is
statistically derived according to the different tasks required
and is taken here as 0.3. ,e KM-KNN and the safety limit
are used to ensure robot safety and improve the stability of
robot walking. ,e control process is given in Figure 12.

To address the above problems, this paper proposes a
simple control framework for robots based on HM-KNN, in
which the action values output from the neural network are
fed into a model of HM-KNN with a small amount of data,
and the gait reconstruction of the bipedal robot is performed
based on the output of HM-KNN, to improve the stability of
the bipedal robot in the walking process.

Figure 13 shows the classification results of HM-KNN on
the biped robot forward walking dataset for different w

parameters. When w � 0 indicates that the directional in-
formation in the hybrid metric does not play a role, and the
samples are simply classified by theMahalanobis distance. In
Figure 13, the classification accuracy of the HM-KNNmodel

with w � 0 is marked with blue “+,” and the classification
accuracy of the HM-KNN model with w � 0.3 is marked
with “o.”

,e results in Figure 13 show that at K� 13, the clas-
sification results for the remaining w parameters are sig-
nificantly better than w � 0. When K� 16, the HM-KNN
model taking w � 0.4 achieves the highest classification
accuracy and significantly outperforms the HM-KNNmodel
based on the other w values. When K� 17, the HM-KNN
model taking w � 0.3 achieves the highest classification
accuracy and significantly outperforms the HM-KNNmodel
based on other w values.

Figure 14 shows the distribution of the mean and
standard deviation of the classification accuracy for the HM-
KNN model with different parameters at K ∈ [1, 19]. Where
Max_f denotes the number of occurrences of the maximum
classification accuracy value, which represents the size of the
points in the plot. Max_K denotes the maximum K value
corresponding to the maximum classification accuracy.
Max_f and Max_K represent the generalization ability of the
model. Combining the mean value of classification accuracy,
the standard deviation of classification accuracy, Max_f and
Max_K, w � 0.3 is relatively better.
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Figure 11: Effectiveness of multi-KNN on multiple datasets.
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Combining Figures 13 and 14, it can be seen that the
HM-KNN model performs best in the biped robot forward
walking dataset when w � 0.3.

When abnormal data are generated and input to the
value HM-KNN model, the model classifies the abnormal
values and outputs the normal values that are closest to the
abnormal values. ,e common discriminant of biped robot

walking stability is the Zero Moment Point (ZMP) [40].
Figure 15 shows the stability of the biped robot with a single
leg support phase, the shaded area indicates the stable
support area, the coordinate origin indicates the robot’s right
foot plantar coordinate system, the green point indicates the
desired ZMP, i.e., the optimal ZMP for the current step, and
the red star indicates the actual ZMP. Figures 15(a)–15(d)
show the bipedal robot stability adjustment process after
anomalous zmp generation, which is done based on the
framework shown in Figure 12. Figure 15(a) shows the zmp
distribution when the abnormal motion occurs.
Figures 15(b) and 15(c) show the variation process of the
actual zmp position. Figure 15(d) shows the zmp position
after the adjustment is completed.

,e position of the green dot in the support foot co-
ordinate system in Figure 15 is [0.0207, 0.0003], and the
position of the red star in the support foot coordinate system
in Figure 15(a) is [0.0378, −0.0211], which is obviously
beyond the stable support area and can lead to unstable
robot walking and even damage the robot. After the zmp
position adjustment process is shown in Figures 15(b) and
15(c), the position of the red star in the support foot co-
ordinate system in Figure 15(d) is [0.0212, −0.0061], and it
can be seen that the zmp is close to the ideal zmp by
combining Figures 15(a) and 15(d). Although it does not
reach the ideal zmp position, the zmp falls within the stable
support area, which can ensure that the robot is this moment
is stable, and it can be seen from Figure 15 that the robot
control framework proposed in Figure 12 is effective in
improving the stability of the robot.
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Figure 12: Deep neural network control framework of a biped
robot based on HM-KNN.
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4. Conclusions

In this paper, a hybrid metric-based KNN algorithm is
proposed to further improve the performance of the algo-
rithm by further distinguishing equidistant samples in k-
nearest neighbors. More specifically, firstly, the hybrid
metric method is proposed for the problem that a single
metric cannot distinguish equidistant samples. Secondly, a
distribution discrimination method for equidistant samples
is designed to calculate the hybrid metric between samples
and update the k-nearest neighbors more specifically.

In the experimental part, HM-KNN is compared with
several KNN models on several data sets and an application
example of HM-KNN is given. More specifically, the ex-
periments are divided into two parts. In the first part of the
experiment, HM-KNN is compared with the other 5 single
metric-based KNN models on 5 UCI public datasets. ,e
results show that HM-KNN has good classification and
generalization ability compared to other single-metric-based
KNN algorithms. In the second part of the experiment, HM-
KNN is compared with the other 5 single-metric-based KNN
models on a self-collected bipedal robot forward walking
dataset, which includes equidistant samples, such as joint
data of the left and right single-legged support phases. ,e
results demonstrate that HM-KNN has good classification
and generalization ability on this data and compared to
other single metric-based KNN algorithms. A deep neural
network based on HM-KNN is designed to control the
forward travel controller of the bipedal robot. ,e effec-
tiveness of the HM-KNN-based deep neural network con-
troller is demonstrated by comparing the ZMP distribution.

Although the HM-KNN algorithm proposed in this
paper can further increase the distinguishability of the
data compared with the traditional single metric KNN
algorithm, there are still shortcomings, which is the focus
of the next step. First, the proposed hybrid metric method
can further increase the distinguishability of data, but it
cannot overcome the distance failure caused by the di-
mensional catastrophe. Second, the parameter w in the
hybrid metric is designed empirically, and this fixed pa-
rameter often does not adapt well to different data sets,
and how to design an adaptive method for the w pa-
rameter in the hybrid metric is a key issue that needs to be
studied urgently. Improving the above deficiencies is the
focus of future work.
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